Application and Evaluation of the AI-Powered Segment Anything Model (SAM) in Seafloor Mapping: A Case Study from Puck Lagoon, Poland
Abstract
:1. Introduction
- (1)
- What are the application possibilities of SAM in current underwater remote sensing studies involving various types of measurements?
- (2)
- How do the SAM and SAM + MRS algorithms perform in terms of delineation of bedforms compared to standalone MRS segmentation?
- (3)
- What typical types of geomorphological bedforms is it possible to detect with the SAM algorithm?
2. Materials and Methods
2.1. Study Area
2.2. Description of the Methodology
3. Results
- -
- Anthropogenic relief elements at the bottom of Puck Lagoon, which were clearly captured due to the significant depth difference and the steepness of the slopes.
- -
- Long, continuous areas of slopes with pronounced gradients, including the distal slopes of sand waves.
4. Discussion
5. Conclusions
- (1)
- The application possibilities of the SAM algorithm in current underwater remote sensing studies are quite broad. The algorithm’s performance is significantly influenced by the pixel size of the datasets and the model type used. However, it is important to note that the resolution of the data can significantly impact the effectiveness of the segmentation process. While elements of considerable size or those with significant length and continuity were effectively captured, smaller elements with less pronounced gradients were not as well represented. This highlights the need for high-resolution data to capture the full complexity of the seabed as well as extending processing power to ensure operation of the SAM algorithm.
- (2)
- The standalone SAM algorithm and the combined SAM + MRS approach both have their strengths and weaknesses in terms of delineating bedforms. While the standalone SAM algorithm produced largely similar results, the combined approach resulted in finer, more complex results that represent more seafloor features that could be bedforms. This suggests that the combined SAM + MRS approach may be more effective at capturing the complexity of the seabed. However, the increased complexity of the combined segmentation design led to longer computation times.
- (3)
- The SAM algorithm is capable of detecting some types of geomorphological bedforms. The results from the MRS segmentation and RF classification underscore the potential of these algorithms for seabed mapping. Despite the presence of several misclassifications, the overall result is comprehensive and demonstrates the division into 21 bedform classes. The application of MRS across all data types enabled the delineation of segments and facilitated predictions for the entire study area, suggesting that this approach could be effective for large-scale seabed mapping. However, it is important to note that the effectiveness of the SAM algorithm in detecting these bedforms is significantly influenced by the pixel size of the datasets and the model type used.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
OBIA | Object-based image analysis |
SAM | Segment Anything Model |
SDB | Satellite-derived bathymetry |
DEM | Digital elevation model |
MBES | Multibeam echosounder |
ALB | Airborne laser bathymetry |
AI | Artificial intelligence |
MRS | Multiresolution segmentation |
RF | Random forest |
GPU | Graphic processing unit |
ViT-B | Vision transformer model type with low complexity |
ViT-L | Vision transformer model type with moderate complexity |
ViT-H | Vision transformer model type with high complexity |
sbz | Sandbank zone |
