The Evolution of Meteorological Satellite Cloud-Detection Methodologies for Atmospheric Parameter Retrievals
Abstract
:1. Introduction
2. Evolution in Multispectral Cloud-Detection Methods
2.1. Cloud Detection Based on Threshold Tests
2.2. Multilayer Clouds Detection
2.3. Polar and Desert Clouds Detection
2.4. Thin Cloud Detection
2.5. Fog Detection
2.6. Cloud Detection Based on Spatial and Texture Characteristics
2.7. Cloud Detection Based on Machine Learning
2.8. Microwave Cloud Detection
3. Truth Data Sources for Cloud-Detection Algorithms
Cloud Amount Truth Data
- Offer temporal and spatial congruency between automated cloud products and cloud truth. Truth is made directly from satellite imagery used to generate automated products.
- Support algorithm and model updates. Truth can be used to quantitatively assess updates to algorithm logic by assessing improvements from granule reprocessing.
- Provide better assessment on algorithm performance. Truth can include full granules of 3200 pixels cross-track by 768 pixels long-track, for VIIRS. CALIOP collects data only along the sensor sub-track.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Sensors | |
DSMP | Defense Meteorological Satellite Program |
OLS | Operational Linescan System |
HRIR | High Resolution Infrared Radiometer |
NOAA | National Oceanic and Atmospheric Administration |
AVHRR | Advanced Very-High-Resolution Radiometer |
Suomi-NPP | Suomi National Polar-orbiting Partnership |
VIIRS | Visible Infrared Imaging Radiometer Suite |
MODIS | Moderate Resolution Spectroradiometer |
MSG | Meteosat Second Generation |
SEVIRI | Spanning Enhanced Visible Infrared Imager |
HRV | MSG-SEVIRI High Resolution Visible Channel |
FY-3A | Chinese FengYun-3A |
VIRR | Visible and Infra-Red Radiometer |
CALIPSO | Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations |
CALIOP | Cloud-Aerosol Lidar with Orthogonal Polarization |
CPR | Cloud Profiling Radar |
MRIR | Medium Resolution Infrared Radiometer |
AIRS | Atmospheric Infrared Sounder |
HIRS | High resolution Infrared Radiation Sounder |
GOES | Geostationary Operational Environmental Satellite |
AHI | Advanced Himawari Imager |
FY-3E | Chinese FengYun-3E |
MERSI-LL | Medium Resolution Spectral Imager-LL |
GK-2A | GEO-KOMPSAT-2A (GEOstationary Korea Multi-Purpose SATellite 2A |
ABI | Advanced Baseline Imager |
AMSU | Advanced Microwave Sounding Unit |
MetOp | Meteorological Operational Satellites |
IASI | Infrared Atmospheric Sounding Interferometer |
IASI-NG | Infrared Atmospheric Sounding Interferometer-Next Generation |
CrIS | Cross-track Infrared Sounder |
GOSAT | Greenhouse gases Observing SATellite |
FTS | Fourier Transform Spectrometer |
MISR | Multi-angle Imaging Spectro Radiometer |
AATSR | Advanced Along-Track Scanning Radiometer |
FY-4A | Chinese FengYun-4A |
MHS | Microwave Humidity Sounder |
MLS | Aura Microwave Limb Sounder |
MWS | MicroWave Sounder |
Cloud-detection algorithms | |
3DNEPH | 3-Dimensional Nephanalysis Model |
RTNEPH | Real-Time Nephanalysis Model |
HRCP | High Resolution Cloud Prognosis |
5LAYER | Five-layer |
TRONEW | Tropical Cloud Forecasting Model |
CLAVR | NOAA’s operative cloud detection from AVHRR |
APOLLO | AVHRR Processing scheme Over cLouds, Land and Ocean |
VCM | VIIRS Cloud Mask |
SPARC | Separation of Pixels Using Aggregated Rating over Canada |
SCANDIA | SMHI Cloud ANalysis model using Digital Avhrr data |
CLAUDIA | CLoud and Aerosol Unbiased Decision Intellectual Algorithm |
UDTCDA | Universal Dynamic Threshold Cloud-Detection Algorithm |
SCDA | Simplified Cloud-Detection Algorithm |
MR | Minimum Residual algorithm |
ACM | ABI Cloud Mask |
LDTNLR | Local Dynamic Threshold Non-Linear Rayleigh |
GALOCM | GOES Adapted LDTNLR Ocean Cloud Mask |
MeCiDA | Meteosat Second Generation Cirrus Detection Algorithm |
MACSP | cloud MAsk Coupling of Statistical and Physical methods |
PCM | Probabilistic Cloud-Detection algorithm |
CANN | Automated Cloud classifier for Neural Network |
MSVM | Multicategory Support Vector Machine |
MPEF CLM Meteor. Prod. Extraction Facility multilayer perceptron neural network CLoud Mask | |
CHAID | CHi-squared Automatic Interaction Detection decision tree |
RBF | Radial Basis Function neural network |
DNN | Deep Neural Network cloud detection |
CNN | Convolutional Neural Network cloud detection |
U-HRNet | U-High Resolution Network |
SCHM | Cloud and Haze Mask algorithm based on a combination of radiative transfer simulations and machine learning |
TCDA | Thin Cirrus Detection Algorithm |
CIC | Cloud Identification and Classification |
AAPP | AVHRR pre-processing package |
MCNC | Merged Cloud Non-Cloud truth images |
MGCNC | Man-Generated Cloud Non-Cloud truth images |
References
- Fye, F.K. The AFGWC Automated Real-Time Cloud Analysis Model; Air Force Global Weather Central: Omaha, NE, USA, 1978. [Google Scholar]
- Keiss, R.B.; Cox, W.M. The AFGWC Automated Real-Time Cloud Analysis Model, US Air Force; Air Force Global Weather Central: Omaha, NE, USA, 1985; p. 82. [Google Scholar]
- Hamill, T.M.; D’Entremont, R.P.; Buntin, J.T. A Description of the Air Force Real-Time Nephanalysis Model. Weather Forecast 1992, 7, 288–306. [Google Scholar] [CrossRef]
- Crum, T.D. AFGWC Cloud Forecast Models; Air Force Global Weather Central: Omaha, NE, USA, 1987; p. 73. [Google Scholar]
- Henderson-Sellers, A.; McGuffie, K. Cloud Climatologies from Space and Applications to Climate Modelling. In Remote Sensing Applications in Meteorology and Climatology; Vaughan, R.A., Ed.; Springer: Dordrecht, The Netherlands, 1987; pp. 359–373. ISBN 978-94-009-3881-6. [Google Scholar]
- Warnecke, G.; Allison, L.J.; McMillin, L.M.; Szekielda, K.-H. Remote Sensing of Ocean Currents and Sea Surface Temperature Changes Derived from the Nimbus II Satellite. J. Phys. Oceanogr. 1971, 1, 45–60. [Google Scholar] [CrossRef]
- McMillin, L. A Method of Determining Surface Temperatures from Measurements of Spectral Radiance at Two Wavelengths. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 1971. [Google Scholar]
- AVHRR Factsheet. 2015. Available online: https://www-cdn.eumetsat.int/files/2020-04/pdf_avhrr_factsheet.pdf (accessed on 10 July 2024).
