Unraveling the Impacts of River Network Connectivity on Ecological Quality Dynamics at a Basin Scale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Remotely Sensed Data Analyses
2.3.1. The RSEI Index
2.3.2. River Network Connectivity
2.4. Effects of River Network Connectivity on RSEI
3. Results
3.1. Spatial and Temporal Distribution of RSEIs in the Basin
3.2. Spatial Differences of RNC in the Basin
3.3. Impacts of RNC on Ecological Quality and Stability
4. Discussion
4.1. Temporal Variability of Ecological Quality
4.2. Effects of RNC on Spatial Patterns of Ecological Quality
4.3. Effects of RNC on Temporal Variability of Ecological Quality
4.4. Implications of RNC Application on Basin Management
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Harvey, J.W.; Gooseff, M.N. River Corridor Science: Hydrologic Exchange and Ecological Consequences from Bedforms to Basins. Water Resour. Res. 2015, 51, 6893–6922. [Google Scholar] [CrossRef]
- Wohl, E.; Lane, S.N.; Wilcox, A.C. The Science and Practice of River Restoration. Water Resour. Res. 2015, 51, 5974–5997. [Google Scholar] [CrossRef]
- Lee, S.; McCarty, G.W.; Moglen, G.E.; Li, X.; Wallace, C.W. Assessing the Effectiveness of Riparian Buffers for Reducing Organic Nitrogen Loads in the Coastal Plain of the Chesapeake Bay Watershed Using a Watershed Model. J. Hydrol. 2020, 585, 124779. [Google Scholar] [CrossRef]
- Steel, E.A.; Hughes, R.M.; Fullerton, A.H.; Schmutz, S.; Young, J.A.; Fukushima, M.; Muhar, S.; Poppe, M.; Feist, B.E.; Trautwein, C. Are We Meeting the Challenges of Landscape-Scale Riverine Research? A Review. Living Rev. Landsc. Res. 2010, 4, 1–60. [Google Scholar] [CrossRef]
- Stephens, C.M.; Lall, U.; Johnson, F.M.; Marshall, L.A. Landscape Changes and Their Hydrologic Effects: Interactions and Feedbacks across Scales. Earth-Sci. Rev. 2021, 212, 103466. [Google Scholar] [CrossRef]
- Li, X.; Cai, Y.; Liu, Z.; Mo, X.; Zhang, L.; Zhang, C.; Cui, B.; Ren, Z. Impacts of River Discharge, Coastal Geomorphology, and Regional Sea Level Rise on Tidal Dynamics in Pearl River Estuary. Front. Mar. Sci. 2023, 10, 1065100. [Google Scholar] [CrossRef]
- Shao, X.; Fang, Y.; Cui, B. A Model to Evaluate Spatiotemporal Variations of Hydrological Connectivity on a Basin-Scale Complex River Network with Intensive Human Activity. Sci. Total Environ. 2020, 723, 138051. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chen, Y.; Fang, G.; Zhou, H.; Huang, W.; Liu, Y.; Wang, X.; Li, Z. Hydrological Connectivity Improves the Water-Related Environment in a Typical Arid Inland River Basin in Xinjiang, China. Remote. Sens. 2022, 14, 4977. [Google Scholar] [CrossRef]
- Summers, J.K. Ecological Condition of the Estuaries of the Atlantic and Gulf Coasts of the United States. Environ. Toxicol. Chem. 2001, 20, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Cornell, H.V. Unsaturation and Regional Influences on Species Richness in Ecological Communities: A Review of the Evidence. Ecoscience 1999, 6, 303–315. [Google Scholar] [CrossRef]
- Cui, B.; Li, X.; Zhang, K. Classification of Hydrological Conditions to Assess Water Allocation Schemes for Lake Baiyangdian in North China. J. Hydrol. 2010, 385, 247–256. [Google Scholar] [CrossRef]
