Study on the Degradation Pattern of Impact Crater Populations in Yutu-2′s Rovering Area
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data
2.2. Methodology
2.2.1. Image Processing
2.2.2. Impact Crater Identification
2.2.3. Morphological Parameter Extraction
2.2.4. Classification of Degradation Levels
3. Results
3.1. Results of Impact Crater Extraction
3.2. Results of Morphological Parameter Extraction for Impact Craters
3.3. Results of Impact Crater Degradation Classification
4. Discussion and Analysis
4.1. Comparison with Available Results
4.2. Statistical Patterns of Regional Population of Micro-Impact Craters
4.3. Analysis of Impact Crater Impact Saturation
5. Conclusions
- (1)
- The majority of the impact craters had diameters between 0.1 and 2 m, with the number of impact craters observed to decrease with increasing size. The distribution of the impact crater depth-to-diameter ratios exhibited a range from 0.053 to 0.29, with over 80% of the minor impact craters exhibiting depth-to-diameter ratios within the range from 0.07 to 0.17.
- (2)
- A negative correlation was observed between the depth-to-diameter ratios and the diameters of minor impact craters. This correlation exhibited a decreasing trend in the depth-to-diameter ratio and a decreasing trend in the population degradation with increasing size.
- (3)
- The area and impact craters along the rover’s route exhibited severe degradation overall, with the groups’ degradation degree progressively decreasing with increasing diameter.
- (4)
- The achievement of saturation was challenging due to the high probability of the emergence of new craters emerging from sub-metre-scale (mainly below 2.0 m in diameter) impact craters and the high probability of burial by spatter.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ou Yang, Z.Y.; Li, C.L.; Zou, Y.Y.; Liu, J.Z. Progress of scientific application and research of China’s circumlunar exploration program. Bull. Chin. Acad. Sci. 2009, 24, 530–536. [Google Scholar]
- Lin, H.; Chen, J.; Li, C.; Ding, C.; Xiao, X.; Huang, J.; Ji, J.; Gou, S.; Zhang, J.; Wei, Y.; et al. Research progress of remote sensing for the Chang’E lunar exploration mission. Bull. Mineral. Petrol. Geochem. 2023, 42, 478–493. [Google Scholar]
- Michael, G.G.; Neukum, G. Planetary surface dating from crater size-frequency distribution measurements: Partial resurfacing events and statistical age uncertainty. Earth Planet. Sci. Lett. 2010, 294, 223–229. [Google Scholar] [CrossRef]
- Yue, Z.Y.; Shi, K.; Di, K.C.; Lin, Y.T.; Gou, S. Progresses and prospects of impact crater studies. Sci. China-Earth Sci. 2023, 66, 2441–2451. [Google Scholar] [CrossRef]
- Prieur, N.C.; Rolf, T.; Wünnemann, K.; Werner, S.C. Formation of Simple Impact Craters in Layered Targets: Implications for Lunar Crater Morphology and Regolith Thickness. J. Geophys. Res.-Planets 2018, 123, 1555–1578. [Google Scholar] [CrossRef]
- Sun, S.J.; Yue, Z.Y.; Di, K.C. Investigation of the depth and diameter relationship of subkilometer-diameter lunar craters. Icarus 2018, 309, 61–68. [Google Scholar] [CrossRef]
- Craddock, R.A.; Howard, A.D. Simulated degradation of lunar impact craters and a new method for age dating farside mare deposits. J. Geophys. Res.-Planets 2000, 105, 20387–20401. [Google Scholar] [CrossRef]
- Haruyama, J.; Ohtake, M.; Matsunaga, T. Detectability of Degradation of Lunar Impact Craters by SELENE Terrain Camera. ResearchGate 2004, 3, 1496. [Google Scholar]
- Wood, C.; Head, J.; Cintala, M. Crater Degradation on Mercury and the Moon: Clues to Surface Evolution. 1977. Available online: https://adsabs.harvard.edu/full/1977LPSC....8.3503W (accessed on 25 April 2024).
- Ivanov, M.; Basilevsky, A. Morphology and Size–Frequency Distribution of Kilometer-Scale Impact Craters on Callisto and Ganymede Derived from Galileo Data. Sol. Syst. Res. 2002, 36, 447–457. [Google Scholar] [CrossRef]
- Hartmann, W.K.; Gaskell, R.W. Planetary cratering 2: Studies of saturation equilibrium. Meteorit. Planet. Sci. 1997, 32, 109–121. [Google Scholar] [CrossRef]
- Richardson, J.E. Cratering saturation and equilibrium: A new model looks at an old problem. Icarus 2009, 204, 697–715. [Google Scholar] [CrossRef]
- Li, K. Study on Small-Scale Lunar Craters’ Morphology and Degradation. Ph.D. Thesis, Wuhan University, Wuhan, China, 2013. [Google Scholar]
- Arthur, D.; Agnieray, A.; Horvath, R.; Wood, C.; Chapman, C. The System of Lunar Craters, Quadrant I. Commun. Lunar Planet Lab. 1964, 2, 71–78. [Google Scholar]
- Mcgill, G.E.; Wise, D.U. Regional variations in degradation and density of Martian craters. J. Geophys. Res. 1972, 77, 2433–2441. [Google Scholar] [CrossRef]
- Basilevskii, A.T. On the evolution rate of small lunar craters. Lunar Planet. Sci. Conf. Proc. 1976, 1, 1005–1020. [Google Scholar]
- Yao, M.J.; Chen, J.P.; Wang, X.; Xu, B. The grading and evolution analysis of lunar crater based on optimum partition and grading method. Acta Petrol. Sin. 2016, 32, 119–126. [Google Scholar]
- Ground Research and Application System of China’s Lunar and Planetary Exploration Program. Chang’E 4 Panoramic Cameras Dataset. China National Space Administration. 2020. Available online: http://moon.bao.ac.cn (accessed on 20 February 2023).