- Hutchison, K.D.; Marusa, S.; Henderson, J.R.; Kenley, R.C.; Topping, P.C.; Uplinger, W.G.; Twomey, J.A. System Design Considerations for the Retrieval of Sea Surface Temperatures in the NPOESS Era. J. Atmos. Ocean. Technol. 1999, 16, 107–116. [Google Scholar] [CrossRef]
- Hutchison, K.D.; Cracknell, A.P. VIIRS Imagery Design Analysis. In Visible Infrared Imager Radiometer Suite; CRC Press: Boca Raton, FL, USA, 2005; ISBN 978-0-429-11856-2. [Google Scholar]
- Bell, G.J.; Wong, M.C. The Near-Infrared Radiation Received by Satellites from Clouds. Mon. Weather Rev. 1981, 109, 2158–2163. [Google Scholar] [CrossRef]
- Inoue, T. On the Temperature and Effective Emissivity Determination of Semi-Transparent Cirrus Clouds by Bi-Spectral Measurements in the 10 μm Window Region. J. Meteorol. Soc. Jpn. Ser. II 1985, 63, 88–99. [Google Scholar] [CrossRef]
- Saunders, R.; Kriebel, K.T. An Improved Method for Detecting Clear Sky and Cloudy Radiances from AVHRR Data. Int. J. Remote Sens. 1988, 9, 123–150. [Google Scholar] [CrossRef]
- Arking, A. Latitudinal Distribution of Cloud Cover from Tiros III Photographs. Science 1964, 143, 569–572. [Google Scholar] [CrossRef] [PubMed]
- Rossow, W.B. Clouds in Climate: Modeling and Satellite Observational Studies; Report of workshop held at Goddard Institute for Space Studies, October; NASA: New York, NY, USA, 1981; p. 222. [Google Scholar]
- Rossow, W.B.; Mosher, F.; Kinsella, E.; Arking, A.; Desbois, M.; Harrison, E.; Minnis, P.; Ruprecht, E.; Seze, G.; Simmer, C.; et al. ISCCP Cloud Algorithm Intercomparison. J. Appl. Meteorol. Climatol. 1985, 24, 877–903. [Google Scholar] [CrossRef]
- Rossow, W.B.; Garder, L.C.; Lu, P.J.; Walker, A. International Satellite Cloud Climatology Project (ISCCP) Documentation of Cloud Data; World Meteorological Organization: Geneva, Switzerland, 1988. [Google Scholar]
- Rossow, W.B.; Garder, L.C.; Lacis, A.A. Global, Seasonal Cloud Variations from Satellite Radiance Measurements. Part I: Sensitivity of Analysis. J. Clim. 1989, 2, 419–458. [Google Scholar] [CrossRef]
- Rossow, W.B.; Garder, L.C. Validation of ISCCP Cloud Detections. J. Clim. 1993, 6, 2370–2393. [Google Scholar] [CrossRef]
- Sèze, G.; Rossow, W.B. Effects of Satellite Data Resolution on Measuring the Space/Time Variations of Surfaces and Clouds. Int. J. Remote Sens. 1991, 12, 921–952. [Google Scholar] [CrossRef]
- Olesen, F.-S.; Grassl, H. Cloud Detection and Classification over Oceans at Night with NOAA-7. Int. J. Remote Sens. 1985, 6, 1435–1444. [Google Scholar] [CrossRef]
- Lo, R.C.; Johnson, D.R. An Investigation of Cloud Distribution from Satellite Infrared Radiation Data. Mon. Weather Rev. 1971, 99, 599–605. [Google Scholar] [CrossRef]
- Allen, R.C.; Durkee, P.A.; Wash, C.H. Snow/Cloud Discrimination with Multispectral Satellite Measurements. J. Appl. Meteorol. 1990, 29, 994–1004. [Google Scholar] [CrossRef]
- Crane, R.G.; Anderson, M.R. Satellite Discrimination of Snow/Cloud Surfaces. Int. J. Remote Sens. 1984, 5, 213–223. [Google Scholar] [CrossRef]
- Saunders, R.W. An Automated Scheme for the Removal of Cloud Contamination from AVHRR Radiances over Western Europe. Int. J. Remote Sens. 1986, 7, 867–886. [Google Scholar] [CrossRef]
- Stowe, L.L.; McClain, E.P.; Carey, R.; Pellegrino, P.; Gutman, G.G.; Davis, P.; Long, C.; Hart, S. Global Distribution of Cloud Cover Derived from NOAA/AVHRR Operational Satellite Data. Adv. Space Res. 1991, 11, 51–54. [Google Scholar] [CrossRef]
- Stowe, L.L.; Davis, P.; McClain, E.P. Evaluating the CLAVR (Clouds from AVHRR) Phase I-Cloud Cover Experimental Product. Adv. Space Res. 1995, 16, 21–24. [Google Scholar] [CrossRef]
- Stowe, L.L.; Davis, P.A.; McClain, E.P. Scientific Basis and Initial Evaluation of the CLAVR-1 Global Clear/Cloud Classification Algorithm for the Advanced Very High Resolution Radiometer. J. Atmos. Ocean. Technol. 1999, 16, 656–681. [Google Scholar] [CrossRef]
- Derrien, M.; Farki, B.; Harang, L.; LeGléau, H.; Noyalet, A.; Pochic, D.; Sairouni, A. Automatic Cloud Detection Applied to NOAA-11 /AVHRR Imagery. Remote Sens. Environ. 1993, 46, 246–267. [Google Scholar] [CrossRef]
- Khlopenkov, K.; Trishchenko, A. SPARC: New Cloud, Snow, and Cloud Shadow Detection Scheme for Historical 1-Km AVHHR Data over Canada. J. Atmos.Ocean. Technol 2007, 24, 322–343. [Google Scholar] [CrossRef]
- Karlsson, K.-G. Cloud Classifications with the SCANDIA Model; SMHI: Norrkoping, Sweden, 1996; p. 36. [Google Scholar]
- Hocking, J.; Francis, P.N.; Saunders, R. Cloud Detection in Meteosat Second Generation Imagery at the Met Office. Meteorol. Appl. 2011, 18, 307–323. [Google Scholar] [CrossRef]
- Derrien, M.; Gléau, H.L. MSG/SEVIRI Cloud Mask and Type from SAFNWC. Int. J. Remote Sens. 2005, 26, 4707–4732. [Google Scholar] [CrossRef]
- Derrien, M.; Le Gléau, H. Improvement of Cloud Detection near Sunrise and Sunset by Temporal-Differencing and Region-Growing Techniques with Real-Time SEVIRI. Int. J. Remote Sens. 2010, 31, 1765–1780. [Google Scholar] [CrossRef]
- Ackerman, S.A.; Strabala, K.I.; Menzel, W.P.; Frey, R.A.; Moeller, C.C.; Gumley, L.E. Discriminating Clear Sky from Clouds with MODIS. J. Geophys. Res. Atmos. 1998, 103, 32141–32157. [Google Scholar] [CrossRef]
- Ackerman, S.A.; Holz, R.E.; Frey, R.; Eloranta, E.W.; Maddux, B.C.; McGill, M. Cloud Detection with MODIS. Part II: Validation. J. Atmos. Ocean. Technol. 2008, 25, 1073–1086. [Google Scholar] [CrossRef]
- Strabala, K.I.; Ackerman, S.A.; Menzel, W.P. Cloud Properties Inferred from 8-12-Μm Data. J. Appl. Meteorol. Climatol. 1994, 33, 212–229. [Google Scholar] [CrossRef]
- Platnick, S.; King, M.D.; Ackerman, S.A.; Menzel, W.P.; Baum, B.A.; Riedi, J.C.; Frey, R.A. The MODIS Cloud Products: Algorithms and Examples from Terra. IEEE Trans. Geosci. Remote Sens. 2003, 41, 459–473. [Google Scholar] [CrossRef]
- Liu, Y.; Key, J.R.; Frey, R.A.; Ackerman, S.A.; Menzel, W.P. Nighttime Polar Cloud Detection with MODIS. Remote Sens. Environ. 2004, 92, 181–194. [Google Scholar] [CrossRef]
- Frey, R.A.; Ackerman, S.A.; Liu, Y.; Strabala, K.I.; Zhang, H.; Key, J.R.; Wang, X. Cloud Detection with MODIS. Part I: Improvements in the MODIS Cloud Mask for Collection 5. J. Atmos. Ocean. Technol. 2008, 25, 1057–1072. [Google Scholar] [CrossRef]
- Ishida, H.; Nakajima, T.Y. Development of an Unbiased Cloud Detection Algorithm for a Spaceborne Multispectral Imager. J. Geophys. Res. Atmos. 2009, 114, D07206. [Google Scholar] [CrossRef]
- Wang, X.; Li, W.; Zhu, Y.; Zhao, B. Improved Cloud Mask Algorithm for FY-3A/VIRR Data over the Northwest Region of China. Atmos. Meas. Tech. 2013, 6, 549–563. [Google Scholar] [CrossRef]
- Ricciardelli, E.; Romano, F.; Cuomo, V. A Technique for Classifying Uncertain MOD35/MYD35 Pixels Through Meteosat Second Generation-Spinning Enhanced Visible and Infrared Imager Observations. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2137–2149. [Google Scholar] [CrossRef]
- Wang, T.; Fetzer, E.J.; Wong, S.; Kahn, B.H.; Yue, Q. Validation of MODIS Cloud Mask and Multilayer Flag Using CloudSat-CALIPSO Cloud Profiles and a Cross-Reference of Their Cloud Classifications. J. Geophys. Res. Atmos. 2016, 121, 11620–11635. [Google Scholar] [CrossRef]
- Feijt, A.; de Valk, P.; van der Veen, S. Cloud Detection Using Meteosat Imagery and Numerical Weather Prediction Model Data. J. Appl. Meteorol. 2000, 39, 1017–1030. [Google Scholar] [CrossRef]
- Salisbury, J.W.; D’Aria, D.M. Emissivity of Terrestrial Materials in the 8–14 Μm Atmospheric Window. Remote Sens. Environ. 1992, 42, 83–106. [Google Scholar] [CrossRef]
- Gao, B.-C.; Wiscombe, W.J. Surface-Induced Brightness Temperature Variations and Their Effects on Detecting Thin Cirrus Clouds Using IR Emission Channels in the 8–12-Μm Region. J. Appl. Meteorol. Climatol. 1994, 33, 568–570. [Google Scholar] [CrossRef]
- Coakley, J.A., Jr. A Dynamic Threshold Method for Obtaining Cloud Cover from Satellite Imagery Data. J. Geophys. Res. Atmos. 1987, 92, 3985–3990. [Google Scholar] [CrossRef]