fsl | Foreshore slope |
ssl | Steep slopes |
esb | Flat, even seabed |
isb | Uneven seabed |
ssb | Slightly undulating seabed |
usb | Undulating seabed |
srb | Sand ribbons |
swm | Sand waves with mega ripple marks |
mrp | Mega ripple marks |
rmr | Rhomboidal mega ripple marks |
mmr | Medium-sized mega ripple marks with ripple marks |
smr | Small mega ripple marks with ripple marks |
sbv | Flat, even seabed with vegetation |
uso | Undulating seabed with minor accumulations of organics |
org | Accumulations of organics |
del | Delta |
rdf | Relict deltaic formations |
gou | Glacial outcrops |
rsb | Relict sandbanks |
ant | Anthropogenic formations |
References
- Guan, S.; Qu, F.; Qiao, F. United Nations Decade of Ocean Science for Sustainable Development (2021–2030): From innovation of ocean science to science-based ocean governance. Front. Mar. Sci. 2023, 9, 1091598. [Google Scholar] [CrossRef]
- De Moustier, C.; Matsumoto, H. Seafloor acoustic remote sensing with multibeam echo-sounders and bathymetric sidescan sonar systems. Mar. Geophys. Res. 1993, 15, 27–42. [Google Scholar] [CrossRef]
- Doneus, M.; Doneus, N.; Briese, C.; Pregesbauer, M.; Mandlburger, G.; Verhoeven, G. Airborne laser bathymetry—Detecting and recording submerged archaeological sites from the air. J. Archaeol. Sci. 2013, 40, 2136–2151. [Google Scholar] [CrossRef]
- Sagawa, T.; Yamashita, Y.; Okumura, T.; Yamanokuchi, T. Satellite derived bathymetry using machine learning and multi-temporal satellite images. Remote Sens. 2019, 11, 1155. [Google Scholar] [CrossRef]
- Ashphaq, M.; Srivastava, P.K.; Mitra, D. Review of near-shore satellite derived bathymetry: Classification and account of five decades of coastal bathymetry research. J. Ocean. Eng. Sci. 2021, 6, 340–359. [Google Scholar] [CrossRef]
- Janowski, Ł.; Skarlatos, D.; Agrafiotis, P.; Tysiąc, P.; Pydyn, A.; Popek, M.; Kotarba-Morley, A.M.; Mandlburger, G.; Gajewski, Ł.; Kołakowski, M.; et al. High resolution optical and acoustic remote sensing datasets of the Puck Lagoon. Sci. Data 2024, 11, 360. [Google Scholar] [CrossRef] [PubMed]
- Mandlburger, G.; Pfennigbauer, M.; Schwarz, R.; Pöppl, F. A decade of progress in topo-bathymetric laser scanning exemplified by the pielach river dataset. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2023, X-1/W1-2023, 1123–1130. [Google Scholar] [CrossRef]
- Janowski, L.; Wroblewski, R.; Rucinska, M.; Kubowicz-Grajewska, A.; Tysiac, P. Automatic classification and mapping of the seabed using airborne LiDAR bathymetry. Eng. Geol. 2022, 301, 106615. [Google Scholar] [CrossRef]
- Misiuk, B.; Brown, C.J. Benthic habitat mapping: A review of three decades of mapping biological patterns on the seafloor. Estuar. Coast. Shelf Sci. 2024, 296, 108699. [Google Scholar] [CrossRef]
- Brown, C.J.; Smith, S.J.; Lawton, P.; Anderson, J.T. Benthic habitat mapping: A review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques. Estuar. Coast. Shelf Sci. 2011, 92, 502–520. [Google Scholar] [CrossRef]
- Lecours, V.; Devillers, R.; Schneider, D.C.; Lucieer, V.L.; Brown, C.J.; Edinger, E.N. Spatial scale and geographic context in benthic habitat mapping: Review and future directions. Mar. Ecol. Prog. Ser. 2015, 535, 259–284. [Google Scholar] [CrossRef]
- International Hydrographic Organization. IHO Standards for Hydrographic Surveys S-44 ed. 6.0; International Hydrographic Organization: Monaco, Monaco, 2020.
- Lamarche, G.; Lurton, X. Recommendations for improved and coherent acquisition and processing of backscatter data from seafloor-mapping sonars. Mar. Geophys. Res. 2017, 39, 5–22. [Google Scholar] [CrossRef]
