Methods for Designating Protective Zones of Historical and Cultural Purpose Using Non-Invasive Methods—Two Case Studies for Ukraine and Poland
Abstract
:1. Introduction
2. Historical Background
2.1. Citadel in the City of Lviv
2.2. Kazimierz Biskupi Forest Massacre
3. Materials and Methods
3.1. Radar Interferometry: Citadel in the City of Lviv
Ground Conductivity Meter: Poland Case
4. Results
4.1. Citadel in the City of Lviv
4.2. Kazimierz Biskupi Forest
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Olivito, R.S.; Porzio, S.; Scuro, C.; Carnì, D.L.; Lamonaca, F. Inventory and monitoring of historical cultural heritage buildings on a territorial scale: A preliminary study of structural health monitoring based on the CARTIS approach. Acta IMEKO 2021, 10, 57–69. [Google Scholar] [CrossRef]
- Agapiou, A.; Lysandrou, V.; Alexakis, D.D.; Themistocleous, K.; Cuca, B.; Argyriou, A.; Hadjimitsis, D.G. Cultural heritage management and monitoring using remote sensing data and GIS: The case study of Paphos area, Cyprus. Comput. Environ. Urban Syst. 2015, 54, 230–239. [Google Scholar] [CrossRef]
- Yang, J. The underground luxury of a Western Han Marquis: Major discoveries from the tomb of the Marquis of Haihun in Nanchang. Asian Archaeol. 2019, 2, 65–102. [Google Scholar] [CrossRef]
- Grinzato, E.P.G.B.; Bison, P.G.; Marinetti, S. Monitoring of ancient buildings by the thermal method. J. Cult. Herit. 2002, 3, 21–29. [Google Scholar] [CrossRef]
- Ardelean, A.C.; Sărășan, A.; Bălărie, A.; Akmatov, K.; Tabaldiev, K.; Wehrheim, R. Above ground and underground–An integrated approach of the burial mounds within the Suusamyr plateau, Kyrgyzstan. Archaeol. Res. Asia 2023, 35, 100463. [Google Scholar] [CrossRef]
- Varriale, R.; Parise, M.; Genovese, L.; Leo, M.; Valese, S. Underground Built Heritage in Naples: From Knowledge to Monitoring and Enhancement. In Handbook of Cultural Heritage Analysis; D’Amico, S., Venuti, V., Eds.; Springer: Cham, Switzerland; Berlin, Germany, 2022. [Google Scholar] [CrossRef]
- Mu, B.G.; Zhang, Y.; Yu, Y.J.; Petropoulos, E. Biomass material amendment maintained the structure of underground cultural relics by decreasing the variation of soil water content. Appl. Ecol. Environ. Res. 2022, 20, 801–814. [Google Scholar] [CrossRef]
- Rodríguez-Gonzálvez, P.; Nocerino, E.; Menna, F.; Minto, S.; Remondino, F. 3D surveying & modeling of underground passages in WWI fortifications. The International Archives of the Photogrammetry. Remote Sens. Spat. Inf. Sci. 2015, 40, 17–24. [Google Scholar]
- Yang, J.; You, Y.; Ye, X.; Lin, J. Cultural heritage sites risk assessment based on RS and GIS—Takes the Fortified Manors of Yongtai as an example. Int. J. Disaster Risk Sci. 2023, 88, 103593. [Google Scholar] [CrossRef]
- Nistor, S.; Machat, C.; Majaru, A.R. Romania: Follow-up on Roşia Montana and the Preservation of its Cultural and Natural Heritage/First Results in Safeguarding the Transylvanian Saxon Architectural Heritage/The Threats to and the Protection of the Architectural Heritage of Manor Estates. Herit. Risk 2014, 122–131. [Google Scholar]
- Castagnetti, C.; Cosentini, R.M.; Lancellotta, R.; Capra, A. Geodetic monitoring and geotechnical analyses of subsidence induced settlements of historic structures. Struct. Health Monit. 2017, 24, e2030. [Google Scholar] [CrossRef]
- Marignani, M.; Rocchini, D.; Torri, D.; Chiarucci, A.; Maccherini, S. Planning restoration in a cultural landscape in Italy using an object-based approach and historical analysis. Landsc. Urban Plan. 2008, 84, 28–37. [Google Scholar] [CrossRef]
- Fry, G. From objects to landscapes in natural and cultural heritage management: A role for landscape interfaces. In Landscape Interfaces: Cultural Heritage in Changing Landscapes; Springer: Dodrecht, The Netherlands, 2003. [Google Scholar]
- Leszczyński, K. Eksterminacja Ludności na Ziemiach Polskich Wcielonych do Rzeszy; Wydawnictwo Zachodnie: Poznań, Poland, 1962. [Google Scholar]