- ENGLAND, C.F.; HUNT, G.E. A Bispectral Method for the Automatic Determination of Parameters for Use in Imaging Satellite Cloud Retrievals. Int. J. Remote Sens. 1985, 6, 1545–1553. [Google Scholar] [CrossRef]
- Di Vittorio, A.V.; Emery, W.J. An Automated, Dynamic Threshold Cloud-Masking Algorithm for Daytime AVHRR Images over Land. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1682–1694. [Google Scholar] [CrossRef]
- Dybbroe, A.; Karlsson, K.-G.; Thoss, A. NWCSAF AVHRR Cloud Detection and Analysis Using Dynamic Thresholds and Radiative Transfer Modeling. Part I: Algorithm Description. J. Appl. Meteorol. Climatol. 2005, 44, 39–54. [Google Scholar] [CrossRef]
- Dybbroe, A.; Karlsson, K.-G.; Thoss, A. NWCSAF AVHRR Cloud Detection and Analysis Using Dynamic Thresholds and Radiative Transfer Modeling. Part II: Tuning and Validation. J. Appl. Meteorol. Climatol. 2005, 44, 55–71. [Google Scholar] [CrossRef]
- Coakley, J.A., Jr.; Bretherton, F.P. Cloud Cover from High-Resolution Scanner Data: Detecting and Allowing for Partially Filled Fields of View. J. Geophys. Res. Ocean. 1982, 87, 4917–4932. [Google Scholar] [CrossRef]
- Gutman, G. The Derivation of Vegetation Indices from AVHRR Data. Int. J. Remote Sens. 1987, 8, 1235–1243. [Google Scholar] [CrossRef]
- Joiner, J.; Poli, P.; Frank, D.; Liu, H.C. Detection of Cloud-Affected AIRS Channels Using an Adjacent-Pixel Approach. Q. J. R. Meteorol. Soc. 2004, 130, 1469–1487. [Google Scholar] [CrossRef]
- Coakley, J.A.; Baldwin, D.G. Towards the Objective Analysis of Clouds from Satellite Imagery Data. J. Appl. Meteorol. Climatol. 1984, 23, 1065–1099. [Google Scholar] [CrossRef]
- Rossow, W.B.; Garder, L.C. Cloud Detection Using Satellite Measurements of Infrared and Visible Radiances for ISCCP. J. Clim. 1993, 6, 2341–2369. [Google Scholar] [CrossRef]
- Gutman, G.G. Vegetation Indices from AVHRR: An Update and Future Prospects. Remote Sens. Environ. 1991, 35, 121–136. [Google Scholar] [CrossRef]
- Gutman, G.G. Satellite Daytime Image Classification for Global Studies of Earth’s Surface Parameters from Polar Orbiters. Int. J. Remote Sens. 1992, 13, 209–234. [Google Scholar] [CrossRef]
- Lyapustin, A.; Wang, Y.; Frey, R. An Automatic Cloud Mask Algorithm Based on Time Series of MODIS Measurements. J. Geophys. Res. Atmos. 2008, 113, D16207. [Google Scholar] [CrossRef]
- Serio, C.; Lubrano, A.M.; Romano, F.; Shimoda, H. Cloud Detection over Sea Surface by Use of Autocorrelation Functions of Upwelling Infrared Spectra in the 800–900-Cm−1 Window Region. Appl. Opt. AO 2000, 39, 3565–3572. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Yu, K.; Hagolle, O.; Jiang, K.; Geng, X.; Zhao, Y. A Cloud Detection Method Based on a Time Series of MODIS Surface Reflectance Images. Int. J. Digit. Earth 2013, 6, 157–171. [Google Scholar] [CrossRef]
- Wylie, D.P.; Menzel, W.P. Two Years of Cloud Cover Statistics Using VAS. J. Clim. 1989, 2, 380–392. [Google Scholar] [CrossRef]
- Wylie, D.P.; Menzel, W.P.; Woolf, H.M.; Strabala, K.I. Four Years of Global Cirrus Cloud Statistics Using HIRS. J. Clim. 1994, 7, 1972–1986. [Google Scholar] [CrossRef]
- Turner, J.; Marshall, G.J.; Ladkin, R.S. An Operational, Real-Time Cloud Detection Scheme for Use in the Antarctic Based on AVHRR Data. Int. J. Remote Sens. 2001, 22, 3027–3046. [Google Scholar] [CrossRef]
- Gao, B.-C.; Yang, P.; Li, R.-R. Detection of High Clouds in Polar Regions during the Daytime Using the MODIS 1.375-/Spl Mu/m Channel. IEEE Trans. Geosci. Remote Sens. 2003, 41, 474–481. [Google Scholar] [CrossRef]
- Kolat, U.; Menzel, W.P.; Olson, E.; Frey, R. Very High Cloud Detection in More than Two Decades of HIRS Data. J. Geophys. Res. Atmos. 2013, 118, 3278–3284. [Google Scholar] [CrossRef]
- Baum, B.A.; Trepte, Q. A Grouped Threshold Approach for Scene Identification in AVHRR Imagery. J. Atmos. Ocean. Technol. 1999, 16, 793–800. [Google Scholar] [CrossRef]
- Baum, B.A.; Blackmon, M.; Cess., R.D.; Charlock, T.P.; Coakle, J.A.; Crommelync, D.A.; Green, R.N.; Kandel, R.; King, M.D.; Lee, R.B.; et al. Imager Clear-Sky Determination and Cloud Detection (Subsystem 4.1). Clouds and the Earth’s Radiant Energy System (CERES) Algorithm Theoretical Basis Document, Vol. III: Cloud Analyses and Radiance Inversions (Subsystem 4); Atmospheric Sciences Division NASA Langley Research Center: Hampton, VA, USA, 1995. [Google Scholar]
- Cayula, J.-F.; Cornillon, P.; Holyer, R.; Peckinpaugh, S. Comparative Study of Two Recent Edge-Detection Algorithms Designed to Process Sea-Surface Temperature Fields. IEEE Trans. Geosci. Remote Sens. 1991, 29, 175–177. [Google Scholar] [CrossRef]
- Jedlovec, G.J.; Haines, S.L.; LaFontaine, F.J. Spatial and Temporal Varying Thresholds for Cloud Detection in GOES Imagery. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1705–1717. [Google Scholar] [CrossRef]
- Shang, H.; Chen, L.; Letu, H.; Zhao, M.; Li, S.; Bao, S. Development of a Daytime Cloud and Haze Detection Algorithm for Himawari-8 Satellite Measurements over Central and Eastern China. J. Geophys. Res. Atmos. 2017, 122, 3528–3543. [Google Scholar] [CrossRef]
- Liu, R.; Liu, Y. Generation of New Cloud Masks from MODIS Land Surface Reflectance Products. Remote Sens. Environ. 2013, 133, 21–37. [Google Scholar] [CrossRef]
- Sun, L.; Wei, J.; Wang, J.; Mi, X.; Guo, Y.; Lv, Y.; Yang, Y.; Gan, P.; Zhou, X.; Jia, C.; et al. A Universal Dynamic Threshold Cloud Detection Algorithm (UDTCDA) Supported by a Prior Surface Reflectance Database. J. Geophys. Res. Atmos. 2016, 121, 7172–7196. [Google Scholar] [CrossRef]
- Li, E.; Zhang, Z.; Tan, Y.; Wang, Q. A Novel Cloud Detection Algorithm Based on Simplified Radiative Transfer Model for Aerosol Retrievals: Preliminary Result on Himawari-8 Over Eastern China. IEEE Trans. Geosci. Remote Sens. 2021, 59, 2550–2561. [Google Scholar] [CrossRef]
- Choi, Y.-J.; Ban, H.-J.; Han, H.-J.; Hong, S. A Maritime Cloud-Detection Method Using Visible and Near-Infrared Bands over the Yellow Sea and Bohai Sea. Remote Sens. 2022, 14, 793. [Google Scholar] [CrossRef]
- An, N.; Shang, H.; Lesi, W.; Ri, X.; Shi, C.; Tana, G.; Bao, Y.; Zheng, Z.; Xu, N.; Chen, L.; et al. A Cloud Detection Algorithm for Early Morning Observations From the FY-3E Satellite. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–15. [Google Scholar] [CrossRef]
- Bley, S.; Deneke, H. A Threshold-Based Cloud Mask for the High-Resolution Visible Channel of Meteosat Second Generation SEVIRI. Atmos. Meas. Tech. 2013, 6, 2713–2723. [Google Scholar] [CrossRef]
- Lee, S.; Choi, J. Daytime Cloud Detection Algorithm Based on a Multitemporal Dataset for GK-2A Imagery. Remote Sens. 2021, 13, 3215. [Google Scholar] [CrossRef]
- Li, X.; Zou, X.; Zhuge, X.; Zeng, M.; Wang, N.; Tang, F. Improved Himawari-8/AHI Radiance Data Assimilation With a Double Cloud Detection Scheme. J. Geophys. Res. Atmos. 2020, 125, e2020JD032631. [Google Scholar] [CrossRef]
- Eyre, J.R.; Menzel, W.P. Retrieval of Cloud Parameters from Satellite Sounder Data: A Simulation Study. J. Appl. Meteorol. 1989, 28, 267–275. [Google Scholar] [CrossRef]
- Li, J.; Menzel, W.P.; Schreiner, A.J. Variational Retrieval of Cloud Parameters from GOES Sounder Longwave Cloudy Radiance Measurements. J. Appl. Meteorol. 2001, 40, 312–330. [Google Scholar] [CrossRef]
- Auligné, T. Multivariate Minimum Residual Method for Cloud Retrieval. Part II: Real Observations Experiments. Mon. Weather Rev. 2014, 142, 4399–4415. [Google Scholar] [CrossRef]
- Xu, D.; Auligné, T.; Descombes, G.; Snyder, C. A Method for Retrieving Clouds with Satellite Infrared Radiances Using the Particle Filter. Geosci. Model Dev. 2016, 9, 3919–3932. [Google Scholar] [CrossRef]
- Zhuge, X.; Zou, X. Test of a Modified Infrared-Only ABI Cloud Mask Algorithm for AHI Radiance Observations. J. Appl. Meteorol. Climatol. 2016, 55, 2529–2546. [Google Scholar] [CrossRef]
- Shenk, W.E.; Holub, R.J.; Neff, R.A. A Multispectral Cloud Type Identification Method Developed for Tropical Ocean Areas with Nimbus-3 MRIR Measurements. Mon. Weather Rev. 1976, 104, 284–291. [Google Scholar] [CrossRef]
- Simpson, J.J.; Gobat, J.I. Improved Cloud Detection in GOES Scenes over Land. Remote Sens. Environ. 1995, 52, 36–54. [Google Scholar] [CrossRef]