- Li, X.; Cui, B.; Yang, Q.; Lan, Y. Impacts of Water Level Fluctuations on Detritus Accumulation in Lake Baiyangdian, China. Ecohydrology 2016, 9, 52–67. [Google Scholar] [CrossRef]
- Yang, Q.; Almendinger, J.E.; Zhang, X.; Huang, M.; Chen, X.; Leng, G.; Zhou, Y.; Zhao, K.; Asrar, G.R.; Srinivasan, R.; et al. Enhancing SWAT Simulation of Forest Ecosystems for Water Resource Assessment: A Case Study in the St. Croix River Basin. Ecol. Eng. 2018, 120, 422–431. [Google Scholar] [CrossRef]
- Xu, C.; Li, B.; Kong, F.; He, T. Spatial-Temporal Variation, Driving Mechanism and Management Zoning of Ecological Resilience Based on RSEI in a Coastal Metropolitan Area. Ecol. Indic. 2024, 158, 111447. [Google Scholar] [CrossRef]
- Peng, L.; Wu, H.; Li, Z. Spatial–Temporal Evolutions of Ecological Environment Quality and Ecological Resilience Pattern in the Middle and Lower Reaches of the Yangtze River Economic Belt. Remote. Sens. 2023, 15, 430. [Google Scholar] [CrossRef]
- Li, J.; Pei, Y.; Zhao, S.; Xiao, R.; Sang, X.; Zhang, C. A Review of Remote Sensing for Environmental Monitoring in China. Remote. Sens. 2020, 12, 1130. [Google Scholar] [CrossRef]
- Xu, H.Q. A Remote Sensing Urban Ecological Index and Its Application. Acta Ecol. Sin. 2013, 33, 7853–7862. [Google Scholar]
- Lu, J.; Guan, H.; Yang, Z.; Deng, L. Dynamic Monitoring of Spatial-Temporal Changes in Eco-Environment Quality in Beijing Based on Remote Sensing Ecological Index with Google Earth Engine. Sens. Mater. 2021, 33, 4595–4606. [Google Scholar] [CrossRef]
- Ji, J.; Wang, S.; Zhou, Y.; Liu, W.; Wang, L. Studying the Eco-Environmental Quality Variations of Jing-Jin-Ji Urban Agglomeration and Its Driving Factors in Different Ecosystem Service Regions from 2001 to 2015. IEEE Access 2020, 8, 154940–154952. [Google Scholar] [CrossRef]
- Hu, X.; Xu, H. A New Remote Sensing Index for Assessing the Spatial Heterogeneity in Urban Ecological Quality: A Case from Fuzhou City, China. Ecol. Indic. 2018, 89, 11–21. [Google Scholar] [CrossRef]
- Zheng, Z.; Wu, Z.; Chen, Y.; Yang, Z.; Marinello, F. Exploration of Eco-Environment and Urbanization Changes in Coastal Zones: A Case Study in China over the Past 20 Years. Ecol. Indic. 2020, 119, 106847. [Google Scholar] [CrossRef]
- Porporato, A.; D’Odorico, P.; Laio, F.; Ridolfi, L.; Rodriguez-Iturbe, I. Ecohydrology of Water-Controlled Ecosystems. Adv. Water Resour. 2002, 25, 1335–1348. [Google Scholar] [CrossRef]
- Hannah, D.M.; Wood, P.J.; Sadler, J.P. Ecohydrology and Hydroecology: A “New Paradigm”? Hydrol. Process. 2004, 18, 3439–3445. [Google Scholar] [CrossRef]
- Elosegi, A.; Sabater, S. Effects of Hydromorphological Impacts on River Ecosystem Functioning: A Review and Suggestions for Assessing Ecological Impacts. Hydrobiologia 2013, 712, 129–143. [Google Scholar] [CrossRef]
- Rodriguez-Iturbe, I. Ecohydrology: A Hydrologic Perspective of Climate-Soil-Vegetation Dynamics. Water Resour. Res. 2000, 36, 3–9. [Google Scholar] [CrossRef]
- Ahn, S.R.; Kim, S.J. Assessment of Integrated Watershed Health Based on the Natural Environment, Hydrology, Water Quality, and Aquatic Ecology. Hydrol. Earth Syst. Sci. 2017, 21, 5583–5602. [Google Scholar] [CrossRef]
- Zhao, Y.; Wei, Y.; Wu, B.; Lu, Z.; Fu, L. A Connectivity-Based Assessment Framework for River Basin Ecosystem Service Management. Curr. Opin. Environ. Sustain. 2018, 33, 34–41. [Google Scholar] [CrossRef]
