Leaf Nitrogen and Phosphorus Variation and Estimation of Citrus Tree under Two Labor-Saving Cultivation Modes Using Hyperspectral Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Experimental Design
2.2. Hyperspectral Data Acquisition
2.3. Determination of Nitrogen and Phosphorus Content of Citrus Leaves
2.4. Spectral Information
2.4.1. Vegetation Indices
2.4.2. First-Order Differential Spectral Acquisition
2.5. Machine Learning Algorithms and Random Forest Importance Ranking
2.6. Data Analysis
3. Results
3.1. Nitrogen and Phosphorus Content in Citrus Leaves
3.2. RF, BPNN, SVM, and PLS Algorithms
3.3. Estimation of Nitrogen and Phosphorus Content by Cultivation Mode Using RF Algorithm
3.4. Estimation of Nitrogen and Phosphorus Content by Canopy Layer Using the RF Algorithm
4. Discussion
4.1. Effect of Canopy Layer and Cultivation Mode on Leaf N and P Contents of Citrus Trees
4.2. Effect of Canopy Layer and Cultivation Modes on Estimation of N and P Content
4.3. Limitations and Future Prospects
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Castro-Rodríguez, V.; Cañas, R.A.; De La Torre, F.N.; Pascual, M.B.; Avila, C.; Cánovas, F.M. Molecular Fundamentals of Nitrogen Uptake and Transport in Trees. J. Exp. Bot. 2017, 68, 2489–2500. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Zhou, J.-J. Growth Performance, Photosynthesis, and Root Characteristics Are Associated with Nitrogen Use Efficiency in Six Poplar Species. Environ. Exp. Bot. 2019, 164, 40–51. [Google Scholar] [CrossRef]
- Luo, J.; Zhou, J.-J.; Masclaux-Daubresse, C.; Wang, N.; Wang, H.; Zheng, B. Morphological and Physiological Responses to Contrasting Nitrogen Regimes in Populus Cathayana Is Linked to Resources Allocation and Carbon/Nitrogen Partition. Environ. Exp. Bot. 2019, 162, 247–255. [Google Scholar] [CrossRef]
- Liu, D. Root Developmental Responses to Phosphorus Nutrition. J. Integr. Plant Biol. 2021, 63, 1065–1090. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Deng, S.; Zhu, D.; Wu, J.; Zhou, J.; Shi, W.; Fayyaz, P.; Luo, Z.-B.; Luo, J. Proteomic Reconfigurations Underlying Physiological Alterations in Poplar Roots in Acclimation to Changing Nitrogen Availability. Environ. Exp. Bot. 2023, 211, 105367. [Google Scholar] [CrossRef]
- Lu, Y.; Zheng, B.; Zhang, C.; Yu, C.; Luo, J. Wood Formation in Trees Responding to Nitrogen Availability. Ind. Crops Prod. 2024, 218, 118978. [Google Scholar] [CrossRef]
- Robertson, G.P.; Vitousek, P.M. Nitrogen in Agriculture: Balancing the Cost of an Essential Resource. Annu. Rev. Environ. Resour. 2009, 34, 97–125. [Google Scholar] [CrossRef]
- Powers, S.M.; Bruulsema, T.W.; Burt, T.P.; Chan, N.I.; Elser, J.J.; Haygarth, P.M.; Howden, N.J.K.; Jarvie, H.P.; Lyu, Y.; Peterson, H.M.; et al. Long-Term Accumulation and Transport of Anthropogenic Phosphorus in Three River Basins. Nat. Geosci. 2016, 9, 353–356. [Google Scholar] [CrossRef]
- Schroeder, J.I.; Delhaize, E.; Frommer, W.B.; Guerinot, M.L.; Harrison, M.J.; Herrera-Estrella, L.; Horie, T.; Kochian, L.V.; Munns, R.; Nishizawa, N.K.; et al. Using Membrane Transporters to Improve Crops for Sustainable Food Production. Nature 2013, 497, 60–66. [Google Scholar] [CrossRef]
