Next Article in Journal
A Modified Look-Up Table Based Algorithm with a Self-Posed Scheme for Fine-Mode Aerosol Microphysical Properties Inversion by Multi-Wavelength Lidar
Previous Article in Journal
Characteristics of Yellow Sea Fog under the Influence of Eastern China Aerosol Plumes
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
Article

Assessing Vertical Accuracy and Spatial Coverage of ICESat-2 and GEDI Spaceborne Lidar for Creating Global Terrain Models

by
Maarten Pronk
1,2,*,
Marieke Eleveld
1,2 and
Hugo Ledoux
2
1
Deltares, P.O. Box 177, 2600 MH Delft, The Netherlands
2
Faculty of Architecture and the Built Environment, Delft University of Technology, P.O. Box 5, 2600 AA Delft, The Netherlands
*
Author to whom correspondence should be addressed.
Remote Sens. 2024, 16(13), 2259; https://doi.org/10.3390/rs16132259
Submission received: 17 April 2024 / Revised: 14 June 2024 / Accepted: 17 June 2024 / Published: 21 June 2024
(This article belongs to the Section Remote Sensing and Geo-Spatial Science)

Abstract

Digital Elevation Models (DEMs) are a necessity for modelling many large-scale environmental processes. In this study, we investigate the potential of data from two spaceborne lidar altimetry missions, ICESat-2 and GEDI—with respect to their vertical accuracies and planimetric data collection patterns—as sources for rasterisation towards creating global DEMs. We validate the terrain measurements of both missions against airborne lidar datasets over three areas in the Netherlands, Switzerland, and New Zealand and differentiate them using land-cover classes. For our experiments, we use five years of ICESat-2 ATL03 data and four years of GEDI L2A data for a total of 252 million measurements. The datasets are filtered using parameter flags provided by the higher-level products ICESat-2 ATL08 and GEDI L3A. For all areas and land-cover classes combined, ICESat-2 achieves a bias of -0.11m, an MAE of 0.43m, and an RMSE of 0.93m. From our experiments, we find that GEDI is less accurate, with a bias of 0.09m, an MAE of 0.98m, and an RMSE of 2.96m. Measurements in open land-cover classes, such as “Cropland” and “Grassland”, result in the best accuracy for both missions. We also find that the slope of the terrain has a major influence on vertical accuracy, more so for GEDI than ICESat-2 because of its larger horizontal geolocation error. In contrast, we find little effect of either beam power or background solar radiation, nor do we find noticeable seasonal effects on accuracy. Furthermore, we investigate the spatial coverage of ICESat-2 and GEDI by deriving a DEM at different horizontal resolutions and latitudes. GEDI has higher spatial coverage than ICESat-2 at lower latitudes due to its beam pattern and lower inclination angle, and a derived DEM can achieve a resolution of 500m. ICESat-2 only reaches a DEM resolution of 700m at the equator, but it increases to almost 200m at higher latitudes. When combined, a 500m resolution lidar-based DEM can be achieved globally. Our results indicate that both ICESat-2 and GEDI enable accurate terrain measurements anywhere in the world. Especially in data-poor areas—such as the tropics—this has potential for new applications and insights.
Keywords: ICESat-2 ATL03; GEDI L2A; DTM; lidar; altimetry; validation; laser; terrain; vertical accuracy; spatial coverage; global ICESat-2 ATL03; GEDI L2A; DTM; lidar; altimetry; validation; laser; terrain; vertical accuracy; spatial coverage; global

Share and Cite

MDPI and ACS Style

Pronk, M.; Eleveld, M.; Ledoux, H. Assessing Vertical Accuracy and Spatial Coverage of ICESat-2 and GEDI Spaceborne Lidar for Creating Global Terrain Models. Remote Sens. 2024, 16, 2259. https://doi.org/10.3390/rs16132259

AMA Style

Pronk M, Eleveld M, Ledoux H. Assessing Vertical Accuracy and Spatial Coverage of ICESat-2 and GEDI Spaceborne Lidar for Creating Global Terrain Models. Remote Sensing. 2024; 16(13):2259. https://doi.org/10.3390/rs16132259

Chicago/Turabian Style

Pronk, Maarten, Marieke Eleveld, and Hugo Ledoux. 2024. "Assessing Vertical Accuracy and Spatial Coverage of ICESat-2 and GEDI Spaceborne Lidar for Creating Global Terrain Models" Remote Sensing 16, no. 13: 2259. https://doi.org/10.3390/rs16132259

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop