Liaohe Oilfield Reservoir Parameters Inversion Based on Composite Dislocation Model Utilizing Two-Dimensional Time-Series InSAR Observations
Abstract
:1. Introduction
2. Methodology
2.1. Multitemporal InSAR LOS Ground Deformation Analysis
2.2. Two-Dimensional Deformation Modeling and Analysis
2.3. Reservoir Parameter Inversion Models and Methods
2.3.1. The Compound Dislocation Model
2.3.2. Nonlinear Bayesian Inversion Method
3. Study Area and Datasets
3.1. Background of the Study Area
3.2. SAR Data and Processing
4. Result
4.1. MT-InSAR LOS Deformation Analysis
4.2. Two-Dimensional Deformation Monitoring and Analysis
4.3. Reservoir Model Inversion for Two-Dimensional Observations
4.3.1. The Inversion of Reservoir Parameter for CDM
4.3.2. Reservoir Parameter Inversion Using Other Physical Models
5. Discussion
5.1. Comparison of Inversion Model Performance
5.2. Comprehensive Analysis of Inversion Results for the CDM
6. Conclusions
- Subsidence troughs have been identified in the concentrated extraction zones of the Shuguang and Huanxiling oilfields, with notably more significant subsidence observed in the Shuguang Oilfield. Comparative analysis with previous research results reveals that the subsidence trends in recent years align consistently, indicating ongoing and stable subsidence in these areas due to continuous oil extraction activities.
- The results of the two-dimensional deformation analysis reveal that the Shuguang Oil-field area experiences a maximum vertical subsidence rate of 221 mm/yr. The maximum eastward deformation rate is 90 mm/yr, and the maximum westward deformation rate is 97 mm/yr. The vertical deformation pattern forms an elliptical subsidence trough, while the east-west deformation distribution clearly shows horizontal displacement towards the subsidence center. In the Huanxiling Oilfield area, the maximum vertical subsidence rate is 94 mm/yr, with an eastward deformation rate of 43 mm/yr and a westward de-formation rate of 46 mm/yr.
- The CDM, with its complete rotational freedom and comprehensive inversion parameters, can simulate deformation accurately in any space direction. This allows for a more accurate depiction of the complex mapping relationship between subsurface reservoir parameters and ground deformation. Based on these advantages, we introduced two-dimensional deformation fields for parameter inversion and conducted comparative analyses of different models. The comparative analysis results indicate that the CDM demonstrates better inversion performance and adaptability in the study area, verifying its higher reliability for reservoir parameter inversion in this region.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khakim, M.Y.N.; Tsuji, T.; Matsuoka, T. Geomechanical Modeling for InSAR-Derived Surface Deformation at Steam-Injection Oil Sand Fields. J. Pet. Sci. Eng. 2012, 96–97, 152–161. [Google Scholar] [CrossRef]
- Guéguen, Y.; Deffontaines, B.; Fruneau, B.; Heib, M.A.; de Michele, M.; Raucoules, D.; Guise, Y.; Planchenault, J. Monitoring Residual Mining Subsidence of Nord/Pas-de-Calais Coal Basin from Differential and Persistent Scatterer Interferometry (Northern France). J. Appl. Geophys. 2009, 69, 24–34. [Google Scholar] [CrossRef]
- Tang, W.; Gong, Z.; Sun, X.; Liu, Y.; Motagh, M.; Li, Z.; Li, J.; Malinowska, A.; Jiang, J.; Wei, L.; et al. Three-Dimensional Surface Deformation from Multi-Track InSAR and Oil Reservoir Characterization: A Case Study in the Liaohe Oilfield, Northeast China. Int. J. Rock Mech. Min. Sci. 2024, 174, 105637. [Google Scholar] [CrossRef]
- Pereira, L.B.; Sad, C.M.S.; Castro, E.V.R.; Filgueiras, P.R.; Lacerda, V. Environmental Impacts Related to Drilling Fluid Waste and Treatment Methods: A Critical Review. Fuel 2022, 310, 122301. [Google Scholar] [CrossRef]
- Zheng, L.; Zhu, L.; Wang, W.; Guo, L.; Chen, B. Land Subsidence Related to Coal Mining in China Revealed by L-Band InSAR Analysis. Int. J. Environ. Res. Public Health 2020, 17, 1170. [Google Scholar] [CrossRef] [PubMed]
- Xiang, W.; Zhang, R.; Liu, G.; Wang, X.; Mao, W.; Zhang, B.; Fu, Y.; Wu, T. Saline-Soil Deformation Extraction Based on an Improved Time-Series InSAR Approach. ISPRS Int. J. Geo-Inf. 2021, 10, 112. [Google Scholar] [CrossRef]
- Bao, X.; Zhang, R.; Shama, A.; Li, S.; Xie, L.; Lv, J.; Fu, Y.; Wu, R.; Liu, G. Ground Deformation Pattern Analysis and Evolution Prediction of Shanghai Pudong International Airport Based on PSI Long Time Series Observations. Remote Sens. 2022, 14, 610. [Google Scholar] [CrossRef]
- Pierdicca, N.; Maiello, I.; Sansosti, E.; Venuti, G.; Barindelli, S.; Ferretti, R.; Gatti, A.; Manzo, M.; Monti-Guarnieri, A.V.; Murgia, F.; et al. Excess Path Delays From Sentinel Interferometry to Improve Weather Forecasts. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3213–3228. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent Scatterers in SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A New Method for Measuring Deformation on Volcanoes and Other Natural Terrains Using InSAR Persistent Scatterers. Geophys. Res. Lett. 2004, 31, 2004GL021737. [Google Scholar] [CrossRef]
- Liao, M.; Zhang, R.; Lv, J.; Yu, B.; Pang, J.; Li, R.; Xiang, W.; Tao, W. Subsidence Monitoring of Fill Area in Yan’an New District Based on Sentinel-1A Time Series Imagery. Remote Sens. 2021, 13, 3044. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, R.; Zhan, R.; Shama, A.; Liao, M. Subsidence Monitoring and Mechanism Analysis of Anju Airport in Suining Based on InSAR and Numerical Simulation. Remote Sens. 2022, 14, 3759. [Google Scholar] [CrossRef]
- Du, J. Coupling Effect of Impoundment and Irrigation on Landslide Movement in Maoergai Reservoir Area Revealed by Multi-Platform InSAR Observations. Int. J. Appl. Earth Obs. Geoinf. 2024, 129, 103802. [Google Scholar] [CrossRef]
- Traglia, F.D.; Luca, C.D.; Manzo, M.; Nolesini, T.; Casagli, N.; Lanari, R.; Casu, F. Joint Exploitation of Space-Borne and Ground-Based Multitemporal InSAR Measurements for Volcano Monitoring: The Stromboli Volcano Case Study. Remote Sens. Environ. 2021, 260, 112441. [Google Scholar] [CrossRef]