- Guo, W.; Ye, J.; Deng, X. Fruit scientific research in New China in the past 70 years: Citrus. J. Fruit Sci. 2019, 36, 1264–1272. [Google Scholar] [CrossRef]
- Osco, L.P.; Ramos, A.P.M.; Pereira, D.R.; Moriya, É.A.S.; Imai, N.N.; Matsubara, E.T.; Estrabis, N.; de Souza, M.; Junior, J.M.; Gonçalves, W.N.; et al. Predicting Canopy Nitrogen Content in Citrus-Trees Using Random Forest Algorithm Associated to Spectral Vegetation Indices from UAV-Imagery. Remote Sens. 2019, 11, 2925. [Google Scholar] [CrossRef]
- Li, W.; Zhang, M.; Shu, H. Physiological Effects of Nitrogen on Fruit Trees. J. Shandong Agric. Univ. 2002, 33, 96–100. [Google Scholar]
- Cameron, K.C.; Di, H.J.; Moir, J.L. Nitrogen Losses from the Soil/Plant System: A Review. Ann. Appl. Biol. 2013, 162, 145–173. [Google Scholar] [CrossRef]
- Osco, L.P.; Ramos, A.P.M.; Faita Pinheiro, M.M.; Moriya, É.A.S.; Imai, N.N.; Estrabis, N.; Ianczyk, F.; Araújo, F.F.; Liesenberg, V.; Jorge, L.A.d.C.; et al. A Machine Learning Framework to Predict Nutrient Content in Valencia-Orange Leaf Hyperspectral Measurements. Remote Sens. 2020, 12, 906. [Google Scholar] [CrossRef]
- Román, J.R.; Rodríguez-Caballero, E.; Rodríguez-Lozano, B.; Roncero-Ramos, B.; Chamizo, S.; Águila-Carricondo, P.; Cantón, Y. Spectral Response Analysis: An Indirect and Non-Destructive Methodology for the Chlorophyll Quantification of Biocrusts. Remote Sens. 2019, 11, 1350. [Google Scholar] [CrossRef]
- Mahajan, G.R.; Sahoo, R.N.; Pandey, R.N.; Gupta, V.K.; Kumar, D. Using Hyperspectral Remote Sensing Techniques to Monitor Nitrogen, Phosphorus, Sulphur and Potassium in Wheat (Triticum aestivum L.). Precis. Agric. 2014, 15, 499–522. [Google Scholar] [CrossRef]
- Zhu, Y.; Abdalla, A.; Tang, Z.; Cen, H. Improving Rice Nitrogen Stress Diagnosis by Denoising Strips in Hyperspectral Images via Deep Learning. Biosyst. Eng. 2022, 219, 165–176. [Google Scholar] [CrossRef]
- Zhang, Y.; Guan, M.; Wang, L.; Cui, X.; Li, T.; Zhang, F. In Situ Nondestructive Detection of Nitrogen Content in Soybean Leaves Based on Hyperspectral Imaging Technology. Agronomy 2024, 14, 806. [Google Scholar] [CrossRef]
- Liu, Y.; Lyu, Q.; He, S.; Yi, S.; Liu, X.; Xie, R.; Zheng, Y.; Deng, L. Prediction of Nitrogen and Phosphorus Contents in Citrus Leaves Based on Hyperspectral Imaging. Int. J. Agric. Biol. Eng. 2015, 8, 80–88. [Google Scholar]
- Siedliska, A.; Baranowski, P.; Pastuszka-Woźniak, J.; Zubik, M.; Krzyszczak, J. Identification of Plant Leaf Phosphorus Content at Different Growth Stages Based on Hyperspectral Reflectance. BMC Plant Biol. 2021, 21, 28. [Google Scholar] [CrossRef]
- Li, D.; Ruan, S.; Hu, Q.; Zhang, J.; Zhang, Y.; Dian, Y.; Hu, C.; Liu, Y.; Lei, H.; Zhou, J. Nitrogen estimation and spatial analysis of orchard canopy based on UAV remote sensing. J. Huazhong Agric. Univ. 2023, 42, 158–166. [Google Scholar] [CrossRef]
- Hu, Q.; Dian, Y.; Gong, Z.; Zhang, J.; Hu, C.; Liu, Y.; Lei, H.; Yuan, K.; Zhou, J. Analyzing fruit quality of Newhall navel oranges with different cultivation patterns. J. Huazhong Agric. Univ. 2022, 41, 108–115. [Google Scholar] [CrossRef]