- Grzywacz, M. Pole eksperymentalne Warthegau. Glossy do pewnych wypowiedzi Edyty Stein. Zesz. Nauk. Cent. Badań Im. Edyty Stein 2014, 11, 185–197. [Google Scholar] [CrossRef]
- Szymoniczek, J. Instytucjonalizacja współpracy w zakresie grobownictwa wojennego. Rocz. Pol.-Niem./Dtsch.-Pol. Jahrb. 2015, 23, 88–103. [Google Scholar] [CrossRef]
- Epstein, C. Germanization in the Warthegau: Germans, Jews and Poles and the Making of a ‘German’ Gau. In Heimat, Region, and Empire. The Holocaust and Its Contexts; Szejnmann, C.W., Umbach, M., Eds.; Palgrave Macmillan: London, UK, 2012. [Google Scholar] [CrossRef]
- Piskorski, J.M. From Munich through Wannsee to Auschwitz: The Road to the Holocaust*: Translated by Piotr górecki. J. Hist. Soc. 2007, 7, 155–175. [Google Scholar] [CrossRef]
- Glowacka-Penczynska, A.; Kawski, T.; Medykowski, W. The First to Be Destroyed: The Jewish Community of Kleczew and the Beginning of the Final Solution; Academic Studies Press: Boston, MA, USA, 2015. [Google Scholar]
- Tapete, D.; Fanti, R.; Cecchi, R.; Petrangeli, P.; Casagli, N. Satellite radar interferometry for monitoring and early-stage warning of structural instability in archaeological sites. J. Geophys. Eng. 2012, 9, S10–S25. [Google Scholar] [CrossRef]
- Tapete, D.; Casagli, N.; Luzi, G.; Fanti, R.; Gigli, G.; Leva, D. Integrating radar and laser-based remote sensing techniques for monitoring structural deformation of archaeological monuments. J. Archaeol. Sci. 2013, 40, 176–189. [Google Scholar] [CrossRef]
- Wasowski, J.; Bovenga, F. Investigating landslides and unstable slopes with satellite multi temporal interferometry: Current issues and future perspectives. Eng. Geol. 2014, 174, 103–138. [Google Scholar] [CrossRef]
- Zeni, G.; Bonano, M.; Casu, F.; Manunta, M.; Manzo, M.; Marsella, M.; Pepe, A.; Lanari, R. Long-term deformation analysis of historical buildings through the advanced SBAS-DInSAR technique: The case study of the city of Rome, Italy. J. Geophys. Eng. 2011, 8, S1–S12. [Google Scholar] [CrossRef]
- Buckley, S.N.; Rosen, P.A.; Hensley, S.; Tapley, B.D. Land subsidence in Houston, Texas, measured by radar interferometry and constrained by extensometers. J. Geophys. Res. 2003, 108, 2542. [Google Scholar] [CrossRef]
- Chen, F.; Lin, H.; Zhou, W.; Hong, T.; Wang, G. Surface deformation detected by ALOS PALSAR small baseline SAR interferometry over permafrost environment of Beiluhe section, Tibet Plateau, China. Remote Sens. Environ. 2013, 138, 10–18. [Google Scholar] [CrossRef]
- Cigna, F.; Osmanoğlu, B.; Cabral-Cano, E.; Dixon, T.H.; Ávila-Olivera, J.A.; Garduño-Monroy, V.H.; DeMets, C.; Wdowinski, S. Monitoring land subsidence and its induced geological hazard with Synthetic Aperture Radar Interferometry: A case study in Morelia, Mexico. Remote Sens. Environ. 2012, 117, 146–161. [Google Scholar] [CrossRef]
- Glisic, B.; Inaudi, D.; Posenato, D.; Figini, A.; Casanova, N. Monitoring of heritage structures and historical monuments using long-gage fiber optic interferometric sensors—An overview. In Proceedings of the 3rd International Conference on Structural Health Monitoring of Intelligent Infrastructure-SHMII-3, Vancouver, BC, Canada, 13–16 November 2007. [Google Scholar]
- Giannico, C.; Ferretti, A.; Alberti, S. Satellite Radar interferometry: A new monitoring tool for cultural heritage sites. In Proceedings of the International Conference: Built Heritage 2013. Monitoring Conservation and Management, Milan, Italy, 18–20 November 2013; pp. 655–662. [Google Scholar]
- Parcharidis, I.; Foumelis, M.; Pavlopoulos, K.; Kourkouli, P. Ground deformation monitoring in cultural heritage areas by time series SAR interferometry: The case of ancient Olympia site (western Greece). In Proceedings of the ESA FRINGE Workshop, Frascati, Italy, 30 November–4 December 2009. [Google Scholar]
- Zhou, W.; Chen, F.; Guo, H. Differential Radar Interferometry for Structural and Ground Deformation Monitoring: A New Tool for the Conservation and Sustainability of Cultural Heritage Sites. Sustainability 2015, 7, 1712–1729. [Google Scholar] [CrossRef]
- Luzi, G.; Monserrat, O.; Crosetto, M. The potential of coherent radar to support the monitoring of the health state of buildings. Res. Nondestruct. Eval. 2012, 23, 125–145. [Google Scholar] [CrossRef]
- Luzi, G. Radar Interferometry for Cultural Heritage Monitoring. In Proceedings of the 11th International Conference on Non-Destructive Investigations and Microanalysis for the Diagnostics and Conservation of Cultural and Environmental Heritage—ART-2014, Madrid, Spain, 11–13 June 2014. [Google Scholar]
- Di Martire, D.; Infante, D.; Ramondini, M.; Calcaterra, D. The Contribution of Satellite Radar Interferometry for Land Management Activities. In Proceedings of the Critical Thinking in the Sustainable Rehabilitation and Risk Management of the Built Environment, Iași, Romania, 7–9 November 2019. [Google Scholar]
- Zhen, Y.; Ruliang, Y. Application of polarimetric synthetic aperture radar interferometry for land cover classification. In Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322), Long Beach, CA, USA, 25 April 2002; pp. 459–463. [Google Scholar] [CrossRef]
- Uglitskih, E.; Vyzhva, S.; Ivanik, O. Vertical displacement monitoring of Zakarpattya region territory based on radar interferometry data. Visnyk Taras Shevchenko Natl. Univ. Kyiv Geol. 2020, 4, 94–99. [Google Scholar] [CrossRef]
- Camassa, D.; Castellano, A.; Fraddosio, A. Ambient vibration tests of a historical masonry bridge by means of radar interferometry. In Proceedings of the 2022 IEEE International Workshop on Metrology for Living Environment (MetroLivEn), Cosenza, Italy, 25–27 May 2022. [Google Scholar] [CrossRef]
- Cavalagli, N.; Kita, A.; Falco, S.; Trillo, F.; Costantini, M.; Ubertini, F. Satellite radar interferometry and in-situ measurements for static monitoring of historical monuments: The case of Gubbio, Italy. Remote Sens. Environ. 2019, 235, 111453. [Google Scholar] [CrossRef]
- Trevoho, I.; Chetverikov, B.; Babiy, L.; Malanchuk, M. Monitoring of displacements and deformations of the earth’s surface near the Stebnyk city using radar images of Sentinel-1. Geod. Cartogr. 2020, 69, 85–96. [Google Scholar] [CrossRef]
- Chetverikov, B. Research of the DEM of the Zvenyhorod Hillfort for priority areas for the analysis of vertical displacements. In Proceedings of the GeoTerrace-2022: International Scientific and Technical Conference of Young Scientists, Lviv, Ukraine, 3–5 October 2022. [Google Scholar]
- Tabbagh, A. What is the best coil orientation in the slingram electromagnetic prospecting method? Archaeometry 1986, 28, 185–196. [Google Scholar] [CrossRef]
- Klityński, W.; Oryński, S.; Nguyen Dinh, C. The Potential Use of Ground Conductivity Meters to Identify the Location of Seepages—Case Study of the Maniów Levee Near Krakow, Poland. Geosciences 2020, 10, 97. [Google Scholar] [CrossRef]
- Kamm, J.; Becken, M.; Pedersen, L.B. Inversion of slingram electromagnetic induction data using a Born approximation. Geophysics 2013, 78, 1942–2156. [Google Scholar] [CrossRef]
- Oryński, S.; Okoń, M.; Klityński, W. Very Low Frequency Electromagnetic Induction Surveys in Hydrogeological Investigations; Case Study from Poland. Acta Geophys. 2016, 64, 2322–2336. [Google Scholar] [CrossRef]
- McNeill, J.D. Electrical Conductivity of Soils and Rocks; Technical Note TN-5; Geonics Limited: Mississauga, ON, Canada, 1980. [Google Scholar]
- Klityński, W.; Oryński, S.; Nguyen Dinh, C. Application of the conductive method in the engineering geology: Ruczaj district in Kraków, Poland, as a case study. Acta Geophys. 2019, 67, 1791–1798. [Google Scholar] [CrossRef]
- McNeill, J.D. Electromagnetic Terrain Conductivity Measurement at Low Induction Numbers; Technical Note TN-6; Geonics Limited: Mississauga, ON, Canada, 1980. [Google Scholar]
- Bonsall, J.; Fry, R.; Gaffney, C.; Armit, I.; Beck, A.; Gaffney, V. Assessment of the CMD Mini-Explorer, a New Low-frequency Multi-coil Electromagnetic Device, for Archaeological Investigations. Archaeol. Prospect. 2013, 20, 219–231. [Google Scholar] [CrossRef]