- Simpson, J.J.; Gobat, J.I. Improved Cloud Detection in GOES Scenes over the Oceans. Remote Sens. Environ. 1995, 52, 79–94. [Google Scholar] [CrossRef]
- Hutchison, K.D.; Jackson, J.M. Cloud Detection over Desert Regions Using the 412 Nanometer MODIS Channel. Geophys. Res. Lett. 2003, 30, 2187. [Google Scholar] [CrossRef]
- Hutchison, K.D.; Roskovensky, J.K.; Jackson, J.M.; Heidinger, A.K.; Kopp, T.J.; Pavolonis, M.J.; Frey, R. Automated Cloud Detection and Classification of Data Collected by the Visible Infrared Imager Radiometer Suite (VIIRS). Int. J. Remote Sens. 2005, 26, 4681–4706. [Google Scholar] [CrossRef]
- Hutchison, K.D.; Iisager, B.D.; Kopp, T.J.; Jackson, J.M. Distinguishing Aerosols from Clouds in Global, Multispectral Satellite Data with Automated Cloud Classification Algorithms. J. Atmos. Ocean. Technol. 2008, 25, 501–518. [Google Scholar] [CrossRef]
- Hutchison, K.D.; Mahoney, R.L.; Vermote, E.F.; Kopp, T.J.; Jackson, J.M.; Sei, A.; Iisager, B.D. A Geometry-Based Approach to Identifying Cloud Shadows in the VIIRS Cloud Mask Algorithm for NPOESS. J. Atmos. Ocean. Technol. 2009, 26, 1388–1397. [Google Scholar] [CrossRef]
- Hutchison, K.D.; Iisager, B.D.; Mahoney, R.L. Enhanced Snow and Ice Identification with the VIIRS Cloud Mask Algorithm. Remote Sens. Lett. 2013, 4, 929–936. [Google Scholar] [CrossRef]
- Frey, R.A.; Ackerman, S.A.; Holz, R.E.; Dutcher, S.; Griffith, Z. The Continuity MODIS-VIIRS Cloud Mask. Remote Sens. 2020, 12, 3334. [Google Scholar] [CrossRef]
- Chen, P.; Srinivasan, R.; Fedosejevs, G. An Automated Cloud Detection Method for Daily NOAA 16 Advanced Very High Resolution Radiometer Data over Texas and Mexico. J. Geophys. Res. Atmos. 2003, 108, 4742. [Google Scholar] [CrossRef]
- McNally, A.P. A Note on the Occurrence of Cloud in Meteorologically Sensitive Areas and the Implications for Advanced Infrared Sounders. Q. J. R. Meteorol. Soc. 2002, 128, 2551–2556. [Google Scholar] [CrossRef]
- McNally, A.P.; Watts, P.D. A Cloud Detection Algorithm for High-Spectral-Resolution Infrared Sounders. Q. J. R. Meteorol. Soc. 2003, 129, 3411–3423. [Google Scholar] [CrossRef]
- Smith, W.L.; Woolf, H.M.; Jacob, W.J. A Regression Method for Obtaining Real-Time Temperature and Geopotential Height Profiles from Satellite Spectrometer Measurements and Its Application to NIMBUS 3 “SIRS” Observations. Mon. Weather Rev. 1970, 98, 582–603. [Google Scholar] [CrossRef]
- Baum, B.A.; Uttal, T.; Poellot, M.; Ackerman, T.P.; Alvarez, J.M.; Intrieri, J.; Starr, D.O.; Titlow, J.; Tovinkere, V.; Clothiaux, E. Satellite Remote Sensing of Multiple Cloud Layers. J. Atmos. Sci. 1995, 52, 4210–4230. [Google Scholar] [CrossRef]
- Wind, G.; Platnick, S.; King, M.D.; Hubanks, P.A.; Pavolonis, M.J.; Heidinger, A.K.; Yang, P.; Baum, B.A. Multilayer Cloud Detection with the MODIS Near-Infrared Water Vapor Absorption Band. J. Appl. Meteorol. Climatol. 2010, 49, 2315–2333. [Google Scholar] [CrossRef]
- Nasiri, S.L.; Baum, B.A. Daytime Multilayered Cloud Detection Using Multispectral Imager Data. J. Atmos. Ocean. Technol. 2004, 21, 1145–1155. [Google Scholar] [CrossRef]
- Chang, F.-L.; Li, Z. A New Method for Detection of Cirrus Overlapping Water Clouds and Determination of Their Optical Properties. J. Atmos. Sci. 2005, 62, 3993–4009. [Google Scholar] [CrossRef]
- Romano, F.; Cimini, D.; Rizzi, R.; Cuomo, V. Multilayered Cloud Parameters Retrievals from Combined Infrared and Microwave Satellite Observations. J. Geophys. Res. Atmos. 2007, 112, D08210. [Google Scholar] [CrossRef]
- Wang, J.; Liu, C.; Yao, B.; Min, M.; Letu, H.; Yin, Y.; Yung, Y.L. A Multilayer Cloud Detection Algorithm for the Suomi-NPP Visible Infrared Imager Radiometer Suite (VIIRS). Remote Sens. Environ. 2019, 227, 1–11. [Google Scholar] [CrossRef]
- Minnis, P.; Sun-Mack, S.; Chen, Y.; Yi, H.; Huang, J.; Nguyen, L.; Khaiyer, M.M. Detection and Retrieval of Multi-Layered Cloud Properties Using Satellite Data; Schäfer, K., Comerón, A., Slusser, J.R., Picard, R.H., Carleer, M.R., Sifakis, N.I., Eds.; Spie Europe International Symposium on Remote Sensing: Bruges, Belgium, 2005; p. 597909. [Google Scholar]
- McMillin, L.M.; Dean, C. Evaluation of a New Operational Technique for Producing Clear Radiances. J. Appl. Meteorol. Climatol. 1982, 21, 1005–1014. [Google Scholar] [CrossRef]
- Lavanant, L.; Dahoui, M.; Rabier, F.; Auligné, T. Cloud Detection for IASI/AIRS Using Imagery. Workshop on Assimilation of High Spectral Resolution Sounders in NWP, Reading, 28 June–1 July 2004. Available online: Https://Www.Ecmwf.Int/Sites/Default/Files/Elibrary/2004/10663-Cloud-Detection-Iasiairs-Using-Imagery.Pdf (accessed on 10 April 2024).
- Heidinger, A.K.; Bearson, N.; Foster, M.J.; Li, Y.; Wanzong, S.; Ackerman, S.; Holz, R.E.; Platnick, S.; Meyer, K. Using Sounder Data to Improve Cirrus Cloud Height Estimation from Satellite Imagers. J. Atmos. Ocean. Technol. 2019, 36, 1331–1342. [Google Scholar] [CrossRef]
- Weisz, E.; Baum, B.A.; Menzel, W.P. Fusion of Satellite-Based Imager and Sounder Data to Construct Supplementary High Spatial Resolution Narrowband IR Radiances. JARS 2017, 11, 036022. [Google Scholar] [CrossRef]
- Goldberg, M.D.; Qu, Y.; McMillin, L.M.; Wolf, W.; Zhou, L.; Divakarla, M. AIRS Near-Real-Time Products and Algorithms in Support of Operational Numerical Weather Prediction. IEEE Trans. Geosci. Remote Sens. 2003, 41, 379–389. [Google Scholar] [CrossRef]
- Li, J.; Menzel, W.P.; Sun, F.; Schmit, T.J.; Gurka, J. AIRS Subpixel Cloud Characterization Using MODIS Cloud Products. J. Appl. Meteorol. Climatol. 2004, 43, 1083–1094. [Google Scholar] [CrossRef]
- Wang, P.; Li, J.; Li, J.; Li, Z.; Schmit, T.J.; Bai, W. Advanced Infrared Sounder Subpixel Cloud Detection with Imagers and Its Impact on Radiance Assimilation in NWP. Geophys. Res. Lett. 2014, 41, 1773–1780. [Google Scholar] [CrossRef]
- Heidinger, A.K.; Li, Y.; Baum, B.A.; Holz, R.E.; Platnick, S.; Yang, P. Retrieval of Cirrus Cloud Optical Depth under Day and Night Conditions from MODIS Collection 6 Cloud Property Data. Remote Sens. 2015, 7, 7257–7271. [Google Scholar] [CrossRef]
- Liu, Y.; Ackerman, S.A.; Maddux, B.C.; Key, J.R.; Frey, R.A. Errors in Cloud Detection over the Arctic Using a Satellite Imager and Implications for Observing Feedback Mechanisms. J. Clim. 2010, 23, 1894–1907. [Google Scholar] [CrossRef]
- Kay, J.E.; L’Ecuyer, T.; Chepfer, H.; Loeb, N.; Morrison, A.; Cesana, G. Recent Advances in Arctic Cloud and Climate Research. Curr. Clim. Chang. Rep. 2016, 2, 159–169. [Google Scholar] [CrossRef]
- Schweiger, A.J.; Lindsay, R.W.; Key, J.R.; Francis, J.A. Arctic Clouds in Multiyear Satellite Data Sets. Geophys. Res. Lett. 1999, 26, 1845–1848. [Google Scholar] [CrossRef]
- Gallegos, S.C.; Hawkins, J.D.; Cheng, C.F. Cloud Screening in AVHRR Digital Data over Arctic Regions. Ann. Glaciol. 1993, 17, 386–390. [Google Scholar] [CrossRef]
- Curry, J.A.; Schramm, J.L.; Rossow, W.B.; Randall, D. Overview of Arctic Cloud and Radiation Characteristics. J. Clim. 1996, 9, 1731–1764. [Google Scholar] [CrossRef]
- Holz, R.E. Arctic Winter High Spectral Resolution Cloud Height Retrievals (2006-Annual2006_14satmet). In Proceedings of the 14th Conference on Satellite Meteorology and Oceanography, Atlanta, GA, USA, 29 January–2 February 2006. [Google Scholar]
- Karlsson, K.-G.; Dybbroe, A. Evaluation of Arctic Cloud Products from the EUMETSAT Climate Monitoring Satellite Application Facility Based on CALIPSO-CALIOP Observations. Atmos. Chem. Phys. 2010, 10, 1789–1807. [Google Scholar] [CrossRef]
- Baum, B.A.; Menzel, W.P.; Frey, R.A.; Tobin, D.C.; Holz, R.E.; Ackerman, S.A.; Heidinger, A.K.; Yang, P. MODIS Cloud-Top Property Refinements for Collection 6. J. Appl. Meteorol. Climatol. 2012, 51, 1145–1163. [Google Scholar] [CrossRef]
- Platnick, S. MODIS Cloud Optical Properties: User Guide for the Collection 6 Level-2 MOD06/MYD06 Product and Associated Level-3 Datasets. 2014. Available online: https://modis-images.gsfc.nasa.gov/_docs/C6MOD06OPUserGuide.pdf (accessed on 10 July 2024).