- Dian, Y.; Liu, X.; Hu, L.; Zhang, J.; Hu, C.; Liu, Y.; Zhang, J.; Zhang, W.; Hu, Q.; Zhang, Y.; et al. Characteristics of Photosynthesis and Vertical Canopy Architecture of Citrus Trees under Two Labor-Saving Cultivation Modes Using Unmanned Aerial Vehicle (UAV)-Based LiDAR Data in Citrus Orchards. Hortic. Res. 2023, 10, uhad018. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Wang, Q.; Han, M.; Wang, A.; Liu, H. Effects of tree shape on the quality of leaf and fruit and the yield in peach. J. Northwest Agric. For. Univ. 2010, 38, 160–164+170. [Google Scholar] [CrossRef]
- Sharma, Y.; Singh, H.; Thakur, A. Effect of Training System and in Row Spacing on Yield and Fruit Quality of Peach in the Sub-Tropical Regions. Ind. J. Hort. 2017, 74, 440. [Google Scholar] [CrossRef]
- Seki, T.; Hirose, K.; Shibata, K. Yield and Fruit Quality of Japanese Pear in “Joint V-Shaped Trellis”. Acta Hortic. 2021, 1303, 171–176. [Google Scholar] [CrossRef]
- Liu, L.; Li, Q.L.; Gao, D.T.; Wei, Z.F.; Shi, C.Y.; Wang, Z.Q.; Liu, J.W. Effects of tree shapes on growth, yield and quality of peach. J. Fruit Sci. 2022, 39, 36–46. [Google Scholar] [CrossRef]
- Liu, X.; Hu, D.; Ma, X.; Xiang, P.; Yuan, X. Spatial distribution of spring shoot, leaf nutrition and fruit in citrus canopy with different tree shapes. J. Gansu Agric. Univ. 2023, 58, 126–135. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Huang, G.; Ma, W.; Chen, X.; Xia, C. Forestland Site Quality and Productivity Potential in Ganzhou City. J. Jiangxi Agric. Univ. 2014, 36, 1159–1166. [Google Scholar] [CrossRef]
- Zhou, X.; Zhu, W.; Ma, G.; Zhang, D.; Zheng, Z. Assessing the Loss Value of Soil and Water Conservation Resulted from the Mining of Rare Earth Ore in Ganzhou, Jiangxi Province. J. Nat. Resour. 2016, 31, 982–993. [Google Scholar]
- Li, H.; Li, M.; Luo, J.; Cao, X.; Qu, L.; Gai, Y.; Jiang, X.; Liu, T.; Bai, H.; Janz, D.; et al. N-Fertilization Has Different Effects on the Growth, Carbon and Nitrogen Physiology, and Wood Properties of Slow- and Fast-Growing Populus Species. J. Exp. Bot. 2012, 63, 6173–6185. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Guan, L.; Zhang, C.; Zhang, S.; Liu, Y.; Lu, Y.; Luo, J. Nitrogen Assimilation Genes in Poplar: Potential Targets for Improving Tree Nitrogen Use Efficiency. Ind. Crops Prod. 2024, 216, 118705. [Google Scholar] [CrossRef]
- Tang, J.-W.; Cao, M.; Zhang, J.-H.; Li, M.-H. Litterfall Production, Decomposition and Nutrient Use Efficiency Varies with Tropical Forest Types in Xishuangbanna, SW China: A 10-Year Study. Plant Soil 2010, 335, 271–288. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N.; Chivkunova, O.B. Optical Properties and Nondestructive Estimation of Anthocyanin Content in Plant Leaves. Photochem. Photobiol. 2007, 74, 38–45. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral Vegetation Indices and Novel Algorithms for Predicting Green LAI of Crop Canopies: Modeling and Validation in the Context of Precision Agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between Leaf Pigment Content and Spectral Reflectance across a Wide Range of Species, Leaf Structures and Developmental Stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Hernández-Clemente, R.; Navarro-Cerrillo, R.M.; Suárez, L.; Morales, F.; Zarco-Tejada, P.J. Assessing Structural Effects on PRI for Stress Detection in Conifer Forests. Remote Sens. Environ. 2011, 115, 2360–2375. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanre, D. Atmospherically Resistant Vegetation Index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Datt, B. Remote Sensing of Chlorophyll a, Chlorophyll b, Chlorophyll A + b, and Total Carotenoid Content in Eucalyptus Leaves. Remote Sens. Environ. 1998, 66, 111–121. [Google Scholar] [CrossRef]
- Shah, S.H.; Angel, Y.; Houborg, R.; Ali, S.; McCabe, M.F. A Random Forest Machine Learning Approach for the Retrieval of Leaf Chlorophyll Content in Wheat. Remote Sens. 2019, 11, 920. [Google Scholar] [CrossRef]
- Kooistra, L.; Leuven, R.S.E.W.; Wehrens, R.; Nienhuis, P.H.; Buydens, L.M.C. A Comparison of Methods to Relate Grass Reflectance to Soil Metal Contamination. Int. J. Remote Sens. 2003, 24, 4995–5010. [Google Scholar] [CrossRef]
- Li, J.; Guo, Q.; Zhang, J.; Korpelainen, H.; Li, C. Effects of Nitrogen and Phosphorus Supply on Growth and Physiological Traits of Two Larix Species. Environ. Exp. Bot. 2016, 130, 206–215. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, S.; Jia, L.; Dai, T.; Wei, X.; Duan, J.; Liu, S.; Weng, X. Canopy Characteristics and Light Distribution in Sapindus Mukorossi Gaertn. Are Influenced by Crown Architecture Manipulation in the Hilly Terrain of Southeast China. Sci. Hortic. 2018, 240, 11–22. [Google Scholar] [CrossRef]
- Génard, M.; Baret, F.; Simon, D. A 3D Peach Canopy Model Used to Evaluate the Effect of Tree Architecture and Density on Photosynthesis at a Range of Scales. Ecol. Model. 2000, 128, 197–209. [Google Scholar] [CrossRef]
- Peng, L.L.; Wei, L.; Wang, H.; Niu, Z.; Xie, P. Effect of Canopy Structure on Foliar Photosynthetic Characteristics and Fruit Quality of Pears. Acta Bot. Boreal.-Occident. Sin. 2020, 40, 1180–1191. [Google Scholar] [CrossRef]
- Reda, R.; Saffaj, T.; Ilham, B.; Saidi, O.; Issam, K.; Brahim, L.; El Hadrami, E.M. A Comparative Study between a New Method and Other Machine Learning Algorithms for Soil Organic Carbon and Total Nitrogen Prediction Using near Infrared Spectroscopy. Chemom. Intell. Lab. Syst. 2019, 195, 103873. [Google Scholar] [CrossRef]
- Tian, D.; Kattge, J.; Chen, Y.; Han, W.; Luo, Y.; He, J.; Hu, H.; Tang, Z.; Ma, S.; Yan, Z.; et al. A Global Database of Paired Leaf Nitrogen and Phosphorus Concentrations of Terrestrial Plants. Ecology 2019, 100, e02812. [Google Scholar] [CrossRef]
- Peng, X.; Chen, D.; Zhou, Z.; Zhang, Z.; Xu, C.; Zha, Q.; Wang, F.; Hu, X. Prediction of the Nitrogen, Phosphorus and Potassium Contents in Grape Leaves at Different Growth Stages Based on UAV Multispectral Remote Sensing. Remote Sens. 2022, 14, 2659. [Google Scholar] [CrossRef]