- Zhang, X.; Li, F.; Yong, Z. Impact of Changes in River Network Structure on Hydrological Connectivity of Watersheds. Ecol. Indic. 2023, 146, 109848. [Google Scholar] [CrossRef]
- Amoros, C.; Bornette, G. Connectivity and Biocomplexity in Waterbodies of Riverine Floodplains. Freshw. Biol. 2002, 47, 761–776. [Google Scholar] [CrossRef]
- Xie, C.; Cui, B.; Xie, T.; Yu, S.; Liu, Z.; Chen, C.; Ning, Z.; Wang, Q.; Zou, Y.; Shao, X. Hydrological Connectivity Dynamics of Tidal Flat Systems Impacted by Severe Reclamation in the Yellow River Delta. Sci. Total Environ. 2020, 739, 139860. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, M.G.E.; Bennett, E.M.; Gonzalez, A. Linking Landscape Connectivity and Ecosystem Service Provision: Current Knowledge and Research Gaps. Ecosystems 2013, 16, 894–908. [Google Scholar] [CrossRef]
- Li, K.; Hou, Y.; Fu, Q.; Randall, M.T.; Andersen, P.S.; Qiu, M.; Skov-Petersen, H. Integrating Decision-Making Preferences into Ecosystem Service Conservation Area Identification: A Case Study of Water-Related Ecosystem Services in the Dawen River Watershed, China. J. Environ. Manag. 2023, 340, 117972. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhao, L.; Zhang, Z.; Li, J.; Hou, L.; Liu, J.; Wang, Y. Research on the Hydrological Variation Law of the Dawen River, a Tributary of the Lower Yellow River. Agronomy 2022, 12, 1719. [Google Scholar] [CrossRef]
- Yao, T.; Zhao, Q.; Li, X.Y.; Shen, Z.T.; Ran, P.Y.; Wu, W. Spatiotemporal Variations of Multi-Scale Drought in Shandong Province from 1961 to 2017. Water Sci. Technol. Water Supply 2021, 21, 525–541. [Google Scholar] [CrossRef]
- Wang, J.; Bao, Z.; Elmahdi, A.; Zhang, J.; Wang, G.; Liu, C.; Wu, H. Enhancing Land Cover Mapping in Mixed Vegetation Regions Using Remote-Sensing Evapotranspiration. IEEE Trans. Geosci. Remote. Sens. 2024, 62, 4407322. [Google Scholar] [CrossRef]
- Xiong, Y.; Xu, W.; Lu, N.; Huang, S.; Wu, C.; Wang, L.; Dai, F.; Kou, W. Assessment of Spatial–Temporal Changes of Ecological Environment Quality Based on RSEI and GEE: A Case Study in Erhai Lake Basin, Yunnan Province, China. Ecol. Indic. 2021, 125, 107518. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, Q.; Zhang, L.; Wu, C. NDBSI: A Normalized Difference Bare Soil Index for Remote Sensing to Improve Bare Soil Mapping Accuracy in Urban and Rural Areas. Catena 2022, 214, 106265. [Google Scholar] [CrossRef]
- Qin, Z.; Karnieli, A.; Berliner, P. A Mono-Window Algorithm for Retrieving Land Surface Temperature from Landsat TM Data and Its Application to the Israel-Egypt Border Region. Int. J. Remote. Sens. 2001, 22, 3719–3746. [Google Scholar] [CrossRef]
- Strahler, A.N. Quantitative Analysis of Watershed Geomorphology. Eos Trans. Am. Geophys. Union 1957, 38, 913–920. [Google Scholar]
- Hamid, A.; Bhat, S.A.; Bhat, S.U.; Jehangir, A. Environmetric Techniques in Water Quality Assessment and Monitoring: A Case Study. Environ. Earth Sci. 2016, 75, 321. [Google Scholar] [CrossRef]
- Daoud, J.I. Multicollinearity and Regression Analysis. J. Phys. Conf. Ser. 2018, 949, 012009. [Google Scholar] [CrossRef]
- Shrestha, N. Detecting Multicollinearity in Regression Analysis. Am. J. Appl. Math. Stat. 2020, 8, 39–42. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Binger, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Li, X.; McCarty, G.W.; Karlen, D.L.; Cambardella, C.A. Topographic Metric Predictions of Soil Redistribution and Organic Carbon in Iowa Cropland Fields. Catena 2018, 160, 222–232. [Google Scholar] [CrossRef]
- Wu, P.; Tan, M. Challenges for Sustainable Urbanization: A Case Study of Water Shortage and Water Environment Changes in Shandong, China. Procedia Environ. Sci. 2012, 13, 919–927. [Google Scholar] [CrossRef]
- Hao, L.; Sun, G.; Liu, Y.; Gao, Z.; He, J.; Shi, T.; Wu, B. Effects of Precipitation on Grassland Ecosystem Restoration under Grazing Exclusion in Inner Mongolia, China. Landsc. Ecol. 2014, 29, 1657–1673. [Google Scholar] [CrossRef]
- Gong, Z.; Zhao, S.; Gu, J. Correlation Analysis between Vegetation Coverage and Climate Drought Conditions in North China during 2001–2013. J. Geogr. Sci. 2017, 27, 143–160. [Google Scholar] [CrossRef]
- Mosley, L.M. Drought Impacts on the Water Quality of Freshwater Systems; Review and Integration. Earth-Sci. Rev. 2015, 140, 203–214. [Google Scholar] [CrossRef]
- Lake, P.S. Ecological Effects of Perturbation by Drought in Flowing Waters. Freshw. Biol. 2003, 48, 1161–1172. [Google Scholar] [CrossRef]
- Senf, C.; Buras, A.; Zang, C.S.; Rammig, A.; Seidl, R. Excess Forest Mortality Is Consistently Linked to Drought across Europe. Nat. Commun. 2020, 11, 6200. [Google Scholar] [CrossRef]
- Luo, M.; Zhang, S.; Huang, L.; Liu, Z.; Yang, L.; Li, R.; Lin, X. Temporal and Spatial Changes of Ecological Environment Quality Based on RSEI: A Case Study in Ulan Mulun River Basin, China. Sustainability 2022, 14, 13232. [Google Scholar] [CrossRef]
- Wang, H.; Li, Z.; Cao, L.; Feng, R.; Pan, Y. Response of NDVI of Natural Vegetation to Climate Changes and Drought in China. Land 2021, 10, 966. [Google Scholar] [CrossRef]
- Ding, Y.; He, X.; Zhou, Z.; Hu, J.; Cai, H.; Wang, X.; Li, L.; Xu, J.; Shi, H. Response of Vegetation to Drought and Yield Monitoring Based on NDVI and SIF. Catena 2022, 219, 106328. [Google Scholar] [CrossRef]
- Caioni, C.; Silvério, D.V.; Macedo, M.N.; Coe, M.T.; Brando, P.M. Droughts Amplify Differences between the Energy Balance Components of Amazon Forests and Croplands. Remote. Sens. 2020, 12, 525. [Google Scholar] [CrossRef]
- Yin, D.; Roderick, M.L.; Leech, G.; Sun, F.; Huang, Y. The Contribution of Reduction in Evaporative Cooling to Higher Surface Air Temperatures during Drought. Geophys. Res. Lett. 2014, 41, 7891–7897. [Google Scholar] [CrossRef]
- Niu, B.; Li, X.; Li, F.; Wang, Y.; Hu, X. Vegetation Dynamics and Its Linkage with Climatic and Anthropogenic Factors in the Dawen River Watershed of China from 1999 through 2018. Environ. Sci. Pollut. Res. 2021, 28, 52887–52900. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Zhang, L.; Liang, C. Agricultural Drought Disaster Risk Assessment in Shandong Province, China. Nat. Hazards 2023, 118, 1515–1534. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, P.; Deng, X.; Ren, C.; Deng, M.; Wang, S.; Lai, X.; Long, A. Study on the Spatial and Temporal Trends of Ecological Environment Quality and Influencing Factors in Xinjiang Oasis. Remote. Sens. 2024, 16, 1980. [Google Scholar] [CrossRef]
- Huang, S.; Li, Y.; Hu, H.; Xue, P.; Wang, J. Assessment of Optimal Seasonal Selection for RSEI Construction: A Case Study of Ecological Environment Quality Assessment in the Beijing-Tianjin-Hebei Region from 2001 to 2020. Geocarto Int. 2024, 39, 2311224. [Google Scholar] [CrossRef]
- Peng, S.; Wu, P.; Lu, Y.; Chen, L.; Wang, Z.; Lu, Y. Influence of River Structure and Hydrodynamics on Water Quality in the Upper Taihu Basin, China. J. Clean. Prod. 2024, 453, 142262. [Google Scholar] [CrossRef]
- Cui, Y.; Xiao, R.; Zhang, M.; Wang, C.; Ma, Z.; Xiu, Y.; Wang, Q.; Guo, Y. Hydrological Connectivity Dynamics and Conservation Priorities for Surface-Water Patches in the Yellow River Delta National Nature Reserve, China. Ecohydrol. Hydrobiol. 2020, 20, 525–536. [Google Scholar] [CrossRef]
- Huang, S.L.; Lee, Y.C.; Budd, W.W.; Yang, M.C. Analysis of Changes in Farm Pond Network Connectivity in the Peri-Urban Landscape of the Taoyuan Area, Taiwan. Environ. Manag. 2011, 49, 915–928. [Google Scholar] [CrossRef] [PubMed]
- Zeng, B.; Li, Y.; Yao, J.; Tan, Z. The Characteristics and Evolution of Structural and Functional Connectivity in a Large Catchment (Poyang Lake) during the Past 30 Years. Remote. Sens. 2023, 15, 3335. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, Q.; Xu, Y.; Lu, M.; Lin, Z.; Gao, B. Dynamic Impacts of Changes in River Structure and Connectivity on Water Quality under Urbanization in the Yangtze River Delta Plain. Ecol. Indic. 2022, 135, 108582. [Google Scholar] [CrossRef]
- Deng, X.; Xu, Y.; Han, L. Impacts of Human Activities on the Structural and Functional Connectivity of a River Network in the Taihu Plain. L. Degrad. Dev. 2018, 29, 2575–2588. [Google Scholar] [CrossRef]
- Bond, N.R.; Lake, P.S.; Arthington, A.H. The Impacts of Drought on Freshwater Ecosystems: An Australian Perspective. Hydrobiologia 2008, 600, 3–16. [Google Scholar] [CrossRef]
- Deng, X.; Xu, Y.; Han, L.; Yang, M.; Yang, L.; Song, S.; Li, G.; Wang, Y. Spatial-Temporal Evolution of the Distribution Pattern of River Systems in the Plain River Network Region of the Taihu Basin, China. Quat. Int. 2016, 392, 178–186. [Google Scholar] [CrossRef]
- Parsons, M.; Thoms, M.C. Patterns of Vegetation Greenness during Flood, Rain and Dry Resource States in a Large, Unconfined Floodplain Landscape. J. Arid Environ. 2013, 88, 24–38. [Google Scholar] [CrossRef]
- Sims, N.C.; Colloff, M.J. Remote Sensing of Vegetation Responses to Flooding of a Semi-Arid Floodplain: Implications for Monitoring Ecological Effects of Environmental Flows. Ecol. Indic. 2012, 18, 387–391. [Google Scholar] [CrossRef]
- Chandrasekar, K.; Sesha Sai, M.V.R.; Roy, P.S.; Dwevedi, R.S. Land Surface Water Index (LSWI) Response to Rainfall and NDVI Using the MODIS Vegetation Index Product. Int. J. Remote. Sens. 2010, 31, 3987–4005. [Google Scholar] [CrossRef]
- Aguilar, C.; Zinnert, J.C.; Polo, M.J.; Young, D.R. NDVI as an Indicator for Changes in Water Availability to Woody Vegetation. Ecol. Indic. 2012, 23, 290–300. [Google Scholar] [CrossRef]
- Lee, F.; Simon, K.S.; Perry, G.L.W. River Networks: An Analysis of Simulating Algorithms and Graph Metrics Used to Quantify Topology. Methods Ecol. Evol. 2022, 13, 1374–1387. [Google Scholar] [CrossRef]