- Liu, L.; Jiang, L.; Jiang, H.; Wang, H.; Ma, N.; Xu, H. Accelerated Glacier Mass Loss (2011–2016) over the Puruogangri Ice Field in the Inner Tibetan Plateau Revealed by Bistatic InSAR Measurements. Remote Sens. Environ. 2019, 231, 111241. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, Q.; Zhao, C.; Yang, C.; Sun, Q.; Chen, W. Monitoring Land Subsidence in the Southern Part of the Lower Liaohe Plain, China with a Multi-Track PS-InSAR Technique. Remote Sens. Environ. 2017, 188, 73–84. [Google Scholar] [CrossRef]
- Yang, Z.; Li, Z.; Zhu, J.; Yi, H.; Hu, J.; Feng, G. Deriving Dynamic Subsidence of Coal Mining Areas Using InSAR and Logistic Model. Remote Sens. 2017, 9, 125. [Google Scholar] [CrossRef]
- Liu, A.; Zhang, R.; Yang, Y.; Wang, T.; Wang, T.; Shama, A.; Zhan, R.; Bao, X. Oilfield Reservoir Parameter Inversion Based on 2D Ground Deformation Measurements Acquired by a Time-Series MSBAS-InSAR Method. Remote Sens. 2023, 16, 154. [Google Scholar] [CrossRef]
- Samsonov, S.V.; d’Oreye, N. Multidimensional Small Baseline Subset (MSBAS) for Two-Dimensional Deformation Analysis: Case Study Mexico City. Can. J. Remote Sens. 2017, 43, 318–329. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, D.; Zhao, C.; Han, B.; Sun, R.; Du, J.; Chen, L. Ground Deformation Revealed by Sentinel-1 MSBAS-InSAR Time-Series over Karamay Oilfield, China. Remote Sens. 2019, 11, 2027. [Google Scholar] [CrossRef]
- Rocca, F.; Rucci, A.; Ferretti, A.; Bohane, A. Advanced InSAR Interferometry for Reservoir Monitoring. First Break 2013, 31, 77–85. [Google Scholar] [CrossRef]
- Tamburini, A.; Bianchi, M.; Giannico, C.; Novali, F. Retrieving Surface Deformation by PSInSARTM Technology: A Powerful Tool in Reservoir Monitoring. Int. J. Greenh. Gas Control 2010, 4, 928–937. [Google Scholar] [CrossRef]
- Yang, Q.; Zhao, W.; Dixon, T.H.; Amelung, F.; Han, W.S.; Li, P. InSAR Monitoring of Ground Deformation due to CO2 Injection at an Enhanced Oil Recovery Site, West Texas. Int. J. Greenh. Gas Control 2015, 41, 20–28. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, Y.; Wang, Q.; Xin, Y.; Li, J. Detecting Land Uplift Associated with Enhanced Oil Recovery Using InSAR in the Karamay Oil Field, Xinjiang, China. Int. J. Remote Sens. 2016, 37, 1527–1540. [Google Scholar] [CrossRef]
- Nikkhoo, M.; Walter, T.R.; Lundgren, P.R.; Prats-Iraola, P. Compound Dislocation Models (CDMs) for Volcano Deformation Analyses. Geophys. J. Int. 2017, 208, 877–894. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, G.; Li, Z.; Xu, W.; Zhu, J.; He, L.; Xiong, Z.; Qiao, X. Retrieving the Displacements of the Hutubi (China) Underground Gas Storage during 2003–2020 from Multi-Track InSAR. Remote Sens. Environ. 2022, 268, 112768. [Google Scholar] [CrossRef]
- López-Quiroz, P.; Doin, M.-P.; Tupin, F.; Briole, P.; Nicolas, J.-M. Time Series Analysis of Mexico City Subsidence Constrained by Radar Interferometry. J. Appl. Geophys. 2009, 69, 1–15. [Google Scholar] [CrossRef]
