Towards a Novel Generative Adversarial Network-Based Framework for Remote Sensing Image Demosaicking
Abstract
:1. Introduction
2. Related Work
2.1. Model-Based Methods
2.2. Data-Driven Methods
3. Method
3.1. Generator Network
3.2. Discriminator Network
3.3. Loss Function
4. Results
4.1. Datasets and Implementation Details
4.2. Experiment Results
5. Discussion
5.1. Ablation Studies of Discriminant-Enhanced Learning (DEL) Link
5.2. Ablation Studies of Global Attention Mechanism
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, L.; Tan, Y.P. Effective use of spatial and spectral correlations for color filter array demosaicking. IEEE Trans. Consum. Electron. 2004, 50, 355–365. [Google Scholar] [CrossRef]
- Gunturk, B.; Glotzbach, J.; Altunbasak, Y.; Schafer, R.; Mersereau, R. Demosaicking: Color filter array interpolation. IEEE Signal Process. Mag. 2005, 22, 44–54. [Google Scholar] [CrossRef]
- Cok, D.R. Signal Processing Method and Apparatus for Producing Interpolated Chrominance Values in a Sampled Color Image Signal. U.S. Patent 4,642,678, 10 February 1987. [Google Scholar]
- Adams, J.E., Jr. Interactions between color plane interpolation and other image processing functions in electronic photography. In Proceedings of the Cameras and Systems for Electronic Photography and Scientific Imaging, San Jose, CA, USA, 8–9 February 1995; Anagnostopoulos, C.N., Lesser, M.P., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 1995; Volume 2416, pp. 144–151. [Google Scholar] [CrossRef]
- Kiku, D.; Monno, Y.; Tanaka, M.; Okutomi, M. Residual interpolation for color image demosaicking. In Proceedings of the 2013 IEEE International Conference on Image Processing, Melbourne, Australia, 15–18 September 2013; pp. 2304–2308. [Google Scholar] [CrossRef]
- Kiku, D.; Monno, Y.; Tanaka, M.; Okutomi, M. Minimized-Laplacian residual interpolation for color image demosaicking. In Digital Photography X; Sampat, N., Tezaur, R., Battiato, S., Fowler, B.A., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2014; Volume 9023, p. 90230L. [Google Scholar] [CrossRef]
- Monno, Y.; Kiku, D.; Tanaka, M.; Okutomi, M. Adaptive residual interpolation for color image demosaicking. In Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September 2015; pp. 3861–3865. [Google Scholar] [CrossRef]
- Hibbard, R.H. Apparatus and Method for Adaptively Interpolating a Full Color Image Utilizing Luminance Gradients. U.S. Patent 5,382,976A, 29 June 1993. [Google Scholar]
- Adams, J. Design of practical color filter array interpolation algorithms for digital cameras .2. In Proceedings of the 1998 International Conference on Image Processing, ICIP98 (Cat. No.98CB36269), Chicago, IL, USA, 7 October 1998; Volume 1, pp. 488–492. [Google Scholar] [CrossRef]
- Kakarala, R.; Baharav, Z. Adaptive demosaicing with the principal vector method. IEEE Trans. Consum. Electron. 2002, 48, 932–937. [Google Scholar] [CrossRef]
- Buades, A.; Coll, B.; Morel, J.M.; Sbert, C. Self-Similarity Driven Color Demosaicking. IEEE Trans. Image Process. 2009, 18, 1192–1202. [Google Scholar] [CrossRef]
- Lien, C.Y.; Yang, F.J.; Chen, P.Y.; Fang, Y.W. Efficient VLSI Architecture for Edge-Oriented Demosaicking. IEEE Trans. Circuits Syst. Video Technol. 2018, 28, 2038–2047. [Google Scholar] [CrossRef]
- Kim, Y.; Jeong, J. Four-Direction Residual Interpolation for Demosaicking. IEEE Trans. Circuits Syst. Video Technol. 2016, 26, 881–890. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, W.; Li, H. MCFD: A Hardware-Efficient Noniterative Multicue Fusion Demosaicing Algorithm. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 3575–3589. [Google Scholar] [CrossRef]
