Scan-to-HBIM-to-VR: An Integrated Approach for the Documentation of an Industrial Archaeology Building
Abstract
:1. Introduction
1.1. Geomatics, HBIM and VR for Built Heritage Documentation
1.2. Case Study
1.3. Objectives
2. Methodology Overview
2.1. Survey Operations
2.2. HBIM Implementation
2.3. Testing with VR Systems for HBIM Models
3. Results and Discussion
3.1. Survey Products
3.2. HBIM Model
3.3. HBIM to VR Implementation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AR | Augmented Reality |
BIM | Building Information Modelling |
CAD | Computer Aided Design |
GIS | Geographic Information System |
GCPs | Ground Control Points |
GNSS | Global Navigation Satellite System |
HBIM | Heritage/Historic Building Information Modelling |
IFC | Industry Foundation Classes |
LOD | Level of Development |
LOIN | Level of Information Need |
NRTK | Network Real Time Kinematic |
RMSE | Root Mean Square Error |
SfM | Structure from Motion |
TLS | Terrestrial Laser Scanning |
UAS | Unmanned Aerial System |
UAV | Unmanned Aerial Vehicle |
UTM | Universal Transverse Mercator |
VR | Virtual Reality |
WGS84 | World Geodetic System 1984 |
References
- Girelli, V.A.; Tini, M.A.; Dellapasqua, M.; Bitelli, G. High resolution 3D acquisition and modelling in cultural heritage knowledge and restoration projects: The survey of the fountain of Neptune in Bologna. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 573–578. [Google Scholar] [CrossRef]
- Mugnai, F.; Bonora, V.; Tucci, G. Integration, harmonization, and processing of geomatic data for bridge health assessment: The Lastra a Signa case study. Appl. Geomat. 2023, 45, 533–550. [Google Scholar] [CrossRef]
- Lo Brutto, M.; Iuculano, E.; Lo Giudice, P. Integrating topographic, photogrammetric and laser scanning techniques for a Scan-to-BIM process. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 43, 883–890. [Google Scholar] [CrossRef]
- Bitelli, G.; Dellapasqua, M.; Girelli, V.A.; Sanchini, E.; Tini, M.A. 3D geomatics techniques for an integrated approach to cultural heritage knowledge: The case of San Michele in Acerboli’s church in Santarcangelo di Romagna. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 291–296. [Google Scholar] [CrossRef]
- Bitelli, G.; Barbieri, E.; Girelli, V.A.; Lambertini, A.; Mandanici, E.; Melandri, E.; Roggio, D.S.; Santangelo, A.; Tini, M.A.; Tondelli, S.; et al. The complex of Santa Croce in Ravenna as a case study: Integration of 3D techniques for surveying and monitoring of a historical site. In Proceedings of the Arqueologica 2.0—9th International Congress & 3rd GEORES—GEOmatics and pREServation, Valencia, Spain, 26–28 April 2021; pp. 408–413. [Google Scholar] [CrossRef]
- Ursini, A.; Grazzini, A.; Matrone, A.; Zerbinatti, M. From scan-to-BIM to a structural finite elements model of built heritage for dynamic simulation. Autom. Constr. 2022, 142, 104518. [Google Scholar] [CrossRef]
- Cardinali, V.; Ciuffreda, A.L.; Coli, M.; De Stefano, M.; Meli, F.; Tanganelli, M.; Trovatelli, F. An Oriented H-BIM Approach for the Seismic Assessment of Cultural Heritage Buildings: Palazzo Vecchio in Florence. Buildings 2023, 13, 913. [Google Scholar] [CrossRef]
- Banfi, F.; Brumana, R.; Stanga, C. Extended reality and informative models for the architectural heritage: From scan-to-BIM process to virtual and augmented reality. Virtual Archaeol. Rev. 2019, 10, 14–30. [Google Scholar] [CrossRef]
- Nguyen, T.A.; Do, S.T.; Pham, T.A.; Nguyen, D.H.; Tamura, H. Integration of H-BIM, Virtual Reality, and Augmented Reality in Digital Twin Era—A Case Study in Cultural Heritage. In ICSCEA 2021. Lecture Notes in Civil Engineering; Reddy, J.N., Wang, C.M., Luong, V.H., Le, A.T., Eds.; Springer: Singapore, 2023; Volume 268. [Google Scholar] [CrossRef]