- Doin, M.-P.; Lodge, F.; Guillaso, S.; Jolivet, R.; Lasserre, C.; Ducret, G.; Grandin, R.; Pathier, E.; Pinel, V. Presentation of the Small Baseline NSBAS Processing Chain on a Case Example: The ETNA Deformation Monitoring from 2003 to 2010 Using ENVISAT Data. In Proceedings of the Fringe 2011, Frascati, Italy, 19–23 September 2011. [Google Scholar]
- Yu, B.; She, J.; Liu, G.; Ma, D.; Zhang, R.; Zhou, Z.; Zhang, B. Coal Fire Identification and State Assessment by Integrating Multitemporal Thermal Infrared and InSAR Remote Sensing Data: A Case Study of Midong District, Urumqi, China. ISPRS J. Photogramm. Remote Sens. 2022, 190, 144–164. [Google Scholar] [CrossRef]
- Morishita, Y.; Lazecky, M.; Wright, T.; Weiss, J.; Elliott, J.; Hooper, A. LiCSBAS: An Open-Source InSAR Time Series Analysis Package Integrated with the LiCSAR Automated Sentinel-1 InSAR Processor. Remote Sens. 2020, 12, 424. [Google Scholar] [CrossRef]
- Li, J.; Wang, Q.; Zhang, Y.; Yang, S.; Gao, G. An Improved Active Layer Thickness Retrieval Method over Qinghai-Tibet Permafrost Using InSAR Technology: With Emphasis on Two-Dimensional Deformation and Unfrozen Water. Int. J. Appl. Earth Obs. Geoinf. 2023, 124, 103530. [Google Scholar] [CrossRef]
- Samsonov, S.; d’Oreye, N.; Smets, B. Ground Deformation Associated with Post-Mining Activity at the French–German Border Revealed by Novel InSAR Time Series Method. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 142–154. [Google Scholar] [CrossRef]
- Anup Das, R.A.; Mohan, S. Topographic Correction of ALOS-PALSAR Images Using InSAR-Derived DEM. Geocarto Int. 2015, 30, 145–153. [Google Scholar] [CrossRef]
- Hansen, P.C. The truncatedSVD as a Method for Regularization. BIT 1987, 27, 534–553. [Google Scholar] [CrossRef]
- Bonafede, M.; Ferrari, C. Analytical Models of Deformation and Residual Gravity Changes Due to a Mogi Source in a Viscoelastic Medium. Tectonophysics 2009, 471, 4–13. [Google Scholar] [CrossRef]
- Okada, Y. Surface Deformation Due to Shear and Tensile Faults in a Half-Space. Bull. Seismol. Soc. Am. 1985, 75, 1135–1154. [Google Scholar] [CrossRef]
- Yang, X.; Davis, P.M.; Dieterich, J.H. Deformation from Inflation of a Dipping Finite Prolate Spheroid in an Elastic Half-space as a Model for Volcanic Stressing. J. Geophys. Res. Solid Earth 1988, 93, 4249–4257. [Google Scholar] [CrossRef]
- Bagnardi, M.; Hooper, A. Inversion of Surface Deformation Data for Rapid Estimates of Source Parameters and Uncertainties: A Bayesian Approach. Geochem. Geophys. Geosyst. 2018, 19, 2194–2211. [Google Scholar] [CrossRef]
- Yu, B.; Niu, T.; Zhao, J.; Ma, D.; Liu, G.; Wang, X.; Dai, K.; Gu, Y. Deformation Monitoring and Primary Driving Factor Analysis in the Coastal Area of Liaohe Oilfield Utilizing MT-InSAR and PCA. PFG–J. Photogramm. Remote Sens. Geoinf. Sci. 2024, 92, 213–234. [Google Scholar] [CrossRef]
- Gong, Z.; Tang, W.; Jiang, J.; Li, H.; Zhang, X.; Geng, X.; Wei, X. Monitoring and Modeling of Land Subsidence in Liaohe Delta Oilfield Based on Time Series InSAR Technology. Geomat. Inf. Sci. Wuhan Univ. 2024, 49, 1422–1433. [Google Scholar] [CrossRef]
Sensor | Orbit | Path | Frame | Waveband | Temporal Coverage | Image |
---|---|---|---|---|---|---|