- Chen, X.; He, L.; Jeon, G.; Jeong, J. Multidirectional Weighted Interpolation and Refinement Method for Bayer Pattern CFA Demosaicking. IEEE Trans. Circuits Syst. Video Technol. 2015, 25, 1271–1282. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, W.; Li, H. Hardware-Oriented Shallow Joint Demosaicing and Denoising. In Proceedings of the 2022 IEEE International Conference on Image Processing (ICIP), Bordeaux, France, 16–19 October 2022; pp. 801–805. [Google Scholar] [CrossRef]
- Mairal, J.; Elad, M.; Sapiro, G. Sparse Representation for Color Image Restoration. IEEE Trans. Image Process. 2008, 17, 53–69. [Google Scholar] [CrossRef]
- Mairal, J.; Bach, F.; Ponce, J.; Sapiro, G.; Zisserman, A. Non-local sparse models for image restoration. In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009; pp. 2272–2279. [Google Scholar] [CrossRef]
- Ye, W.; Ma, K.K. Color Image Demosaicing Using Iterative Residual Interpolation. IEEE Trans. Image Process. 2015, 24, 5879–5891. [Google Scholar] [CrossRef]
- Khashabi, D.; Nowozin, S.; Jancsary, J.; Fitzgibbon, A.W. Joint Demosaicing and Denoising via Learned Nonparametric Random Fields. IEEE Trans. Image Process. 2014, 23, 4968–4981. [Google Scholar] [CrossRef]
- Klatzer, T.; Hammernik, K.; Knobelreiter, P.; Pock, T. Learning joint demosaicing and denoising based on sequential energy minimization. In Proceedings of the 2016 IEEE International Conference on Computational Photography (ICCP), Evanston, IL, USA, 13–15 May 2016; pp. 1–11. [Google Scholar] [CrossRef]
- Kokkinos, F.; Lefkimmiatis, S. Deep Image Demosaicking Using a Cascade of Convolutional Residual Denoising Networks. In Proceedings of the Computer Vision—ECCV 2018, Munich, Germany, 8–14 September 2018; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Springer: Cham, Switzerland, 2018; pp. 317–333. [Google Scholar]
- Kokkinos, F.; Lefkimmiatis, S. Iterative Joint Image Demosaicking and Denoising Using a Residual Denoising Network. IEEE Trans. Image Process. 2019, 28, 4177–4188. [Google Scholar] [CrossRef]
- Syu, N.S.; Chen, Y.S.; Chuang, Y.Y. Learning Deep Convolutional Networks for Demosaicing. arXiv 2018, arXiv:1802.03769. [Google Scholar]
- Xu, Y.; Liu, Z.; Wu, X.; Chen, W.; Wen, C.; Li, Z. Deep Joint Demosaicing and High Dynamic Range Imaging Within a Single Shot. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 4255–4270. [Google Scholar] [CrossRef]
- Chang, K.; Li, H.; Tan, Y.; Ding, P.L.K.; Li, B. A Two-Stage Convolutional Neural Network for Joint Demosaicking and Super-Resolution. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 4238–4254. [Google Scholar] [CrossRef]
- Guan, J.; Lai, R.; Lu, Y.; Li, Y.; Li, H.; Feng, L.; Yang, Y.; Gu, L. Memory-Efficient Deformable Convolution Based Joint Denoising and Demosaicing for UHD Images. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 7346–7358. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, S.; Zhu, S.; Ma, Z.; Xiong, R.; Zeng, B. NTSDCN: New Three-Stage Deep Convolutional Image Demosaicking Network. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 3725–3729. [Google Scholar] [CrossRef]
- Niu, G. Frequency Decomposition Network for Fast Joint Image Demosaic, Denoising and Super-Resolution. In Proceedings of the 2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE), Guangzhou, China, 6–8 January 2023; pp. 571–574. [Google Scholar] [CrossRef]