- Ackerman, S.A. Global Satellite Observations of Negative Brightness Temperature Differences between 11 and 6.7 Μm. J. Atmos. Sci. 1996, 53, 2803–2812. [Google Scholar] [CrossRef]
- Gao, B.-C.; Kaufman, Y.J.; Han, W.; Wiscombe, W.J. Correction of Thin Cirrus Path Radiances in the 0.4–1.0 Μm Spectral Region Using the Sensitive 1.375 Μm Cirrus Detecting Channel. J. Geophys. Res. Atmos. 1998, 103, 32169–32176. [Google Scholar] [CrossRef]
- Valovcin, F.R. Spectral Radiance of Snow and Clouds in the Near Infrared Spectral Region; Hanscom AFB: Bedford, MA, USA, 1978; Available online: https://apps.dtic.mil/sti/pdfs/ADA063761.pdf (accessed on 10 July 2024).
- Vane, G.; Green, R.O.; Chrien, T.G.; Enmark, H.T.; Hansen, E.G.; Porter, W.M. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sens. Environ. 1993, 44, 127–143. [Google Scholar] [CrossRef]
- Gao, B.-C.; Goetz, A.F.H.; Wiscombe, W.J. Cirrus Cloud Detection from Airborne Imaging Spectrometer Data Using the 1.38 Μm Water Vapor Band. Geophys. Res. Lett. 1993, 20, 301–304. [Google Scholar] [CrossRef]
- Hutchison, K.D.; Choe, N.J. Application of 1-38 Μm Imagery for Thin Cirrus Detection in Daytime Imagery Collected over Land Surfaces. Int. J. Remote Sens. 1996, 17, 3325–3342. [Google Scholar] [CrossRef]
- Yamanouchi, T.; Suzuki, K.; Kawaguchi, S. Detection of Clouds in Antarctica from Infrared Multispectral Data of AVHRR. J. Meteorol. Soc. Jpn. Ser. II 1987, 65, 949–962. [Google Scholar] [CrossRef]
- Romano, F.; Cimini, D.; Nilo, S.T.; Di Paola, F.; Ricciardelli, E.; Ripepi, E.; Viggiano, M. The Role of Emissivity in the Detection of Arctic Night Clouds. Remote Sens. 2017, 9, 406. [Google Scholar] [CrossRef]
- Chen, N.; Li, W.; Tanikawa, T.; Hori, M.; Aoki, T.; Stamnes, K. Cloud Mask over Snow-/Ice-Covered Areas for the GCOM-C1/SGLI Cryosphere Mission: Validations over Greenland. J. Geophys. Res. Atmos. 2014, 119, 12287–12300. [Google Scholar] [CrossRef]
- Masiello, G.; Serio, C.; Venafra, S.; DeFeis, I.; Borbas, E.E. Diurnal Variation in Sahara Desert Sand Emissivity during the Dry Season from IASI Observations. J. Geophys. Res. Atmos. 2014, 119, 1626–1638. [Google Scholar] [CrossRef]
- Szejwach, G. Determination of Semi-Transparent Cirrus Cloud Temperature from Infrared Radiances: Application to METEOSAT. J. Appl. Meteorol. 1982, 21, 384–393. [Google Scholar] [CrossRef]
- Ben-Dor, E. A Precaution Regarding Cirrus Cloud Detection from Airborne Imaging Spectrometer Data Using the 1.38 Μm Water Vapor Band. Remote Sens. Environ. 1994, 50, 346–350. [Google Scholar] [CrossRef]
- Minnis, P.; Liou, K.-N.; Takano, Y. Inference of Cirrus Cloud Properties Using Satellite-Observed Visible and Infrared Radiances. Part I: Parameterization of Radiance Fields. J. Atmos. Sci. 1993, 50, 1279–1304. [Google Scholar] [CrossRef]
- Gao, B.-C.; Kaufman, Y.J.; Tanre, D.; Li, R.-R. Distinguishing Tropospheric Aerosols from Thin Cirrus Clouds for Improved Aerosol Retrievals Using the Ratio of 1.38-Μm and 1.24-Μm Channels. Geophys. Res. Lett. 2002, 29, 36-1–36-4. [Google Scholar] [CrossRef]
- Prabhakara, C.; Fraser, R.S.; Dalu, G.; Wu, M.-L.C.; Curran, R.J.; Styles, T. Thin Cirrus Clouds: Seasonal Distribution over Oceans Deduced from Nimbus-4 IRIS. J. Appl. Meteorol. Climatol. 1988, 27, 379–399. [Google Scholar] [CrossRef]
- Parol, F.; Buriez, J.C.; Brogniez, G.; Fouquart, Y. Information Content of AVHRR Channels 4 and 5 with Respect to the Effective Radius of Cirrus Cloud Particles. J. Appl. Meteorol. Climatol. 1991, 30, 973–984. [Google Scholar] [CrossRef]
- Hutchison, K.D.; Hardy, K.R.; Gao, B.-C. Improved Detection of Optically Thin Cirrus Clouds in Nighttime Multispectral Meteorological Satellite Imagery Using Total Integrated Water Vapor Information. J. Appl. Meteorol. Climatol. 1995, 34, 1161–1168. [Google Scholar] [CrossRef]
- Wang, C.; Yang, P.; Baum, B.A.; Platnick, S.; Heidinger, A.K.; Hu, Y.; Holz, R.E. Retrieval of Ice Cloud Optical Thickness and Effective Particle Size Using a Fast Infrared Radiative Transfer Model. J. Appl. Meteorol. Climatol. 2011, 50, 2283–2297. [Google Scholar] [CrossRef]
- Iwabuchi, H.; Yamada, S.; Katagiri, S.; Yang, P.; Okamoto, H. Radiative and Microphysical Properties of Cirrus Cloud Inferred from Infrared Measurements Made by the Moderate Resolution Imaging Spectroradiometer (MODIS). Part I: Retrieval Method. J. Appl. Meteorol. Climatol. 2014, 53, 1297–1316. [Google Scholar] [CrossRef]
- Meyer, K.; Yang, P.; Gao, B.-C. Optical Thickness of Tropical Cirrus Clouds Derived from the MODIS 0.66and 1.375-/Spl Mu/m Channels. IEEE Trans. Geosci. Remote Sens. 2004, 42, 833–841. [Google Scholar] [CrossRef]
- Xia, L.; Zhao, F.; Chen, L.; Zhang, R.; Mao, K.; Kylling, A.; Ma, Y. Performance Comparison of the MODIS and the VIIRS 1.38 Μm Cirrus Cloud Channels Using libRadtran and CALIOP Data. Remote Sens. Environ. 2018, 206, 363–374. [Google Scholar] [CrossRef]
- Krebs, W.; Mannstein, H.; Bugliaro, L.; Mayer, B. Technical Note: A New Day- and Night-Time Meteosat Second Generation Cirrus Detection Algorithm MeCiDA. Atmos. Chem. Phys. 2007, 7, 6145–6159. [Google Scholar] [CrossRef]
- Ewald, F.; Bugliaro, L.; Mannstein, H.; Mayer, B. An Improved Cirrus Detection Algorithm MeCiDA2 for SEVIRI and Its Evaluation with MODIS. Atmos. Meas. Tech. 2013, 6, 309–322. [Google Scholar] [CrossRef]
- Hutchison, K.D.; Hardy, K.R. Threshold Functions for Automated Cloud Analyses of Global Meteorological Satellite Imagery. Int. J. Remote Sens. 1995, 16, 3665–3680. [Google Scholar] [CrossRef]
- Menzel, W.P.; Wylie, D.P.; Strabala, K.I. Seasonal and Diurnal Changes in Cirrus Clouds as Seen in Four Years of Observations with the VAS. J. Appl. Meteorol. Climatol. 1992, 31, 370–385. [Google Scholar] [CrossRef]
- Stubenrauch, C.J.; Feofilov, A.G.; Protopapadaki, S.E.; Armante, R. Cloud Climatologies from the Infrared Sounders AIRS and IASI: Strengths and Applications. Atmos. Chem. Phys. 2017, 17, 13625–13644. [Google Scholar] [CrossRef]
- Yue, Q.; Liou, K.N.; Ou, S.C.; Kahn, B.H.; Yang, P.; Mace, G.G. Interpretation of AIRS Data in Thin Cirrus Atmospheres Based on a Fast Radiative Transfer Model. J. Atmos. Sci. 2007, 64, 3827–3842. [Google Scholar] [CrossRef]
- Yue, Q.; Liou, K.N. Cirrus Cloud Optical and Microphysical Properties Determined from AIRS Infrared Spectra. Geophys. Res. Lett. 2009, 36, L05810. [Google Scholar] [CrossRef]
- Wei, H.; Yang, P.; Li, J.; Baum, B.A.; Huang, H.-L.; Platnick, S.; Hu, Y.; Strow, L. Retrieval of Semitransparent Ice Cloud Optical Thickness from Atmospheric Infrared Sounder (AIRS) Measurements. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2254–2267. [Google Scholar] [CrossRef]
- Kahn, B.H.; Takahashi, H.; Stephens, G.L.; Yue, Q.; Delanoë, J.; Manipon, G.; Manning, E.M.; Heymsfield, A.J. Ice Cloud Microphysical Trends Observed by the Atmospheric Infrared Sounder. Atmos. Chem. Phys. 2018, 18, 10715–10739. [Google Scholar] [CrossRef]
- Someya, Y.; Imasu, R.; Saitoh, N.; Ota, Y.; Shiomi, K. A Development of Cloud Top Height Retrieval Using Thermal Infrared Spectra Observed with GOSAT and Comparison with CALIPSO Data. Atmos. Meas. Tech. 2016, 9, 1981–1992. [Google Scholar] [CrossRef]
- Eyre, J.R.; Brownscombe, J.L.; Allam, R.J. Detection of Fog at Night Using Advanced Very High Resolution Radiometer (AVHRR) Imagery. Meteorol. Mag. 1984, 113, 266–271. [Google Scholar]
- Bendix, J.; Thies, B.; Cermak, J.; Nauß, T. Ground Fog Detection from Space Based on MODIS Daytime Data—A Feasibility Study. Weather Forecast 2005, 20, 989–1005. [Google Scholar] [CrossRef]
- Bendix, J.; Thies, B.; Nauß, T.; Cermak, J. A Feasibility Study of Daytime Fog and Low Stratus Detection with TERRA/AQUA-MODIS over Land. Meteorol. Appl. 2006, 13, 111–125. [Google Scholar] [CrossRef]
- Cermak, J.; Bendix, J. A Novel Approach to Fog/Low Stratus Detection Using Meteosat 8 Data. Atmos. Res. 2008, 87, 279–292. [Google Scholar] [CrossRef]
- Nilo, S.T.; Romano, F.; Cermak, J.; Cimini, D.; Ricciardelli, E.; Cersosimo, A.; Di Paola, F.; Gallucci, D.; Gentile, S.; Geraldi, E.; et al. Fog Detection Based on Meteosat Second Generation-Spinning Enhanced Visible and InfraRed Imager High Resolution Visible Channel. Remote Sens. 2018, 10, 541. [Google Scholar] [CrossRef]
- Xiao, Y.-F.; Zhang, J.; Qin, P. An Algorithm for Daytime Sea Fog Detection over the Greenland Sea Based on MODIS and CALIOP Data. J. Coast. Res. 2019, 90, 95–103. [Google Scholar] [CrossRef]
- Ryu, H.-S.; Hong, S. Sea Fog Detection Based on Normalized Difference Snow Index Using Advanced Himawari Imager Observations. Remote Sens. 2020, 12, 1521. [Google Scholar] [CrossRef]
- Amani, M.; Mahdavi, S.; Bullock, T.; Beale, S. Automatic Nighttime Sea Fog Detection Using GOES-16 Imagery. Atmos. Res. 2020, 238, 104712. [Google Scholar] [CrossRef]
- Maul, G.A. Application of GOES Visible-Infrared Data to Quantifying Mesoscale Ocean Surface Temperatures. J. Geophys. Res. Ocean. 1981, 86, 8007–8021. [Google Scholar] [CrossRef]
- Ebert, E. A Pattern Recognition Technique for Distinguishing Surface and Cloud Types in the Polar Regions. J. Appl. Meteorol. Climatol. 1987, 26, 1412–1427. [Google Scholar] [CrossRef]
- English, S.J.; Eyre, J.R.; Smith, J.A. A Cloud-Detection Scheme for Use with Satellite Sounding Radiances in the Context of Data Assimilation for Numerical Weather Prediction. Q. J. R. Meteorol. Soc. 1999, 125, 2359–2378. [Google Scholar] [CrossRef]
- Smith, J.A.; Taylor, J.P. Initial Cloud Detection Using the EOF Components of High-Spectral-Resolution Infrared Sounder Data. J. Appl. Meteorol. Climatol. 2004, 43, 196–210. [Google Scholar] [CrossRef]
- Shi, T.; Clothiaux, E.E.; Yu, B.; Braverman, A.J.; Groff, D.N. Detection of Daytime Arctic Clouds Using MISR and MODIS Data. Remote Sens. Environ. 2007, 107, 172–184. [Google Scholar] [CrossRef]
- Amato, U.; Antoniadis, A.; Cuomo, V.; Cutillo, L.; Franzese, M.; Murino, L.; Serio, C. Statistical Cloud Detection from SEVIRI Multispectral Images. Remote Sens. Environ. 2008, 112, 750–766. [Google Scholar] [CrossRef]
- Ricciardelli, E.; Romano, F.; Cuomo, V. Physical and Statistical Approaches for Cloud Identification Using Meteosat Second Generation-Spinning Enhanced Visible and Infrared Imager Data. Remote Sens. Environ. 2008, 112, 2741–2760. [Google Scholar] [CrossRef]
- Mackie, S.; Embury, O.; Old, C.; Merchant, C.J.; Francis, P. Generalized Bayesian Cloud Detection for Satellite Imagery. Part 1: Technique and Validation for Night-Time Imagery over Land and Sea. Int. J. Remote Sens. 2010, 31, 2573–2594. [Google Scholar] [CrossRef]
- Murino, L.; Amato, U.; Carfora, M.F.; Antoniadis, A.; Huang, B.; Menzel, W.P.; Serio, C. Cloud Detection of MODIS Multispectral Images. J. Atmos. Ocean. Technol. 2014, 31, 347–365. [Google Scholar] [CrossRef]
- Amato, U.; Antoniadis, A.; Gregoire, G. Independent Component Discriminant Analysis. Int. J. Math. 2003, 3, 735–753. [Google Scholar]
- Mitchell, T.M. Machine Learning; McGraw-Hill series in Computer Science, Nachdr.; McGraw-Hill: New York, NY, USA, 2013; ISBN 978-0-07-042807-2. [Google Scholar]
- Ghosh, A.; Pal, N.R.; Das, J. A Fuzzy Rule Based Approach to Cloud Cover Estimation. Remote Sens. Environ. 2006, 100, 531–549. [Google Scholar] [CrossRef]
- Musial, J.P.; Hüsler, F.; Sütterlin, M.; Neuhaus, C.; Wunderle, S. Probabilistic Approach to Cloud and Snow Detection on Advanced Very High Resolution Radiometer (AVHRR) Imagery. Atmos. Meas. Tech. 2014, 7, 799–822. [Google Scholar] [CrossRef]
- Bulgin, C.E.; Mittaz, J.P.D.; Embury, O.; Eastwood, S.; Merchant, C.J. Bayesian Cloud Detection for 37 Years of Advanced Very High Resolution Radiometer (AVHRR) Global Area Coverage (GAC) Data. Remote Sens. 2018, 10, 97. [Google Scholar] [CrossRef]
- Bulgin, C.E.; Embury, O.; Maidment, R.I.; Merchant, C.J. Bayesian Cloud Detection over Land for Climate Data Records. Remote Sens. 2022, 14, 2231. [Google Scholar] [CrossRef]
- Lamei, N.; Hutchison, K.D.; Crawford, M.M.; Khazenie, N. Cloud-Type Discrimination via Multispectral Textural Analysis. Opt. Eng. 1994, 33, 1303–1313. [Google Scholar] [CrossRef]
- Manakitsa, N.; Maraslidis, G.S.; Moysis, L.; Fragulis, G.F. A Review of Machine Learning and Deep Learning for Object Detection, Semantic Segmentation, and Human Action Recognition in Machine and Robotic Vision. Technologies 2024, 12, 15. [Google Scholar] [CrossRef]
- Miller, S.W.; Emery, W.J. An Automated Neural Network Cloud Classifier for Use over Land and Ocean Surfaces. J. Appl. Meteorol. Climatol. 1997, 36, 1346–1362. [Google Scholar] [CrossRef]
- Logar, A.; Corwin, E.; Alexander, J.; Lloyd, D.; Berendes, T.; Welch, R. A Hybrid Histogram/Neural Network Classifier for Creating Global Cloud Masks. Int. J. Remote Sens. 1997, 18, 847–869. [Google Scholar] [CrossRef]
- Bankert, R.L. Cloud Classification of AVHRR Imagery in Maritime Regions Using a Probabilistic Neural Network. J. Appl. Meteorol. Climatol. 1994, 33, 909–918. [Google Scholar] [CrossRef]
- Lewis, H.G.; Cote, S.; Tatnall, A.R.L. A Neural Network Approach to Cloud Classification from Multi-Temporal Satellite Imagery. In Proceedings of the 1995 Fourth International Conference on Artificial Neural Networks, Cambridge, UK, 26–28 June 1995; pp. 116–121. [Google Scholar]
- Lee, Y.; Wahba, G.; Ackerman, S.A. Cloud Classification of Satellite Radiance Data by Multicategory Support Vector Machines. J. Atmos. Ocean. Technol. 2004, 21, 159–169. [Google Scholar] [CrossRef]