Sentinel-1A | Ascending | 98 | 129 | C band(5.6 cm) | January 2021–December 2023 | 78 |
Sentinel-1B | Descending | 3 | 455 | January 2020–December 2021 | 45 |
Compound Dislocation Model (CDM) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
X (m) | Y (m) | Depth (m) | ωX (°) | ωY (°) | ωZ (°) | a (m) | b (m) | c (m) | Opening (m) | |
Optimal value | −145.48 | 392.85 | 1523.69 | −15.68 | −10.77 | 35.03 | 683.51 | 1258.52 | 99.91 | −0.49 |
Confidence Interval (2.5%) | −206.19 | 337.04 | 1441.75 | −21.53 | −16.08 | 30.54 | 471.69 | 1153.19 | 44.78 | −0.81 |
Confidence Interval (97.5%) | −107.48 | 507.96 | 1721.92 | −11.80 | −6.55 | 38.95 | 796.44 | 1350.80 | 99.50 | −0.41 |
Mogi Model | ||||
---|---|---|---|---|
X (m) | Y (m) | Depth (m) | Volume Change (m3) | |
Optimal value | −67.32 | 316.356 | 1397.51 | −1.42 × 106 |
Confidence Interval (2.5%) | −96.73 | 281.51 | 1347.23 | −1.53 × 106 |
Confidence Interval (97.5%) | −42.98 | 351.44 | 1455.06 | −1.32 × 106 |
Ellipsoidal Model | ||||||||
---|---|---|---|---|---|---|---|---|
X | Y | Depth (m) | Major Semi-Axis (m) | Minor Semi-Axis (m) | Strike (°) | Dip (°) | DP/mu | |
Optimal value | −89.98 | 296.51 | 1234.21 | 1460.69 | 15.78 | 44.92 | 0.03 | −0.003 |
Confidence Interval (2.5%) | −115.57 | 259.86 | 1170.30 | 1374.69 | 15.17 | 42.20 | 0.01 | −0.004 |
Confidence Interval (97.5%) | −63.37 | 324.53 | 1293.26 | 1535.54 | 47.91 | 44.98 | 1.55 | −0.001 |
Okada Model | |||||||
---|---|---|---|---|---|---|---|
X (m) | Y (m) | Length (m) | Width (m) | Depth (m) | Strike (°) | Opening (°) | |
Optimal value | 345.21 | −84.38 | 2342.87 | 1120.42 | 1721.07 | 38.40 | −0.70 |
Confidence Interval (2.5%) | 211.92 | −198.60 | 2152.86 | 801.36 | 1565.38 | 33.51 | −0.99 |
Confidence Interval (97.5%) | 484.81 | 38.09 | 2508.11 | 1447.12 | 1827.79 | 43.84 | −0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; Zhang, R.; Zhang, B.; Chen, K.; Liu, A.; Wang, T.; Yu, B.; Deng, L. Liaohe Oilfield Reservoir Parameters Inversion Based on Composite Dislocation Model Utilizing Two-Dimensional Time-Series InSAR Observations. Remote Sens. 2024, 16, 3314. https://doi.org/10.3390/rs16173314
Jiang H, Zhang R, Zhang B, Chen K, Liu A, Wang T, Yu B, Deng L. Liaohe Oilfield Reservoir Parameters Inversion Based on Composite Dislocation Model Utilizing Two-Dimensional Time-Series InSAR Observations. Remote Sensing. 2024; 16(17):3314. https://doi.org/10.3390/rs16173314
Chicago/Turabian StyleJiang, Hang, Rui Zhang, Bo Zhang, Kangyi Chen, Anmengyun Liu, Ting Wang, Bing Yu, and Lin Deng. 2024. "Liaohe Oilfield Reservoir Parameters Inversion Based on Composite Dislocation Model Utilizing Two-Dimensional Time-Series InSAR Observations" Remote Sensing 16, no. 17: 3314. https://doi.org/10.3390/rs16173314
APA StyleJiang, H., Zhang, R., Zhang, B., Chen, K., Liu, A., Wang, T., Yu, B., & Deng, L. (2024). Liaohe Oilfield Reservoir Parameters Inversion Based on Composite Dislocation Model Utilizing Two-Dimensional Time-Series InSAR Observations. Remote Sensing, 16(17), 3314. https://doi.org/10.3390/rs16173314