- Vinod; Prasad, K.S.; Prasad, T.J. Deep Learning Approach for Image Denoising and Image Demosaicing. Int. J. Comput. Appl. 2017, 168, 18–26. [Google Scholar]
- Sakamoto, T.; Nakanishi, C.; Hase, T. Software pixel interpolation for digital still cameras suitable for a 32-bit MCU. IEEE Trans. Consum. Electron. 1998, 44, 1342–1352. [Google Scholar] [CrossRef]
- Hua, L.; Xie, L.; Chen, H. A color interpolation algorithm for Bayer pattern digital cameras based on green components and color difference space. In Proceedings of the 2010 IEEE International Conference on Progress in Informatics and Computing, Shanghai, China, 10–12 December 2010; Volume 2, pp. 791–795. [Google Scholar] [CrossRef]
- Chung, K.L.; Hsu, T.C.; Huang, C.C. Joint Chroma Subsampling and Distortion-Minimization-Based Luma Modification for RGB Color Images With Application. IEEE Trans. Image Process. 2017, 26, 4626–4638. [Google Scholar] [CrossRef]
- Sher, R.; Porat, M. CCD image demosaicing using localized correlations. In Proceedings of the 2007 15th European Signal Processing Conference, Poznan, Poland, 3–7 September 2007; pp. 1897–1901. [Google Scholar]
- Menon, D.; Andriani, S.; Calvagno, G. Demosaicing With Directional Filtering and a posteriori Decision. IEEE Trans. Image Process. 2007, 16, 132–141. [Google Scholar] [CrossRef]
- Nallaperumal, K.; Vinsley, S.; Christopher, S.; Selvakumar, R.K. A Novel Adaptive Weighted Color Interpolation Algorithm for Single Sensor Digital Camera Images. In Proceedings of the International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007), Sivakasi, India, 13–15 December 2007; Volume 3, pp. 477–481. [Google Scholar] [CrossRef]
- Yang, B.; Wang, D. An Efficient Adaptive Interpolation for Bayer CFA Demosaicking. Sens. Imaging 2019, 20, 37. [Google Scholar] [CrossRef]
- Sun, B.; Yuan, N.; Zhao, Z. A Hybrid Demosaicking Algorithm for Area Scan Industrial Camera Based on Fuzzy Edge Strength and Residual Interpolation. IEEE Trans. Ind. Inform. 2020, 16, 4038–4048. [Google Scholar] [CrossRef]
- Fan, L.; Feng, G.; Ren, Y.; Wang, J. Color demosaicking via fully directional estimation. SpringerPlus 2016, 5, 1736. [Google Scholar] [CrossRef]
- Su, D.; Willis, P. Demosaicing of color images using pixel level data-dependent triangulation. In Proceedings of the Theory and Practice of Computer Graphics, Birmingham, UK, 5 June 2003; pp. 16–23. [Google Scholar] [CrossRef]
- Karch, B.K.; Hardie, R.C. Adaptive Wiener filter super-resolution of color filter array images. Opt. Express 2013, 21, 18820–18841. [Google Scholar] [CrossRef]
- Jiaqi, W.; Taoyang, W.; Yufen, P.; Guo, Z. Bayer interpolation for video satellite images. Remote. Sens. Nat. Resour. 2019, 31, 51–58. [Google Scholar] [CrossRef]
- Zhang, F.; Bai, C. Jointly Learning Spectral Sensitivity Functions and Demosaicking via Deep Networks. In Proceedings of the 2021 3rd International Conference on Advances in Computer Technology, Information Science and Communication (CTISC), Shanghai, China, 23–25 April 2021; pp. 404–411. [Google Scholar] [CrossRef]
- Tang, J.; Li, J.; Tan, P. Demosaicing by Differentiable Deep Restoration. Appl. Sci. 2021, 11, 1649. [Google Scholar] [CrossRef]
- Ignatov, A.; Van Gool, L.; Timofte, R. Replacing Mobile Camera ISP with a Single Deep Learning Model. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 13–19 June 2020; pp. 2275–2285. [Google Scholar] [CrossRef]