- Joo, H.; Kim, H.S.; Kim, S.; Sivakumar, B. Complex Networks and Integrated Centrality Measure to Assess the Importance of Streamflow Stations in a River Basin. J. Hydrol. 2021, 598, 126280. [Google Scholar] [CrossRef]
- Liu, H.; Niu, T.; Yu, Q.; Yang, L.; Ma, J.; Qiu, S.; Wang, R.; Liu, W.; Li, J. Spatial and Temporal Variations in the Relationship between the Topological Structure of Eco-Spatial Network and Biodiversity Maintenance Function in China. Ecol. Indic. 2022, 139, 108919. [Google Scholar] [CrossRef]
Time | Type | Could Cover |
---|---|---|
15 September 2003 | Landsat 5 | 1.00% |
23 September 2006 | Landsat 5 | 4.00% |
30 August 2009 | Landsat 5 | 1.00% |
21 September 2011 | Landsat 5 | 0.00% |
26 September 2013 | Landsat 8 | 0.44% |
2 October 2015 | Landsat 8 | 0.22% |
3 July 2017 | Landsat 8 | 3.53% |
27 September 2019 | Landsat 8 | 1.13% |
16 September 2021 | Landsat 8 | 2.64% |
Characteristics | Indicators | Formulas | Identification |
---|---|---|---|
River structure | River density (Dr) km/km2 | The total length of all the streams and rivers in a drainage basin divided by the total area of the drainage basin. | |
Water surface ratio (Wr) | The proportion of the total area covered by water bodies, such as rivers, lakes, reservoirs, and wetlands, within a defined geographic area. | ||
Edge-node ratio (β) | The ratio of edges (connections or links) to nodes (points) in a network. | ||
Network connectivity (γ) | The ratio of the actual number of edges (or river segments) in to the maximum possible number of edges between nodes in a fully connected network. | ||
Node importance | Betweenness centrality (BC) | It measures how often each graph node appears on a shortest path between the two nodes in the graph. | |
Pagerank (PG_R) | At each node in the graph, the next node is chosen with probability ‘Follow Probability’ from the set of successors of the current node. | ||
Outdegree centrality (Out_D) | The fraction of nodes its outgoing edges are connected to. | ||
In_closeness centrality (In_C) | The inverse sum of the distance from a node to all other nodes in the graph. |
RNC-Based Ecological Model | NSE | RSE | |
---|---|---|---|
0.578 | 0.636 | 0.604 | |
0.575 | 0.625 | 0.613 | |
0.577 | 0.676 | 0.569 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Mo, X.; Zhang, C.; Wang, Q.; Xu, L.; Ren, Z.; McCarty, G.W.; Cui, B. Unraveling the Impacts of River Network Connectivity on Ecological Quality Dynamics at a Basin Scale. Remote Sens. 2024, 16, 2370. https://doi.org/10.3390/rs16132370
Li X, Mo X, Zhang C, Wang Q, Xu L, Ren Z, McCarty GW, Cui B. Unraveling the Impacts of River Network Connectivity on Ecological Quality Dynamics at a Basin Scale. Remote Sensing. 2024; 16(13):2370. https://doi.org/10.3390/rs16132370
Chicago/Turabian StyleLi, Xia, Xiaobiao Mo, Cheng Zhang, Qing Wang, Lili Xu, Ze Ren, Gregory W. McCarty, and Baoshan Cui. 2024. "Unraveling the Impacts of River Network Connectivity on Ecological Quality Dynamics at a Basin Scale" Remote Sensing 16, no. 13: 2370. https://doi.org/10.3390/rs16132370
APA StyleLi, X., Mo, X., Zhang, C., Wang, Q., Xu, L., Ren, Z., McCarty, G. W., & Cui, B. (2024). Unraveling the Impacts of River Network Connectivity on Ecological Quality Dynamics at a Basin Scale. Remote Sensing, 16(13), 2370. https://doi.org/10.3390/rs16132370