- Lu, D.; Weng, Q. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 2007, 28, 823–870. [Google Scholar] [CrossRef]
- Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Queiroz Feitosa, R.; van der Meer, F.; van der Werff, H.; van Coillie, F.; et al. Geographic Object-Based Image Analysis—Towards a new paradigm. ISPRS J. Photogramm. Remote Sens 2014, 87, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens. 2004, 58, 239–258. [Google Scholar] [CrossRef]
- Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.Z.; Rolland, C.; Gustafson, L.; Xiao, T.T.; Whitehead, S.; Berg, A.C.; Lo, W.Y.; et al. Segment Anything. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 2–6 October 2023; pp. 3992–4003. [Google Scholar]
- Osco, L.P.; Wu, Q.S.; de Lemos, E.L.; Gonsalves, W.N.; Ramos, A.P.M.; Li, J.; Marcato, J., Jr. The Segment Anything Model (SAM) for remote sensing applications: From zero to one shot. Int. J. Appl. Earth Obs. Geoinf. 2023, 124, 103540. [Google Scholar] [CrossRef]
- Nanni, L.; Fusaro, D.; Fantozzi, C.; Pretto, A. Improving existing segmentators performance with zero-shot segmentators. Entropy 2023, 25, 1502. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; He, Y.T.; Li, F.F.; Han, L.; You, C.Y.; Wang, B. Segment anything in medical images. Nat. Commun. 2024, 15, 654. [Google Scholar] [CrossRef] [PubMed]
- Mazurowski, M.A.; Dong, H.Y.; Gu, H.X.; Yang, J.C.; Konz, N.; Zhang, Y.X. Segment anything model for medical image analysis: An experimental study. Med. Image Anal. 2023, 89, 102918. [Google Scholar] [CrossRef]
- Shi, P.L.; Qiu, J.N.; Abaxi, S.M.D.; Wei, H.; Lo, F.P.W.; Yuan, W. Generalist Vision Foundation Models for Medical Imaging: A Case Study of Segment Anything Model on Zero-Shot Medical Segmentation. Diagnostics 2023, 13, 1947. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Chen, L.Y.; Han, H.J.; Zhang, S.N.; Zhang, D.Q.; Liao, H.E. The ability of Segmenting Anything Model (SAM) to segment ultrasound images. Biosci. Trends 2023, 17, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Zhu, K.; Peng, D.F.; Tang, H.; Yang, K.W.; Bruzzone, L. Adapting Segment Anything Model for Change Detection in VHR Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5611711. [Google Scholar] [CrossRef]
- Li, Y.Q.; Wang, D.D.; Yuan, C.; Li, H.; Hu, J. Enhancing Agricultural Image Segmentation with an Agricultural Segment Anything Model Adapter. Sensors 2023, 23, 7884. [Google Scholar] [CrossRef] [PubMed]
- Giannakis, I.; Bhardwaj, A.; Sam, L.; Leontidis, G. A flexible deep learning crater detection scheme using Segment Anything Model (SAM). Icarus 2024, 408, 115797. [Google Scholar] [CrossRef]
- Réby, E.; Guilhelm, A.; De Luca, L. Semantic Segmentation using Foundation Models for Cultural Heritage: An Experimental Study on Notre-Dame de Paris. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 2–6 October 2023; pp. 1681–1689. [Google Scholar]
- Huy, D.Q.; Sadjoli, N.; Azam, A.B.; Elhadidi, B.; Cai, Y.; Seet, G. Object perception in underwater environments: A survey on sensors and sensing methodologies. Ocean. Eng. 2023, 267, 113202. [Google Scholar] [CrossRef]
- Lucieer, V.; Hill, N.A.; Barrett, N.S.; Nichol, S. Do marine substrates ‘look’ and ‘sound’ the same? Supervised classification of multibeam acoustic data using autonomous underwater vehicle images. Estuar. Coast. Shelf Sci. 2013, 117, 94–106. [Google Scholar] [CrossRef]
- Stephens, D.; Diesing, M. A comparison of supervised classification methods for the prediction of substrate type using multibeam acoustic and legacy grain-size data. PLoS ONE 2014, 9, e93950. [Google Scholar] [CrossRef] [PubMed]
- Diesing, M.; Mitchell, P.; Stephens, D. Image-based seabed classification: What can we learn from terrestrial remote sensing? ICES J. Mar. Sci. 2016, 73, 2425–2441. [Google Scholar] [CrossRef]
- Ierodiaconou, D.; Schimel, A.C.G.; Kennedy, D.; Monk, J.; Gaylard, G.; Young, M.; Diesing, M.; Rattray, A. Combining pixel and object based image analysis of ultra-high resolution multibeam bathymetry and backscatter for habitat mapping in shallow marine waters. Mar. Geophys. Res. 2018, 39, 271–288. [Google Scholar] [CrossRef]
- Sokołowski, A.; Jankowska, E.; Balazy, P.; Jędruch, A. Distribution and extent of benthic habitats in Puck Bay (Gulf of Gdańsk, southern Baltic Sea). Oceanologia 2021, 63, 301–320. [Google Scholar] [CrossRef]
- Szymczak, E.; Rucińska, M. Characteristics of morphodynamic conditions in the shallows of Puck Bay (southern Baltic Sea). Oceanol. Hydrobiol. Stud. 2021, 50, 220–231. [Google Scholar] [CrossRef]
- Greszkiewicz, M.; Fey, D.P.; Lejk, A.M.; Zimak, M. The effect of salinity on the development of freshwater pike (Esox lucius) eggs in the context of drastic pike population decline in Puck Lagoon, Baltic Sea. Hydrobiologia 2022, 849, 2781–2795. [Google Scholar] [CrossRef]
- Kruk-Dowgiałło, L. Long-term changes in the structure of underwater meadows of the Puck Lagoon. Acta Ichthyol. Piscat. 1991, 21, 77–84. [Google Scholar] [CrossRef]
- Jędruch, A.; Bełdowska, M.; Ziółkowska, M. The role of benthic macrofauna in the trophic transfer of mercury in a low-diversity temperate coastal ecosystem (Puck Lagoon, southern Baltic Sea). Environ. Monit. Assess. 2019, 191, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Glasby, G.; Szefer, P. Marine pollution in Gdansk Bay, Puck Bay and the Vistula lagoon, Poland: An overview. Sci. Total Environ. 1998, 212, 49–57. [Google Scholar] [CrossRef]
- Ciszewski, P.; Kruk-Dowgiałło, L.; Andrulewicz, E. A study on pollution of the Puck Lagoon and possibility of restoring the lagoon′s original ecological state. Acta Ichthyol. Piscat. 1991, 21, 29–37. [Google Scholar] [CrossRef]
- Szmytkiewicz, A.; Szymczak, E. Sediment deposition in the Puck Lagoon (Southern Baltic Sea, Poland). Baltica 2014, 27, 105–118. [Google Scholar] [CrossRef]
- Miotk-Szpiganowicz, G. Holocene shoreline migrations in the Puck Lagoon (Southern Baltic Sea) based on the Rzucewo Headland case study. Landf. Anal. 2003, 4, 3–97. [Google Scholar]
- Kramarska, R.; Uścinowicz, S.; Zachowicz, J.; Kawińska, M. Origin and evolution of the Puck Lagoon. J. Coast. Res. 1995, 187–191. [Google Scholar]
- Uścinowicz, S.; Witak, M.; Miotk-Szpiganowicz, G.; Burska, D.; Cieślikiewicz, W.; Jegliński, W.; Jurys, L.; Sydor, P.; Pawlyta, J.; Piotrowska, N. Climate and sea level variability on a centennial time scale over the last 1500 years as inferred from the Coastal Peatland of Puck Lagoon (southern Baltic Sea). Holocene 2020, 30, 1801–1816. [Google Scholar] [CrossRef]
- Carraro, A.; Sozzi, M.; Marinello, F. The Segment Anything Model (SAM) for accelerating the smart farming revolution. Smart Agric. Technol. 2023, 6, 100367. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Ren, S.; Luzi, F.; Lahrichi, S.; Kassaw, K.; Collins, L.M.; Bradbury, K.; Malof, J.M. Segment anything, from space? In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2024; pp. 8355–8365. [Google Scholar]
- Wu, Q.; Osco, L.P. samgeo: A Python package for segmenting geospatial data with the Segment Anything Model (SAM). J. Open Source Softw. 2023, 8, 5663. [Google Scholar] [CrossRef]