- Bankert, R.L.; Wade, R.H. Optimization of an Instance-Based GOES Cloud Classification Algorithm. J. Appl. Meteorol. Climatol. 2007, 46, 36–49. [Google Scholar] [CrossRef]
- Sun, L.; Yang, X.; Jia, S.; Jia, C.; Wang, Q.; Liu, X.; Wei, J.; Zhou, X. Satellite Data Cloud Detection Using Deep Learning Supported by Hyperspectral Data. Int. J. Remote Sens. 2020, 41, 1349–1371. [Google Scholar] [CrossRef]
- Berendes, T.A.; Kuo, K.S.; Logar, A.M.; Corwin, E.M.; Welch, R.M.; Baum, B.A.; Pretre, A.; Weger, R.C. A Comparison of Paired Histogram, Maximum Likelihood, Class Elimination, and Neural Network Approaches for Daylight Global Cloud Classification Using AVHRR Imagery. J. Geophys. Res. Atmos. 1999, 104, 6199–6213. [Google Scholar] [CrossRef]
- Taravat, A.; Proud, S.; Peronaci, S.; Del Frate, F.; Oppelt, N. Multilayer Perceptron Neural Networks Model for Meteosat Second Generation SEVIRI Daytime Cloud Masking. Remote Sens. 2015, 7, 1529–1539. [Google Scholar] [CrossRef]
- Reguiegue, M.; Chouireb, F. Automatic Day Time Cloud Detection over Land and Sea from MSG SEVIRI Images Using Three Features and Two Artificial Intelligence Approaches. SIViP 2018, 12, 189–196. [Google Scholar] [CrossRef]
- Chen, N.; Li, W.; Gatebe, C.; Tanikawa, T.; Hori, M.; Shimada, R.; Aoki, T.; Stamnes, K. New Neural Network Cloud Mask Algorithm Based on Radiative Transfer Simulations. Remote Sens. Environ. 2018, 219, 62–71. [Google Scholar] [CrossRef]
- Ishida, H.; Oishi, Y.; Morita, K.; Moriwaki, K.; Nakajima, T.Y. Development of a Support Vector Machine Based Cloud Detection Method for MODIS with the Adjustability to Various Conditions. Remote Sens. Environ. 2018, 205, 390–407. [Google Scholar] [CrossRef]
- Hadizadeh, M.; Rahnama, M.; Hesari, B. Verification of Two Machine Learning Approaches for Cloud Masking Based on Reflectance of Channel IR3.9 Using Meteosat Second Generation over Middle East Maritime. Int. J. Remote Sens. 2019, 40, 8899–8913. [Google Scholar] [CrossRef]
- Liu, Q.; Xu, H.; Sha, D.; Lee, T.; Duffy, D.Q.; Walter, J.; Yang, C. Hyperspectral Infrared Sounder Cloud Detection Using Deep Neural Network Model. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Liu, C.; Yang, S.; Di, D.; Yang, Y.; Zhou, C.; Hu, X.; Sohn, B.-J. A Machine Learning-Based Cloud Detection Algorithm for the Himawari-8 Spectral Image. Adv. Atmos. Sci. 2022, 39, 1994–2007. [Google Scholar] [CrossRef]
- Andreev, A.I.; Shamilova, Y.A. Cloud Detection from the Himawari-8 Satellite Data Using a Convolutional Neural Network. Izv. Atmos. Ocean. Phys. 2021, 57, 1162–1170. [Google Scholar] [CrossRef]
- Matsunobu, L.M.; Pedro, H.T.C.; Coimbra, C.F.M. Cloud Detection Using Convolutional Neural Networks on Remote Sensing Images. Sol. Energy 2021, 230, 1020–1032. [Google Scholar] [CrossRef]
- Tao, R.; Zhang, Y.; Wang, L.; Liu, Q.; Wang, J. U-High Resolution Network (U-HRNet): Cloud Detection with High-Resolution Representations for Geostationary Satellite Imagery. Int. J. Remote Sens. 2021, 42, 3511–3533. [Google Scholar] [CrossRef]
- Wang, C.; Platnick, S.; Meyer, K.; Zhang, Z.; Zhou, Y. A Machine-Learning-Based Cloud Detection and Thermodynamic-Phase Classification Algorithm Using Passive Spectral Observations. Atmos. Meas. Tech. 2020, 13, 2257–2277. [Google Scholar] [CrossRef]
- Tang, Y.; Yang, P.; Zhou, Z.; Zhao, X. Daytime Sea Fog Detection Based on a Two-Stage Neural Network. Remote Sens. 2022, 14, 5570. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, W.; Chi, Y.; Yan, X.; Fan, H.; Yang, X.; Ma, Z.; Wang, Q.; Zhao, C. Machine Learning-Based Retrieval of Day and Night Cloud Macrophysical Parameters over East Asia Using Himawari-8 Data. Remote Sens. Environ. 2022, 273, 112971. [Google Scholar] [CrossRef]
- Whitburn, S.; Clarisse, L.; Crapeau, M.; August, T.; Hultberg, T.; Coheur, P.F.; Clerbaux, C. A CO2-Independent Cloud Mask from Infrared Atmospheric Sounding Interferometer (IASI) Radiances for Climate Applications. Atmos. Meas. Tech. 2022, 15, 6653–6668. [Google Scholar] [CrossRef]
- Ma, N.; Sun, L.; Zhou, C.; He, Y.; Dong, C.; Qu, Y.; Yu, H. A Priori Land Surface Reflectance Synergized With Multiscale Features Convolution Neural Network for MODIS Imagery Cloud Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 3294–3308. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhang, M.; Wang, L.; Qin, W. A New Cloud and Haze Mask Algorithm From Radiative Transfer Simulations Coupled With Machine Learning. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–16. [Google Scholar] [CrossRef]
- Ricciardelli, E.; Paola, F.D.; Cimini, D.; Larosa, S.; Mastro, P.; Masiello, G.; Serio, C.; Hultberg, T.; August, T.; Romano, F. A Feedforward Neural Network Approach for the Detection of Optically Thin Cirrus From IASI-NG. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–17. [Google Scholar] [CrossRef]
- Maestri, T.; Cossich, W.; Sbrolli, I. Cloud Identification and Classification from High Spectral Resolution Data in the Far Infrared and Mid-Infrared. Atmos. Meas. Tech. 2019, 12, 3521–3540. [Google Scholar] [CrossRef]
- Li, L.; Li, X.; Jiang, L.; Su, X.; Chen, F. A Review on Deep Learning Techniques for Cloud Detection Methodologies and Challenges. SIViP 2021, 15, 1527–1535. [Google Scholar] [CrossRef]
- Gupta, R.; Nanda, S.J. Cloud Detection in Satellite Images with Classical and Deep Neural Network Approach: A Review. Multimed. Tools Appl. 2022, 81, 31847–31880. [Google Scholar] [CrossRef]
- Mahajan, S.; Fataniya, B. Cloud Detection Methodologies: Variants and Development—A Review. Complex Intell. Syst. 2020, 6, 251–261. [Google Scholar] [CrossRef]
- Sreerekha, T.R.; Buehler, S.A.; O’Keeffe, U.; Doherty, A.; Emde, C.; John, V.O. A Strong Ice Cloud Event as Seen by a Microwave Satellite Sensor: Simulations and Observations. J. Quant. Spectrosc. Radiat. Transf. 2008, 109, 1705–1718. [Google Scholar] [CrossRef]
- Bennartz, R.; Bauer, P. Sensitivity of Microwave Radiances at 85–183 GHz to Precipitating Ice Particles. Radio Sci. 2003, 38, 40-1–40-8. [Google Scholar] [CrossRef]
- English, S.J.; Renshaw, R.J.; Dibben, P.C.; EYRE, J.R. The AAPP Module for Identifying Precipitation, Ice Cloud, Liquid Water and Surface Type on the AMSU-A Grid. In Proceedings of the 9th International TOVS Study Conference, Igls, Austria, 20–26 February 1997; pp. 20–26. [Google Scholar]
- Qin, Z.; Zou, X. Development and Initial Assessment of a New Land Index for Microwave Humidity Sounder Cloud Detection. J. Meteorol. Res. 2016, 30, 12–37. [Google Scholar] [CrossRef]
- Alan Geer, P.B. Assimilating AMSU-A Temperature Sounding Channels in the Presence of Cloud and Precipitation. Available online: https://www.ecmwf.int/en/elibrary/74557-assimilating-amsu-temperature-sounding-channels-presence-cloud-and-precipitation (accessed on 10 April 2024).