- Andriasyan, M.; Moyano, J.; Nieto-Julián, J.E.; Antón, D. From Point Cloud Data to Building Information Modelling: An Automatic Parametric Workflow for Heritage. Remote Sens. 2020, 12, 1094. [Google Scholar] [CrossRef]
- Murphy, M.; McGovern, E.; Pavia, S. Historic Building Information Modelling—Adding intelligence to laser and image-based surveys of European classical architecture. ISPRS J. Photogramm. Remote Sens. 2013, 76, 89–102. [Google Scholar] [CrossRef]
- Rocha, G.; Mateus, L.; Fernández, J.; Ferreira, V. A Scan-to-BIM Methodology Applied to Heritage Buildings. Heritage 2020, 3, 47–67. [Google Scholar] [CrossRef]
- Alkhatib, Y.J.; Forte, A.; Bitelli, G.; Pierdicca, R.; Malinverni, E.S. Bringing Back Lost Heritage into Life by 3D Reconstruction in Metaverse and Virtual Environments: The Case Study of Palmyra, Syria. In Extended Reality. XR Salento 2023. Lecture Notes in Computer Science; De Paolis, L.T., Arpaia, P., Sacco, M., Eds.; Springer: Cham, Switzzerland, 2023; Volume 14219. [Google Scholar] [CrossRef]
- Bitelli, G.; Dellapasqua, M.; Girelli, V.A.; Sbaraglia, S.; Tini, M.A. Historical photogrammetry & terrestrial laser scanning for the 3D virtual reconstruction of destroyed structures: A case study in Italy. In Proceedings of the 1st International Conference on Geomatics and Restoration: Conservation of Cultural Heritage in the Digital Era, GeoRes 2017, Florence, Italy, 22–24 May 2017; pp. 113–119. [Google Scholar] [CrossRef]
- Spadavecchia, C.; Belcore, E.; Di Pietra, V.; Grasso, N. A Combination of Geomatic Techniques for Modelling the Urban Environment in Virtual Reality. In Geographical Information Systems Theory, Applications and Management, GISTAM 2023. Communications in Computer and Information Science; Grueau, C., Rodrigues, A., Ragia, L., Eds.; Springer: Cham, Switzerland, 2024; Volume 2107. [Google Scholar] [CrossRef]
- Banfi, F. The Evolution of Interactivity, Immersion and Interoperability in HBIM: Digital Model Uses, VR and AR for Built Cultural Heritage. ISPRS Int. J. Geo-Inf. 2021, 10, 685. [Google Scholar] [CrossRef]
- Bevilacqua, M.G.; Russo, M.; Giordano, A.; Spallone, R. 3D Reconstruction, Digital Twinning, and Virtual Reality: Architectural Heritage Applications. In Proceedings of the 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Christchurch, New Zealand, 12–13 March 2022; pp. 92–96. [Google Scholar] [CrossRef]
- Safikhani, S.; Keller, S.; Schweiger, G.; Pirker, J. Immersive virtual reality for extending the potential of building information modelling in architecture, engineering, and construction sector: Systematic review. Int. J. Digit. Earth 2022, 15, 503–526. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.; Ahn, J.; Woo, W. Context-aware risk management for architectural heritage using historic building information modelling and virtual reality. J. Cult. Herit. 2019, 38, 242–252. [Google Scholar] [CrossRef]
- Argiolas, R.; Bagnolo, V.; Cera, S.; Cuccu, S. Virtual environments to communicate built cultural heritage: A HBIM based virtual tour. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022; XLVI-5/W1-2022, 21–29. [Google Scholar] [CrossRef]
- Fiorillo, F.; Bolognesi, C.M. Cultural heritage dissemination: BIM modelling and AR application for a diachronic tale. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, 48, 563–570. [Google Scholar] [CrossRef]
- Barrile, V.; Genovese, E. GIS-Like environments and HBIM integration for ancient villages management and dissemination. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2024, 48, 41–47. [Google Scholar] [CrossRef]