- He, S.; Bao, R.; Li, J.; Grant, P.E.; Ou, Y. Accuracy of segment-anything model (sam) in medical image segmentation tasks. arXiv 2023, arXiv:2304.09324. [Google Scholar]
- Maquiling, V.; Byrne, S.A.; Niehorster, D.C.; Nyström, M.; Kasneci, E. Zero-shot segmentation of eye features using the segment anything model (sam). Proc. ACM Comput. Graph. Interact. Tech. 2024, 7, 1–16. [Google Scholar] [CrossRef]
- Summers, G.; Lim, A.; Wheeler, A.J. A Scalable, Supervised Classification of Seabed Sediment Waves Using an Object-Based Image Analysis Approach. Remote Sens. 2021, 13, 2317. [Google Scholar] [CrossRef]
- Prampolini, M.; Angeletti, L.; Castellan, G.; Grande, V.; Le Bas, T.; Taviani, M.; Foglini, F. Benthic Habitat Map of the Southern Adriatic Sea (Mediterranean Sea) from Object-Based Image Analysis of Multi-Source Acoustic Backscatter Data. Remote Sens. 2021, 13, 2913. [Google Scholar] [CrossRef]
- Baatz, M.; Schape, A. Multiresolution Segmentation: An Optimization Approach for High Quality Multi-Scale Image Segmentation; Angewandte Geographische Informationsverarbeitung: Beijing, China, 2000; pp. 12–23. [Google Scholar]
- Diesing, M.; Green, S.L.; Stephens, D.; Lark, R.M.; Stewart, H.A.; Dove, D. Mapping seabed sediments: Comparison of manual, geostatistical, object-based image analysis and machine learning approaches. Cont. Shelf Res. 2014, 84, 107–119. [Google Scholar] [CrossRef]
- Montereale Gavazzi, G.; Madricardo, F.; Janowski, L.; Kruss, A.; Blondel, P.; Sigovini, M.; Foglini, F. Evaluation of seabed mapping methods for fine-scale classification of extremely shallow benthic habitats—Application to the Venice Lagoon, Italy. Estuar. Coast. Shelf Sci. 2016, 170, 45–60. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Mohan, A.; Singh, A.K.; Kumar, B.; Dwivedi, R. Review on remote sensing methods for landslide detection using machine and deep learning. Trans. Emerg. Telecommun. Technol. 2020, 32, ett.3998. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Story, M.; Congalton, R.G. Accuracy assessment: A user’s perspective. Photogramm. Eng. Remote Sens. 1986, 52, 397–399. [Google Scholar]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Wei, Y.; Luo, S.; Xu, C.; Fu, Y.; Dong, Q.; Zhang, Y.; Qu, F.; Cheng, G.; Ho, Y.-P.; Ho, H.-P. SAM-dPCR: Real-Time and High-throughput Absolute Quantification of Biological Samples Using Zero-Shot Segment Anything Model. arXiv 2024, arXiv:2403.18826. [Google Scholar]
- Kotwicki, L.; Szymelfenig, M.; Fiers, F.; Graca, B. Diversity and environmental control of benthic harpacticoids of an offshore post-dredging pit in coastal waters of Puck Bay, Baltic Sea. Mar. Biol. Res. 2015, 11, 572–583. [Google Scholar] [CrossRef]
- Graca, B. The Puck Bay as an example of deep dredging unfavorably affecting the aquatic environment. Oceanol. Hydrobiol. Stud. 2009, 38, 109–127. [Google Scholar] [CrossRef]
- Szymelfenig, M.; Kotwicki, L.; Graca, B. Benthic re-colonization in post-dredging pits in the puck bay (Southern Baltic sea). Estuar. Coast. Shelf Sci. 2006, 68, 489–498. [Google Scholar] [CrossRef]
- Masetti, G.; Mayer, L.; Ward, L. A Bathymetry- and Reflectivity-Based Approach for Seafloor Segmentation. Geosciences 2018, 8, 14. [Google Scholar] [CrossRef]
- Schönke, M.; Wiesenberg, L.; Schulze, I.; Wilken, D.; Darr, A.; Papenmeier, S.; Feldens, P. Impact of Sparse Benthic Life on Seafloor Roughness and High-Frequency Acoustic Scatter. Geosciences 2019, 9, 454. [Google Scholar] [CrossRef]