- Beamish, D. Low induction number, ground conductivity meters: A correction procedure in the absence of magnetic effects. J. Appl. Geophys. 2011, 75, 244–253. [Google Scholar] [CrossRef]
- Chtouki, M.; Nguyen, F.; Garré, S. Optimizing phosphorus fertigation management zones using electromagnetic induction, soil properties, and crop yield data under semi-arid conditions. Environ. Sci. Pollut. Res. 2023, 30, 106083–106098. [Google Scholar] [CrossRef]
- Constable, S.C.; Parker, R.L.; Constable, C.G. Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics 1987, 52, 289–300. [Google Scholar] [CrossRef]
- Oryński, S.; Kowalczyk, S.; Owoc, B. Ground penetrating radar and magnetic gradient distribution approach for subsurface investigation of solution pipes in post-glacial settings. Open Geosci. 2023, 15, 20220484. [Google Scholar] [CrossRef]
- Pringle, J.K.; Ruffell, A.; Wisniewski, K.D.; Davenward, B.; Heaton, V.; Hobson, L. Historic child homicide burial search in rural woodland. Forensic Sci. Int. 2023, 8, 100324. [Google Scholar] [CrossRef]
- Wisniewski, K.D.; Cooper, N.; Heaton, V.; Hope, C.; Pirrie, D.; Mitten, A.J.; Pringle, J.K. The Search for “Fred”: An Unusual Vertical Burial Case. J. Forensic. Sci. 2019, 64, 1530–1539. [Google Scholar] [CrossRef]
- Molina, C.M.; Wisniewski, K.D.; Salamanca, A.; Saumett, M.; Rojas, C.; Gómez, H.; Pringle, J.K. Monitoring of simulated clandestine graves of victims using UAVs, GPR, electrical tomography and conductivity over 4–8 years post-burial to aid forensic search investigators in Colombia, South America. Forensic Sci. Int. 2024, 355, 111919. [Google Scholar] [CrossRef]
- Thiesson, J.; Dabas, M.; Flageul, S. Detection of resistive features using towed slingram electromagnetic induction instruments. Archaeol. Prospect. 2009, 16, 103–109. [Google Scholar] [CrossRef]
- Chetverikov, B.; Babiy, L. Methods of creation of historical situation plan concentration camp “Stalag-328”(Citadel) in Lviv(Ukraine) on the base archival aerial image. Modern Achievem. Geod. Sci. Prod. 2014, 28, 71–73. [Google Scholar]
- Bevan, B. The search for graves. Geophysics 1991, 56, 1310–1319. [Google Scholar] [CrossRef]
- Buck, S.C. Searching for graves using geophysical technology: Field tests with ground penetrating radar, magnetometry, and electrical resistivity. J. Forensic Sci. 2003, 48, JFS2002165. [Google Scholar] [CrossRef]
- Bondar, K.; Fassbinder, J.W.E.; Didenko, S.V.; Hahn, S. Rock magnetic study of grave infill as a key to understanding magnetic anomalies on burial ground. Archaeol. Prospect. 2021, 29, 139–156. [Google Scholar] [CrossRef]
- Martin, J.M.; Everett, M.E. A methodology for the self-training and self-assessing of new GPR practitioners: Measuring diagnostic proficiency illustrated by a case of a historic African-American cemetery for unmarked graves. Archaeol. Prospect. 2023, 30, 311–325. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chetverikov, B.; Babiy, L.; Oryński, S.; Różycki, S. Methods for Designating Protective Zones of Historical and Cultural Purpose Using Non-Invasive Methods—Two Case Studies for Ukraine and Poland. Remote Sens. 2024, 16, 2330. https://doi.org/10.3390/rs16132330
Chetverikov B, Babiy L, Oryński S, Różycki S. Methods for Designating Protective Zones of Historical and Cultural Purpose Using Non-Invasive Methods—Two Case Studies for Ukraine and Poland. Remote Sensing. 2024; 16(13):2330. https://doi.org/10.3390/rs16132330
Chicago/Turabian StyleChetverikov, Borys, Luybov Babiy, Szymon Oryński, and Sebastian Różycki. 2024. "Methods for Designating Protective Zones of Historical and Cultural Purpose Using Non-Invasive Methods—Two Case Studies for Ukraine and Poland" Remote Sensing 16, no. 13: 2330. https://doi.org/10.3390/rs16132330
APA StyleChetverikov, B., Babiy, L., Oryński, S., & Różycki, S. (2024). Methods for Designating Protective Zones of Historical and Cultural Purpose Using Non-Invasive Methods—Two Case Studies for Ukraine and Poland. Remote Sensing, 16(13), 2330. https://doi.org/10.3390/rs16132330