- Kviklys, D.; Viškelis, J.; Liaudanskas, M.; Janulis, V.; Laužikė, K.; Samuolienė, G.; Uselis, N.; Lanauskas, J. Apple Fruit Growth and Quality Depend on the Position in Tree Canopy. Plants 2022, 11, 196. [Google Scholar] [CrossRef]
- Kaučić, M.; Vuković, M.; Gašpar, L.; Fruk, G.; Vidrih, R.; Nečemer, M.; Fruk, M.; Jatoi, M.A.; Fu, D.; Kobav, M.B.; et al. The Effect of Canopy Position on the Fruit Quality Parameters and Contents of Bioactive Compounds and Minerals in ‘Braeburn’ Apples. Agronomy 2023, 13, 2523. [Google Scholar] [CrossRef]
NO. | Name | Formulation | Reference |
---|---|---|---|
1 | Anthocyanin Reflectance Index | ARI2 = R803(1/R549 − 1/R702) | [34] |
2 | Transformed Chlorophyll Absorbtion Ratio | TCARI = (R700/R670)/((1 + 0.16) (R800 − R670)) | [35] |
3 | Transformed Soil Adjusted Vegetation Index | TSAVI = | [36] |
4 | Modified Normalized Difference Vegetation Index | mNDVI705 = (R750 − R705)/(R705 + R705 − 2R445) | [36] |
5 | Photochemical Reflectance Index 570/515 | PRI(570,515) = (R570 − R515)/(R570 + R515) | [37] |
6 | Atmospherically Resistant Vegetation Index | ARVI = (R872 − R488)/(R872 − R488 + 2R661) | [38] |
7 | DATT4 | DATT4 = R672/(R550 × R708) | [39] |
8 | Derivative of Normalized Difference 1 | DND1 = (D742 − D529)/(D742 + D529) | [40] |
9 | Derivative of Normalized Difference 7 | DND7 = (D742 − D702)/(D742 + D702) | [40] |
10 | Derivative Maximum | DMAX42 = D712/D742 | [40] |
11 | Modified Simple Ratio | MSRCHL = (R800 − R445)/(R680 − R445) | [41] |
Band Area | Band Name | |
---|---|---|
Nitrogen inversion model | Visible light region | Band 458, Band 462, Band 466, Band 467, Band 481, Band 551, Band 555, Band 623, Band 653, Band 654, Band 661, Band 743 |
Near infrared region | Band 911, Band 926, Band 927, Band 949, Band 1017, Band 1023, Band 1034, Band 1035 | |
Phosphorus inversion model | Visible light region | Band 421, Band 430, Band 437, Band 446, Band 448, Band 453, Band 454, Band 460, Band 658, Band 660 |
Near infrared region | Band 985, Band 1018, Band 1019, Band 1027, Band 1038, Band 1040, Band 1042, Band 1055 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Hu, Q.; Zhang, J.; Dian, Y.; Hu, C.; Zhou, J. Leaf Nitrogen and Phosphorus Variation and Estimation of Citrus Tree under Two Labor-Saving Cultivation Modes Using Hyperspectral Data. Remote Sens. 2024, 16, 3261. https://doi.org/10.3390/rs16173261
Li D, Hu Q, Zhang J, Dian Y, Hu C, Zhou J. Leaf Nitrogen and Phosphorus Variation and Estimation of Citrus Tree under Two Labor-Saving Cultivation Modes Using Hyperspectral Data. Remote Sensing. 2024; 16(17):3261. https://doi.org/10.3390/rs16173261
Chicago/Turabian StyleLi, Dasui, Qingqing Hu, Jinzhi Zhang, Yuanyong Dian, Chungen Hu, and Jingjing Zhou. 2024. "Leaf Nitrogen and Phosphorus Variation and Estimation of Citrus Tree under Two Labor-Saving Cultivation Modes Using Hyperspectral Data" Remote Sensing 16, no. 17: 3261. https://doi.org/10.3390/rs16173261
APA StyleLi, D., Hu, Q., Zhang, J., Dian, Y., Hu, C., & Zhou, J. (2024). Leaf Nitrogen and Phosphorus Variation and Estimation of Citrus Tree under Two Labor-Saving Cultivation Modes Using Hyperspectral Data. Remote Sensing, 16(17), 3261. https://doi.org/10.3390/rs16173261