- Lurton, X.; Eleftherakis, D.; Augustin, J.M. Analysis of seafloor backscatter strength dependence on the survey azimuth using multibeam echosounder data. Mar. Geophys. Res. 2017, 39, 183–203. [Google Scholar] [CrossRef]
- Hao, S.; Cui, Y.; Wang, J. Segmentation scale effect analysis in the object-oriented method of high-spatial-resolution image classification. Sensors 2021, 21, 7935. [Google Scholar] [CrossRef] [PubMed]
- Janowski, L.; Wroblewski, R.; Dworniczak, J.; Kolakowski, M.; Rogowska, K.; Wojcik, M.; Gajewski, J. Offshore benthic habitat mapping based on object-based image analysis and geomorphometric approach. A case study from the Slupsk Bank, Southern Baltic Sea. Sci. Total Environ. 2021, 801, 149712. [Google Scholar] [CrossRef] [PubMed]
- Janowski, Ł.; Skarlatos, D.; Agrafiotis, P.; Tysiąc, P.; Pydyn, A.; Popek, M.; Kotarba-Morley, A.; Mandlburger, G.; Gajewski, Ł.; Kolakowski, M.; et al. Bathymetry and Remote Sensing Data of the Puck Lagoon, Southern Baltic Sea; Interdisciplinary Earth Data Alliance: Palisades, NY, USA, 2023. [Google Scholar] [CrossRef]
Source | Type | Pixel Size [m] | Resolution [pix] | Size |
---|---|---|---|---|
MBES | Bathymetry (xyz) | 0.2 | 57,837 × 78,665 | 1.49 GB |
MBES | Backscatter (xyz) | 0.2 | 57,554 × 79,170 | 1.57 GB |
ALB | Intensity (xyz) | 0.2 | 68,618 × 88,627 | 5.71 GB |
Airborne camera | Orthophoto (rgb) | 0.2 | 68,379 × 88,627 | 1.71 GB |
Satellite image | Bathymetry (xyz) | ~5 × 8 | 2631 × 3461 | 14.4 MB |
MBES and ALB | Bathymetry (xyz) | 0.2 | 68,632 × 90,280 | 6.48 GB |
No | Symbol | Bedform | Description |
---|---|---|---|
1 | sbz | Sandbank zone | Area in the direct vicinity of the shore, characterized by sandbanks parallel to the shore, repeating its course |
2 | fsl | Foreshore slope | A gently sloping section of bottom enclosing a sandbank zone on the body of water. |
3 | ssl | Steep slopes | Areas with a sharp incline |
4 | esb | Flat, even seabed | A seabed that is level and uniform |
5 | isb | Uneven seabed | A seabed that is irregular or not level |
6 | ssb | Slightly undulating seabed | A seabed with small, gentle waves or curves |
7 | usb | Undulating seabed | A seabed with waves or curves |
8 | srb | Sand ribbons | Long, narrow bands of sand |
9 | swm | Sand waves with mega ripple marks | Large-scale wave-like structures in sandy seabeds, accompanied by large ripple marks |
10 | mrp | Mega ripple marks | Large ripple marks on the seabed |
11 | rmr | Rhomboidal mega ripple marks | Diamond-shaped large ripple marks |
12 | mmr | Medium-sized mega ripple marks with ripple marks | Medium-sized large ripple marks accompanied by smaller ripple marks |
13 | smr | Small mega ripple marks with ripple marks | Small large ripple marks accompanied by smaller ripple marks |
14 | sbv | Flat, even seabed with vegetation | A level and uniform seabed that has plant life |
15 | uso | Undulating seabed with minor accumulations of organics | A wavy seabed with small amounts of organic material |
16 | org | Accumulations of organics | Areas where organic material has gathered and forms distinct clusters |
17 | del | Delta | A landform at the mouth of a river created by sediment deposits |
18 | rdf | Relict deltaic formations | Remnants of old delta formations |
19 | gou | Glacial outcrops | Exposed, in the form of small elevations, fragments of glacial forms |
20 | rsb | Relict sandbanks | Remnants of old sandbanks |
21 | ant | Anthropogenic formations | Structures or features caused by human activity |
Pixel Size [m] | Model Type | Output (Y/N) | Time [hh:mm:ss] |
---|---|---|---|