- Heather Lawrence—New Brunswick Board of Education. An Evaluation of FY-3C MWHS-2 at ECMWF. Available online: https://www.ecmwf.int/en/elibrary/75346-evaluation-fy-3c-mwhs-2-ecmwf (accessed on 11 April 2024).
- Peter Weston. Investigations into the Assimilation of AMSU-A in the Presence of Cloud and Precipitation. Available online: https://www.ecmwf.int/en/elibrary/81118-investigations-assimilation-amsu-presence-cloud-and-precipitation (accessed on 11 April 2024).
- Zou, X.; Qin, Z.; Weng, F. Impacts from Assimilation of One Data Stream of AMSU-A and MHS Radiances on Quantitative Precipitation Forecasts. Q. J. R. Meteorol. Soc. 2017, 143, 731–743. [Google Scholar] [CrossRef]
- Aires, F.; Marquisseau, F.; Prigent, C.; Sèze, G. A Land and Ocean Microwave Cloud Classification Algorithm Derived from AMSU-A and -B, Trained Using MSG-SEVIRI Infrared and Visible Observations. Mon. Weather Rev. 2011, 139, 2347–2366. [Google Scholar] [CrossRef]
- Lindskog, M.; Dybbroe, A.; Randriamampianina, R. Use of Microwave Radiances from Metop-C and Fengyun-3 C/D Satellites for a Northern European Limited-Area Data Assimilation System. Adv. Atmos. Sci. 2021, 38, 1415–1428. [Google Scholar] [CrossRef]
- Wu, X.; Shi, Z. Utilizing Multilevel Features for Cloud Detection on Satellite Imagery. Remote Sens. 2018, 10, 1853. [Google Scholar] [CrossRef]
- Wu, Z.; Li, J.; Qin, Z. Development and Evaluation of a New Method for AMSU-A Cloud Detection over Land. Remote Sens. 2021, 13, 3646. [Google Scholar] [CrossRef]
- Qin, Z.; Wu, Z.; Li, J. Impact of the One-Stream Cloud Detection Method on the Assimilation of AMSU-A Data in GRAPES. Remote Sens. 2020, 12, 3842. [Google Scholar] [CrossRef]
- Han, H.; Li, J.; Goldberg, M.; Wang, P.; Li, J.; Li, Z.; Sohn, B.-J.; Li, J. Microwave Sounder Cloud Detection Using a Collocated High-Resolution Imager and Its Impact on Radiance Assimilation in Tropical Cyclone Forecasts. Mon. Weather Rev. 2016, 144, 3937–3959. [Google Scholar] [CrossRef]
- Buehler, S.A.; Kuvatov, M.; Sreerekha, T.R.; John, V.O.; Rydberg, B.; Eriksson, P.; Notholt, J. A Cloud Filtering Method for Microwave Upper Tropospheric Humidity Measurements. Atmos. Chem. Phys. 2007, 7, 5531–5542. [Google Scholar] [CrossRef]
- Hong, G.; Heygster, G.; Miao, J.; Kunzi, K. Detection of Tropical Deep Convective Clouds from AMSU-B Water Vapor Channels Measurements. J. Geophys. Res. Atmos. 2005, 110, D05205. [Google Scholar] [CrossRef]
- Greenwald, T.J.; Christopher, S.A. Effect of Cold Clouds on Satellite Measurements near 183 GHz. J. Geophys. Res. Atmos. 2002, 107, AAC 3-1–AAC 3-8. [Google Scholar] [CrossRef]
- Werner, F.; Livesey, N.J.; Schwartz, M.J.; Read, W.G.; Santee, M.L.; Wind, G. Improved Cloud Detection for the Aura Microwave Limb Sounder (MLS): Training an Artificial Neural Network on Colocated MLS and Aqua MODIS Data. Atmos. Meas. Tech. 2021, 14, 7749–7773. [Google Scholar] [CrossRef]
- Larosa, S.; Cimini, D.; Gallucci, D.; Di Paola, F.; Nilo, S.T.; Ricciardelli, E.; Ripepi, E.; Romano, F. A Cloud Detection Neural Network Approach for the Next Generation Microwave Sounder Aboard EPS MetOp-SG A1. Remote Sens. 2023, 15, 1798. [Google Scholar] [CrossRef]
- Fischer, J.; Grassl, H. Radiative Transfer in an Atmosphere–Ocean System: An Azimuthally Dependent Matrix-Operator Approach. Appl. Opt. AO 1984, 23, 1032–1039. [Google Scholar] [CrossRef] [PubMed]
- Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- Winker, D.M.; Pelon, J.; Coakley, J.A.; Ackerman, S.A.; Charlson, R.J.; Colarco, P.R.; Flamant, P.; Fu, Q.; Hoff, R.M.; Kittaka, C.; et al. The CALIPSO Mission. Bull. Am. Meteorol. Soc. 2010, 91, 1211–1230. [Google Scholar] [CrossRef]
- Sassen, K.; Wang, Z.; Liu, D. Global Distribution of Cirrus Clouds from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) Measurements. J. Geophys. Res. Atmos. 2008, 113, D00A12. [Google Scholar] [CrossRef]
- Zheng, J.; Liu, D.; Wang, Z.; Tian, X.; Wang, Y.; Xie, C. Global distribution and seasonal variation of clouds observed from CloudSat/CALIPSO. qxxb 2018, 76, 420–433. [Google Scholar] [CrossRef]
- Hutchison, K.D.; Heidinger, A.K.; Kopp, T.J.; Iisager, B.D.; Frey, R.A. Comparisons between VIIRS Cloud Mask Performance Results from Manually Generated Cloud Masks of VIIRS Imagery and CALIOP-VIIRS Match-Ups. Int. J. Remote Sens. 2014, 35, 4905–4922. [Google Scholar] [CrossRef]
- Kopp, T.J.; Thomas, W.; Heidinger, A.K.; Botambekov, D.; Frey, R.A.; Hutchison, K.D.; Iisager, B.D.; Brueske, K.; Reed, B. The VIIRS Cloud Mask: Progress in the First Year of S-NPP toward a Common Cloud Detection Scheme. J. Geophys. Res. Atmos. 2014, 119, 2441–2456. [Google Scholar] [CrossRef]
Cloud Product | Truth Data Source | Instruments | Accuracy/Comments |
---|---|---|---|
Amount (probability of correct typing) | Satellite-based | CALIOP and CPR, Manual CNCof (VIIRS) imagery | >98% (global and regional) resolution: CALIOP 100 m × 335 m, CPR 1.4 km × 2.5 km; Manual CNC same as imagery e.g., 750 m or 375 m |
Cloud Top Phase (ice, water, mixed) | Satellite-based | CALIOP and CPR | Same as amount |
Cloud Top Height | Ground-based and Satellite-based | Height: MPL and CALIOP for cloud Boundaries | Height: ~30 m |
Cloud Top Temp and Pressure inferred | Satellite-based | CALIOP 0.76 micron oxygen A band imagery [227] | Temp for mean COT of cloud layer Resolution Temporal: 16 days Vertical: 30–60 m Spatial 5 km |
Cloud Optical Prop. | Ground-based | Multi-Filter Rotating Shadow band Radiometer (MFRSR) measurements | Inferred with CEPS error >> COTTemporal resolution: 15 s. |
Cloud Base Height | Ground-based | Lidar Model CL31 Vaisala Ceilometer | Height:~10 m Measurement resolution: 10 m or 5 m, selectable. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romano, F.; Cimini, D.; Di Paola, F.; Gallucci, D.; Larosa, S.; Nilo, S.T.; Ricciardelli, E.; Iisager, B.D.; Hutchison, K. The Evolution of Meteorological Satellite Cloud-Detection Methodologies for Atmospheric Parameter Retrievals. Remote Sens. 2024, 16, 2578. https://doi.org/10.3390/rs16142578
Romano F, Cimini D, Di Paola F, Gallucci D, Larosa S, Nilo ST, Ricciardelli E, Iisager BD, Hutchison K. The Evolution of Meteorological Satellite Cloud-Detection Methodologies for Atmospheric Parameter Retrievals. Remote Sensing. 2024; 16(14):2578. https://doi.org/10.3390/rs16142578
Chicago/Turabian StyleRomano, Filomena, Domenico Cimini, Francesco Di Paola, Donatello Gallucci, Salvatore Larosa, Saverio Teodosio Nilo, Elisabetta Ricciardelli, Barbara D. Iisager, and Keith Hutchison. 2024. "The Evolution of Meteorological Satellite Cloud-Detection Methodologies for Atmospheric Parameter Retrievals" Remote Sensing 16, no. 14: 2578. https://doi.org/10.3390/rs16142578
APA StyleRomano, F., Cimini, D., Di Paola, F., Gallucci, D., Larosa, S., Nilo, S. T., Ricciardelli, E., Iisager, B. D., & Hutchison, K. (2024). The Evolution of Meteorological Satellite Cloud-Detection Methodologies for Atmospheric Parameter Retrievals. Remote Sensing, 16(14), 2578. https://doi.org/10.3390/rs16142578