- Matulli, R.; Salomoni, C. Il Canale Navile a Bologna; Marsilio: Venice, Italy, 1984. [Google Scholar]
- Gruenkemeier, A. 3D-documentation technologies for use in industrial archaeology applications. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 291–295. [Google Scholar]
- Monego, M.; Fabris, M.; Menin, A.; Achilli, V. 3-D survey applied to Industrial Archaeology by TLS methodology. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 449–454. [Google Scholar] [CrossRef]
- Bitelli, G.; Gatta, G.; Girelli, V.A.; Vittuari, L.; Zanutta, A. Integrated methodologies for the 3D survey and the structural monitoring of industrial archaeology: The Case of the Casalecchio di Reno sluice, Italy. Int. J. Geo-Phys. 2011, 2011, 874347. [Google Scholar] [CrossRef]
- Eastman, C.; Teicholz, P.; Sacks, R.; Liston, K. BIM Handbook: A Guide to Building Information Modelling for Owners, Managers, Designers, Engineers, and Contractors; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Institute of Electrical and Electronics Engineers. IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Computer Glossaries; Institute of Electrical and Electronics Engineers: New York, NY, USA, 1990. [Google Scholar]
- Song, Y.; Wang, X.; Tan, Y.; Wu, P.; Sutrisna, M.; Cheng, J.C.P.; Hampson, K. Trends and Opportunities of BIM-GIS Integration in the Architecture, Engineering and Construction Industry: A Review from a Spatio-Temporal Statistical Perspective. ISPRS Int. J. Geo-Inf. 2017, 6, 397. [Google Scholar] [CrossRef]
- Wang, H.; Pan, Y.; Luo, X. Integration of BIM and GIS in sustainable built environment: A review and bibliometric analysis. In Autom. Constr. 2019, 103, 41–52. [Google Scholar] [CrossRef]
- Bitelli, G.; Castellazzi, G.; D’Altri, A.M.; De Miranda, S.; Lambertini, A.; Selvaggi, I. On the Generation of Numerical Models from Point Clouds for the Analysis of Damaged Cultural Heritage. IOP Conf. Ser. Mater. Sci. Eng. 2018, 364, 012083. [Google Scholar] [CrossRef]
- Lo Presti, N.; Castellazzi, G.; D’Altri, A.M.; Bertani, G.; de Miranda, S.; Azenha, M.; Roggio, D.S.; Bitelli, G.; Ferretto, F.; Rende, N.; et al. Streamlining FE and BIM modelling for historic buildings with point cloud transformation. Int. J. Archit. Herit. 2024, 1–14. [Google Scholar] [CrossRef]
- Barazzetti, L.; Banfi, F.; Brumana, R.; Gusmeroli, G.; Previtali, M.; Schiantarelli, G. Cloud-to-BIM-to-FEM: Structural simulation with accurate historic BIM from laser scans. Simul. Model. Pract. Theory 2015, 57, 71–87. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tini, M.A.; Forte, A.; Girelli, V.A.; Lambertini, A.; Roggio, D.S.; Bitelli, G.; Vittuari, L. Scan-to-HBIM-to-VR: An Integrated Approach for the Documentation of an Industrial Archaeology Building. Remote Sens. 2024, 16, 2859. https://doi.org/10.3390/rs16152859
Tini MA, Forte A, Girelli VA, Lambertini A, Roggio DS, Bitelli G, Vittuari L. Scan-to-HBIM-to-VR: An Integrated Approach for the Documentation of an Industrial Archaeology Building. Remote Sensing. 2024; 16(15):2859. https://doi.org/10.3390/rs16152859
Chicago/Turabian StyleTini, Maria Alessandra, Anna Forte, Valentina Alena Girelli, Alessandro Lambertini, Domenico Simone Roggio, Gabriele Bitelli, and Luca Vittuari. 2024. "Scan-to-HBIM-to-VR: An Integrated Approach for the Documentation of an Industrial Archaeology Building" Remote Sensing 16, no. 15: 2859. https://doi.org/10.3390/rs16152859
APA StyleTini, M. A., Forte, A., Girelli, V. A., Lambertini, A., Roggio, D. S., Bitelli, G., & Vittuari, L. (2024). Scan-to-HBIM-to-VR: An Integrated Approach for the Documentation of an Industrial Archaeology Building. Remote Sensing, 16(15), 2859. https://doi.org/10.3390/rs16152859