0.2 | ViT-B | N | 00:13:49.049 |
0.4 | ViT-B | N | 00:01.45.203 |
0.6 | ViT-B | N | 00:01:19.328 |
0.8 | ViT-B | N | 00:01:04.016 |
1 | ViT-B | N | 00:00:28.047 |
2 | ViT-B | N | 00:00:19.859 |
3 | ViT-B | Y | 00:07:42.453 |
4 | ViT-B | Y | 00:03:30.282 |
5 | ViT-L | Y | 00:02:39.468 |
0.2 | ViT-L | N | 00:02:46.672 |
0.4 | ViT-L | N | 00:01:52.954 |
0.6 | ViT-L | N | 00:01:00.453 |
0.8 | ViT-L | N | 00:00:43.359 |
1 | ViT-L | N | 00:00:35.360 |
2 | ViT-L | N | 00:00:24.891 |
3 | ViT-L | N | 00:00:17.187 |
4 | ViT-L | N | 00:00:27.125 |
5 | ViT-L | Y | 00:04:54.328 |
0.2 | ViT-H | N | 00:02:46.141 |
0.4 | ViT-H | N | 00:01:05.328 |
0.6 | ViT-H | N | 00:00:39.656 |
0.8 | ViT-H | N | 00:00:37.953 |
1 | ViT-H | N | 00:00:03.515 |
2 | ViT-H | N | 00:00:13.844 |
3 | ViT-H | N | 00:00:09.719 |
4 | ViT-H | N | 00:00:08.765 |
5 | ViT-H | N | 00:00:06.469 |
Pixel Size [m] | Model Type | Output (Y/N) | Time [hh:mm:ss] |
---|---|---|---|
0.2 | ViT-B | N | 01:13:09.828 |
0.4 | ViT-B | N | 00:21:04.859 |
0.6 | ViT-B | N | 00:11:55.218 |
0.8 | ViT-B | N | 00:11:01.140 |
1 | ViT-B | N | 00:11:22.890 |
2 | ViT-B | N | 00:05:34.156 |
3 | ViT-B | N | 02:52:26.344 |
4 | ViT-B | Y | 02:10:36.766 |
5 | ViT-L | Y | 00:57:33.937 |
0.2 | ViT-L | N | 01:02:58:500 |
0.4 | ViT-L | N | 00:25:54.203 |
0.6 | ViT-L | N | 00:12:13.328 |
0.8 | ViT-L | N | 00:10:02.625 |
1 | ViT-L | N | 00:12:10.125 |
2 | ViT-L | N | 00:06:47.063 |
3 | ViT-L | N | 05:54:14.531 |
4 | ViT-L | Y | 06:34:50.813 |
5 | ViT-L | Y | 04:44:28.703 |
0.2 | ViT-H | N | 01:02:54.937 |
0.4 | ViT-H | N | 00:24::27.546 |
0.6 | ViT-H | N | 00:10:54.063 |
0.8 | ViT-H | N | 00:10:20.593 |
1 | ViT-H | N | 00:04:13.719 |
2 | ViT-H | N | 00:05:35.234 |
3 | ViT-H | N | 00:04:36.016 |
4 | ViT-H | N | 00:02:39.578 |
5 | ViT-H | N | 00:02:37.156 |
Reference | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mrp | ssb | uso | rmr | fsl | sbz | esb | smr | swm | isb | del | rdf | sbv | org | srb | ant | usb | mmr | ssl | rsb | gou | Sum | ||
Prediction | mrp | 24 | 0 | 0 | 4 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 32 |
ssb | 0 | 26 | 0 | 2 | 0 | 1 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 32 | |
uso | 1 | 0 | 11 | 0 | 3 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 1 | 23 | |
rmr | 0 | 0 | 0 | 19 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 23 | |
fsl | 0 | 0 | 1 | 0 | 15 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 3 | 1 | 0 | 0 | 25 | |
sbz | 0 | 1 | 0 | 0 | 0 | 15 | 0 | 0 | 0 | 2 | 2 | 0 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 24 | |
esb | 1 | 0 | 6 | 0 | 1 | 0 | 19 | 0 | 0 | 1 | 1 | 0 | 0 | 2 | 0 | 0 | 3 | 1 | 0 | 0 | 0 | 35 | |
smr | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 26 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 28 | |
swm | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 27 | 0 | 0 | 3 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 35 | |
isb | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 16 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 2 | 1 | 0 | 24 | |
del | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 15 | 0 | 0 | 2 | 0 | 0 | 6 | 2 | 1 | 0 | 2 | 29 | |
rdf | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 2 | 0 | 1 | 24 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 31 | |
sbv | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 15 | 1 | 0 | 0 | 0 | 0 | 4 | 1 | 0 | 23 | |
org | 2 | 0 | 2 | 0 | 0 | 3 | 1 | 0 | 0 | 0 | 2 | 0 | 4 | 12 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 33 | |