- Sharif, S.M.A.; Naqvi, R.A.; Biswas, M. SAGAN: Adversarial Spatial-asymmetric Attention for Noisy Nona-Bayer Reconstruction. arXiv 2021, arXiv:2110.08619. [Google Scholar]
- Dong, W.; Yuan, M.; Li, X.; Shi, G. Joint Demosaicing and Denoising with Perceptual Optimization on a Generative Adversarial Network. arXiv 2018, arXiv:1802.04723. [Google Scholar]
- Huang, T.; Wu, F.F.; Dong, W.; Shi, G.; Li, X. Lightweight Deep Residue Learning for Joint Color Image Demosaicking and Denoising. In Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China, 20–24 August 2018; pp. 127–132. [Google Scholar] [CrossRef]
- Park, Y.; Lee, S.; Jeong, B.; Yoon, J. Joint Demosaicing and Denoising Based on a Variational Deep Image Prior Neural Network. Sensors 2020, 20, 2970. [Google Scholar] [CrossRef]
- Khadidos, A.O.; Khadidos, A.O.; Khan, F.Q.; Tsaramirsis, G.; Ahmad, A. Bayer Image Demosaicking and Denoising Based on Specialized Networks Using Deep Learning. Multimedia Syst. 2021, 27, 807–819. [Google Scholar] [CrossRef]
- Liang, J.; Zeng, H.; Zhang, L. Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, New Orleans, LA, USA, 18–24 June 2022. [Google Scholar] [CrossRef]
- Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 105–114. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, Z.; Hoffmann, N. Global Attention Mechanism: Retain Information to Enhance Channel-Spatial Interactions. arXiv 2021, arXiv:2112.05561. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Everingham, M.; Eslami, S.M. The Pascal Visual Object Classes Challenge: A Retrospective. Int. J. Comput. Vision 2015, 111, 98–136. [Google Scholar] [CrossRef]
- Zhou, R.; Achanta, R.; Süsstrunk, S. Deep Residual Network for Joint Demosaicing and Super-Resolution. Color Imaging Conf. 2018, 26, 75–80. [Google Scholar] [CrossRef]
- Xia, G.S.; Bai, X.; Ding, J.; Zhu, Z.; Belongie, S.; Luo, J.; Datcu, M.; Pelillo, M.; Zhang, L. DOTA: A Large-Scale Dataset for Object Detection in Aerial Images. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3974–3983. [Google Scholar] [CrossRef]
- Huang, B.; Li, Z.; Yang, C.; Sun, F.; Song, Y. Single Satellite Optical Imagery Dehazing using SAR Image Prior Based on conditional Generative Adversarial Networks. In Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), Snowmass Village, CO, USA, 1–5 March 2020; pp. 1795–1802. [Google Scholar] [CrossRef]
- Heide, F.; Steinberger, M.; Tsai, Y.T.; Rouf, M.; Pająk, D.; Reddy, D.; Gallo, O.; Liu, J.; Heidrich, W.; Egiazarian, K.; et al. FlexISP: A Flexible Camera Image Processing Framework. ACM Trans. Graph. 2014, 33, 231. [Google Scholar] [CrossRef]
- Tan, H.; Zeng, X.; Lai, S.; Liu, Y.; Zhang, M. Joint demosaicing and denoising of noisy bayer images with ADMM. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 2951–2955. [Google Scholar] [CrossRef]
- Xu, X.; Ye, Y.; Li, X. Joint Demosaicing and Super-Resolution (JDSR): Network Design and Perceptual Optimization. IEEE Trans. Comput. Imaging 2020, 6, 968–980. [Google Scholar] [CrossRef]
- Zhang, K.; Li, Y.; Zuo, W.; Zhang, L.; Van Gool, L.; Timofte, R. Plug-and-Play Image Restoration with Deep Denoiser Prior. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 6360–6376. [Google Scholar] [CrossRef]
- Zhang, K.; Zuo, W.; Gu, S.; Zhang, L. Learning Deep CNN Denoiser Prior for Image Restoration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3929–3938. [Google Scholar]