- Dai, S.; Wu, J.; Sun, H.; Zhang, B.; Yang, J.; Fang, G.; Wang, J.; Wang, H.; An, J. Chang’E-3 Lunar Rover’s Scientific Payloads. Chin. J. Space Sci. 2014, 34, 332–340. [Google Scholar] [CrossRef]
- Jia, Y.; Zou, Y.; Xue, C.; Ping, J.; Yan, J.; Ning, Y. Scientific Objectives and Payloads of Chang’E-4 Mission. Chin. J. Space Sci. 2018, 38, 118–130. [Google Scholar] [CrossRef]
- Yang, M.; Yue, Z.; Di, K.; Wan, W.; Liu, J.; Shi, K. Statistical Analysis of Secondary Craters in the Chang’E-4 Landing Area Based on Panoramic Camera Data. Bull. Mineral. Petrol. Geochem. 2021, 40, 720–729. [Google Scholar]
- Hu, T.; Yang, Z.; Kang, Z.Z.; Lin, H.Y.; Zhong, J.; Zhang, D.Y.; Cao, Y.M.; Geng, H.M. Population of Degrading Small Impact Craters in the Chang’E-4 Landing Area Using Descent and Ground Images. Remote Sens. 2022, 14, 3608. [Google Scholar] [CrossRef]
- Melosh, H.J. Impact Cratering: A Geologic Process. Geol. Mag. 1989, 126, 729–730. [Google Scholar] [CrossRef]
- Xiao, Z.Y.; Werner, S.C. Size-frequency distribution of crater populations in equilibrium on the Moon. J. Geophys. Res.-Planets 2015, 120, 2277–2292. [Google Scholar] [CrossRef]
- Gault, D.E. Saturation and Equilibrium Conditions for Impact Cratering on the Lunar Surface: Criteria and Implications. Radio Sci. 1970, 5, 273–291. [Google Scholar] [CrossRef]
- Hartmann, W.K. Does crater “saturation equilibrium” occur in the solar system? Icarus 1984, 60, 56–74. [Google Scholar] [CrossRef]
- Qiao, L.; Ling, Z.H.; Fu, X.H.; Li, B. Geological characterization of the Chang’e-4 landing area on the lunar farside. Icarus 2019, 333, 37–51. [Google Scholar] [CrossRef]
- Neukum, G.; Ivanov, B.; Hartmann, W.K. Cratering records in the Inner solar system in relation to the lunar reference Space. Sci. Rev. 2001, 96, 55–86. [Google Scholar]
Comparison of Centre Point Correction before and after | Profile Line Aspects | After Centre Point Correction | Before Centre Point Correction |
---|---|---|---|
X | |||
Y | |||
X | |||
Y | |||
X | |||
Y | |||
X | |||
Y |
Counting Areas | Cumulative SFD Slopes of Crater Population in Equilibrium | |
---|---|---|
Area along the rover’s route | −3.6898 | 0.8177 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Chen, M.; Hu, T.; Kang, Z.; Xiao, M. Study on the Degradation Pattern of Impact Crater Populations in Yutu-2′s Rovering Area. Remote Sens. 2024, 16, 2356. https://doi.org/10.3390/rs16132356
Ma X, Chen M, Hu T, Kang Z, Xiao M. Study on the Degradation Pattern of Impact Crater Populations in Yutu-2′s Rovering Area. Remote Sensing. 2024; 16(13):2356. https://doi.org/10.3390/rs16132356
Chicago/Turabian StyleMa, Xinyu, Meixi Chen, Teng Hu, Zhizhong Kang, and Meng Xiao. 2024. "Study on the Degradation Pattern of Impact Crater Populations in Yutu-2′s Rovering Area" Remote Sensing 16, no. 13: 2356. https://doi.org/10.3390/rs16132356
APA StyleMa, X., Chen, M., Hu, T., Kang, Z., & Xiao, M. (2024). Study on the Degradation Pattern of Impact Crater Populations in Yutu-2′s Rovering Area. Remote Sensing, 16(13), 2356. https://doi.org/10.3390/rs16132356