srb | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 27 | 0 | 0 | 0 | 0 | 0 | 0 | 29 | |
ant | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 21 | 1 | 0 | 0 | 0 | 0 | 23 | |
usb | 0 | 0 | 8 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 7 | 0 | 0 | 6 | 2 | 0 | 0 | 0 | 28 | |
mmr | 0 | 0 | 0 | 0 | 2 | 0 | 4 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 16 | 0 | 0 | 0 | 25 | |
ssl | 0 | 0 | 0 | 0 | 4 | 7 | 0 | 0 | 0 | 5 | 1 | 0 | 5 | 0 | 0 | 1 | 0 | 0 | 22 | 0 | 0 | 45 | |
rsb | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 14 | 0 | 17 | |
gou | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 0 | 1 | 3 | 0 | 0 | 4 | 0 | 0 | 0 | 26 | 39 | |
Sum | 29 | 29 | 29 | 29 | 30 | 30 | 30 | 29 | 30 | 30 | 30 | 30 | 30 | 30 | 27 | 26 | 30 | 30 | 30 | 16 | 29 | 603 | |
Producer | 0.83 | 0.90 | 0.38 | 0.66 | 0.50 | 0.50 | 0.63 | 0.90 | 0.90 | 0.53 | 0.50 | 0.80 | 0.50 | 0.40 | 1.00 | 0.81 | 0.20 | 0.53 | 0.73 | 0.88 | 0.90 | ||
User | 0.75 | 0.81 | 0.48 | 0.83 | 0.60 | 0.63 | 0.54 | 0.93 | 0.77 | 0.67 | 0.52 | 0.77 | 0.65 | 0.36 | 0.93 | 0.91 | 0.21 | 0.64 | 0.49 | 0.82 | 0.67 | ||
Kappa per class | 0.82 | 0.89 | 0.35 | 0.64 | 0.48 | 0.48 | 0.61 | 0.89 | 0.89 | 0.51 | 0.47 | 0.79 | 0.48 | 0.37 | 1.00 | 0.80 | 0.16 | 0.51 | 0.71 | 0.87 | 0.89 | ||
Overall accuracy | 0.66 | ||||||||||||||||||||||
Kappa | 0.64 |
Reference | |||||||
---|---|---|---|---|---|---|---|
ant | org | Usb | fsl | isb | Sum | ||
Prediction | ant | 3 | 0 | 0 | 1 | 1 | 5 |
org | 0 | 3 | 1 | 0 | 0 | 4 | |
usb | 0 | 0 | 0 | 0 | 0 | 0 | |
fsl | 0 | 0 | 0 | 0 | 0 | 0 | |
isb | 0 | 0 | 0 | 0 | 1 | 1 | |
Sum | 3 | 3 | 1 | 1 | 2 | ||
Producer | 1.00 | 1.00 | 0.00 | 0.00 | 0.50 | ||
User | 0.60 | 0.75 | - | - | 1.00 | ||
Kappa per class | 1.00 | 1.00 | 0.00 | 0.00 | 0.44 | ||
Overall accuracy | 0.70 | ||||||
Kappa | 0.58 |
NO | Symbol | Manual | MRS + RF | SAM + MRS + RF |
---|---|---|---|---|
1 | ssb | 32.74 | 2.34 | 0.00 |
2 | sbv | 5.04 | 21.13 | 0.00 |
3 | mrp | 1.64 | 0.87 | 0.00 |
4 | uso | 0.06 | 2.30 | 0.00 |
5 | isb | 1.26 | 30.90 | 19.60 |
6 | gou | 0.21 | 1.44 | 0.00 |
7 | smr | 2.22 | 0.36 | 0.00 |
8 | usb | 11.71 | 1.63 | 0.00 |
9 | esb | 22.12 | 1.82 | 0.00 |
10 | sbz | 1.56 | 5.58 | 0.00 |
11 | ant | 0.87 | 0.57 | 77.97 |
12 | fsl | 0.23 | 1.44 | 0.00 |
13 | del | 1.12 | 2.10 | 0.00 |
14 | rdf | 2.25 | 1.61 | 0.00 |
15 | rsb | 1.50 | 0.61 | 0.00 |
16 | srb | 0.41 | 0.27 | 0.00 |
17 | swm | 11.31 | 0.58 | 0.00 |
18 | ssl | 0.46 | 14.67 | 0.00 |
19 | org | 0.13 | 6.37 | 2.43 |
20 | mmr | 3.09 | 1.18 | 0.00 |
21 | rmr | 0.05 | 2.26 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janowski, Ł.; Wróblewski, R. Application and Evaluation of the AI-Powered Segment Anything Model (SAM) in Seafloor Mapping: A Case Study from Puck Lagoon, Poland. Remote Sens. 2024, 16, 2638. https://doi.org/10.3390/rs16142638
Janowski Ł, Wróblewski R. Application and Evaluation of the AI-Powered Segment Anything Model (SAM) in Seafloor Mapping: A Case Study from Puck Lagoon, Poland. Remote Sensing. 2024; 16(14):2638. https://doi.org/10.3390/rs16142638
Chicago/Turabian StyleJanowski, Łukasz, and Radosław Wróblewski. 2024. "Application and Evaluation of the AI-Powered Segment Anything Model (SAM) in Seafloor Mapping: A Case Study from Puck Lagoon, Poland" Remote Sensing 16, no. 14: 2638. https://doi.org/10.3390/rs16142638
APA StyleJanowski, Ł., & Wróblewski, R. (2024). Application and Evaluation of the AI-Powered Segment Anything Model (SAM) in Seafloor Mapping: A Case Study from Puck Lagoon, Poland. Remote Sensing, 16(14), 2638. https://doi.org/10.3390/rs16142638