- Zerman, E.; Rana, A.; Smolic, A. Colornet—Estimating Colorfulness in Natural Images. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 3791–3795. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the Computer Vision—ECCV, Munich, Germany, 8–14 September 2018; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Springer: Cham, Switzerland, 2018; pp. 3–19. [Google Scholar]
- Hou, Q.; Zhou, D.; Feng, J. Coordinate Attention for Efficient Mobile Network Design. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 13708–13717. [Google Scholar] [CrossRef]
Method | McMaster | Kodak | Set5 | SateHaze1k | DOTA-v1.0 | |||||
---|---|---|---|---|---|---|---|---|---|---|
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | |
Bicubic | 34.331 | 0.9790 | 34.564 | 0.9799 | 36.139 | 0.9827 | 26.293 | 0.9336 | 36.658 | 0.9826 |
FlexISP | 34.938 | 0.9767 | 35.113 | 0.9709 | 37.215 | 0.9771 | 23.435 | 0.8265 | 40.079 | 0.9831 |
ADMM | 32.370 | 0.9575 | 31.481 | 0.9382 | 32.566 | 0.9638 | 19.646 | 0.6176 | 32.798 | 0.9169 |
JDSR | 35.968 | 0.9845 | 40.677 | 0.9913 | 36.215 | 0.9839 | 37.419 | 0.9921 | 36.837 | 0.9861 |
DPIR | 37.832 | 0.9885 | 40.650 | 0.9915 | 39.526 | 0.9837 | 35.803 | 0.9907 | 43.742 | 0.9893 |
RSDM-GAN (OURS) | 39.394 | 0.9914 | 41.411 | 0.9937 | 39.581 | 0.9865 | 37.232 | 0.9943 | 45.446 | 0.9908 |
Image | Bicubic | FlexISP | ADMM | JDSR | DPIR | OURS | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | |
1 | 28.004 | 0.9564 | 27.617 | 0.9320 | 25.968 | 0.8904 | 37.374 | 0.9940 | 36.245 | 0.9909 | 37.837 | 0.9952 |
2 | 26.166 | 0.9228 | 22.493 | 0.7761 | 24.053 | 0.8224 | 37.601 | 0.9935 | 35.949 | 0.9902 | 37.745 | 0.9944 |
3 | 27.241 | 0.9330 | 23.398 | 0.7950 | 24.884 | 0.8310 | 38.294 | 0.9933 | 37.364 | 0.9908 | 39.396 | 0.9956 |
4 | 35.385 | 0.9855 | 35.721 | 0.9697 | 31.202 | 0.9257 | 35.508 | 0.9857 | 42.158 | 0.9897 | 43.941 | 0.9953 |
DEL | McMaster | Kodak | Set5 | SateHaze1k | DOTA-v1.0 | |||||
---|---|---|---|---|---|---|---|---|---|---|
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | |
− | 30.245 | 0.9251 | 30.572 | 0.9233 | 33.377 | 0.9329 | 24.198 | 0.8903 | 34.658 | 0.9324 |
+ | 33.756 | 0.9688 | 33.687 | 0.9775 | 37.006 | 0.9679 | 27.591 | 0.9322 | 38.522 | 0.9893 |
AM | McMaster | Kodak | Set5 | SateHaze1k | DOTA-v1.0 | |||||
---|---|---|---|---|---|---|---|---|---|---|
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | |
− | 30.245 | 0.9251 | 30.572 | 0.9233 | 33.377 | 0.9329 | 24.198 | 0.8903 | 34.658 | 0.9324 |
+CBAM | 31.263 | 0.9276 | 31.552 | 0.9328 | 34.293 | 0.9452 | 25.466 | 0.9075 | 35.231 | 0.9458 |
+COA | 32.153 | 0.9399 | 32.488 | 0.9598 | 35.256 | 0.9547 | 26.296 | 0.9183 | 36.248 | 0.9506 |
+GAM(OURS) | 34.233 | 0.9568 | 34.526 | 0.9740 | 37.381 | 0.9755 | 27.989 | 0.9366 | 39.257 | 0.9778 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Zhang, X.; Jin, G. Towards a Novel Generative Adversarial Network-Based Framework for Remote Sensing Image Demosaicking. Remote Sens. 2024, 16, 2283. https://doi.org/10.3390/rs16132283
Guo Y, Zhang X, Jin G. Towards a Novel Generative Adversarial Network-Based Framework for Remote Sensing Image Demosaicking. Remote Sensing. 2024; 16(13):2283. https://doi.org/10.3390/rs16132283
Chicago/Turabian StyleGuo, Yuxuan, Xuemin Zhang, and Guang Jin. 2024. "Towards a Novel Generative Adversarial Network-Based Framework for Remote Sensing Image Demosaicking" Remote Sensing 16, no. 13: 2283. https://doi.org/10.3390/rs16132283
APA StyleGuo, Y., Zhang, X., & Jin, G. (2024). Towards a Novel Generative Adversarial Network-Based Framework for Remote Sensing Image Demosaicking. Remote Sensing, 16(13), 2283. https://doi.org/10.3390/rs16132283