Hydraulics of Time-Variable Water Surface Slope in Rivers Observed by Satellite Altimetry
Abstract
:1. Introduction
2. Methods and Data
2.1. Typical Non-Uniform Flow Situations in Natural Rivers
2.2. Modeling River Water Surface Elevation and Slope Using Steady Gradually Varied Flow Model
2.3. Processing of ATL03 Water Surface Elevation Data
2.4. River Discharge Estimates
3. Results
3.1. Case A: Uniform Flow
3.2. Case B: Slope or Cross Section Change
3.3. Case C: River Confluence
3.4. Case D: Flood Wave
3.5. Case E: Backwater from Lakes/Reservoirs/the Coast
4. Discussion
4.1. Hydraulic Insights from WSS Observations
4.2. River Discharge from WSE and WSS
4.3. Limitations of Current Observation Technology and Future Potential
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abdalla, S.; Abdeh Kolahchi, A.; Ablain, M.; Adusumilli, S.; Aich Bhowmick, S.; Alou-Font, E.; Amarouche, L.; Andersen, O.B.; Antich, H.; Aouf, L.; et al. Altimetry for the Future: Building on 25 Years of Progress. Adv. Space Res. 2021, 68, 319–363. [Google Scholar] [CrossRef]
- Paris, A.; Dias de Paiva, R.; Santos da Silva, J.; Medeiros Moreira, D.; Calmant, S.; Garambois, P.-A.; Collischonn, W.; Bonnet, M.-P.; Seyler, F. Stage-Discharge Rating Curves Based on Satellite Altimetry and Modeled Discharge in the Amazon Basin. Water Resour. Res. 2016, 52, 3787–3814. [Google Scholar] [CrossRef]
- Papa, F.; Bala, S.K.; Pandey, R.K.; Durand, F.; Gopalakrishna, V.V.; Rahman, A.; Rossow, W.B. Ganga-Brahmaputra River Discharge from Jason-2 Radar Altimetry: An Update to the Long-Term Satellite-Derived Estimates of Continental Freshwater Forcing Flux into the Bay of Bengal. J. Geophys. Res. Oceans 2012, 117, C11. [Google Scholar] [CrossRef]
- Michailovsky, C.I.; McEnnis, S.; Berry, P.A.M.; Smith, R.; Bauer-Gottwein, P. River Monitoring from Satellite Radar Altimetry in the Zambezi River Basin. Hydrol. Earth Syst. Sci. 2012, 16, 2181–2192. [Google Scholar] [CrossRef]
- Jiang, L.; Nielsen, K.; Dinardo, S.; Andersen, O.B.; Bauer-Gottwein, P. Evaluation of Sentinel-3 SRAL SAR Altimetry over Chinese Rivers. Remote. Sens. Environ. 2020, 237, 111546. [Google Scholar] [CrossRef]
- Schneider, R.; Ridler, M.-E.; Godiksen, P.N.; Madsen, H.; Bauer-Gottwein, P. A Data Assimilation System Combining CryoSat-2 Data and Hydrodynamic River Models. J. Hydrol. 2018, 557, 197–210. [Google Scholar] [CrossRef]
- Hossain, F.; Siddique-E-Akbor, A.H.; Mazumder, L.C.; Shahnewaz, S.M.; Biancamaria, S.; Lee, H.; Shum, C.K. Proof of Concept of an Altimeter-Based River Forecasting System for Transboundary Flow inside Bangladesh. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2014, 7, 587–601. [Google Scholar] [CrossRef]
- Chang, C.-H.; Lee, H.; Hossain, F.; Basnayake, S.; Jayasinghe, S.; Chishtie, F.; Saah, D.; Yu, H.; Sothea, K.; Du Bui, D. A Model-Aided Satellite-Altimetry-Based Flood Forecasting System for the Mekong River. Environ. Model. Softw. 2019, 112, 112–127. [Google Scholar] [CrossRef]
- Paiva, R.C.D.; Collischonn, W.; Bonnet, M.-P.; De Gonçalves, L.G.G.; Calmant, S.; Getirana, A.; Santos Da Silva, J. Assimilating in Situ and Radar Altimetry Data into a Large-Scale Hydrologic-Hydrodynamic Model for Streamflow Forecast in the Amazon. Hydrol. Earth Syst. Sci. 2013, 17, 2929–2946. [Google Scholar] [CrossRef]
- Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D.; et al. The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2): Science Requirements, Concept, and Implementation. Remote Sens. Environ. 2017, 190, 260–273. [Google Scholar] [CrossRef]
- Biancamaria, S.; Lettenmaier, D.P.; Pavelsky, T.M. The SWOT Mission and Its Capabilities for Land Hydrology. Surv. Geophys. 2016, 37, 307–337. [Google Scholar] [CrossRef]
- Scherer, D.; Schwatke, C.; Dettmering, D.; Seitz, F. ICESat-2 Based River Surface Slope and Its Impact on Water Level Time Series From Satellite Altimetry. Water Resour. Res. 2022, 58, e2022WR032842. [Google Scholar] [CrossRef]
- Christoffersen, L.; Bauer-Gottwein, P.; Sørensen, L.S.; Nielsen, K. ICE2WSS; An R Package for Estimating River Water Surface Slopes from ICESat-2. Environ. Model. Softw. 2023, 168, 105789. [Google Scholar] [CrossRef]
- Tourian, M.J.; Elmi, O.; Shafaghi, Y.; Behnia, S.; Saemian, P.; Schlesinger, R.; Sneeuw, N. HydroSat: Geometric Quantities of the Global Water Cycle from Geodetic Satellites. Earth Syst. Sci. Data 2022, 14, 2463–2486. [Google Scholar] [CrossRef]
- Leon, J.G.; Calmant, S.; Seyler, F.; Bonnet, M.-P.; Cauhopé, M.; Frappart, F.; Filizola, N.; Fraizy, P. Rating Curves and Estimation of Average Water Depth at the Upper Negro River Based on Satellite Altimeter Data and Modeled Discharges. J. Hydrol. 2006, 328, 481–496. [Google Scholar] [CrossRef]
- Kouraev, A.V.; Zakharova, E.A.; Samain, O.; Mognard, N.M.; Cazenave, A. Ob’ River Discharge from TOPEX/Poseidon Satellite Altimetry (1992-2002). Remote. Sens. Environ. 2004, 93, 238–245. [Google Scholar] [CrossRef]
- Alsdorf, D.E.; Rodríguez, E.; Lettenmaier, D.P. Measuring Surface Water from Space. Rev. Geophys. 2007, 45, 2. [Google Scholar] [CrossRef]
- Bjerklie, D.M.; Moller, D.; Smith, L.C.; Dingman, S.L. Estimating Discharge in Rivers Using Remotely Sensed Hydraulic Information. J. Hydrol. 2005, 309, 191–209. [Google Scholar] [CrossRef]
- Chow, V.T. Open-Channel Hydraulics. McGraw-Hill: New York, NY, USA, 1959. [Google Scholar]
- Liu, J.; Bauer-Gottwein, P.; Frias, M.C.; Musaeus, A.F.; Christoffersen, L.; Jiang, L. Stage-Slope-Discharge Relationships Upstream of River Confluences Revealed by Satellite Altimetry. Geophys. Res. Lett. 2023, 50, e2023GL106394. [Google Scholar] [CrossRef]
- Christodoulou, G.C.; Noutsopoulos, G.C.; Andreou, S.A. Factors Affecting Brink Depth in Rectangular Overfalls. In Proceedings of the Channels and Channel Control Structures; Smith, K.V.H., Ed.; Springer: Berlin/Heidelberg, Germany, 1984; pp. 3–17. [Google Scholar]
- Neumann, T.A.; Brenner, A.; Hancock, D.; Robbins, J.; Gibbons, A.; Lee, J.; Harbeck, K.; Saba, J.; Luthcke, S.B.; Rebold, T. ATLAS/ICESat-2 L2A Global Geolocated Photon Data, Version 6; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2023. [Google Scholar]
- Neumann, T.A.; Martino, A.J.; Markus, T.; Bae, S.; Bock, M.R.; Brenner, A.C.; Brunt, K.M.; Cavanaugh, J.; Fernandes, S.T.; Hancock, D.W.; et al. The Ice, Cloud, and Land Elevation Satellite—2 Mission: A Global Geolocated Photon Product Derived from the Aadvanced Ttopographic Llaser Aaltimeter Ssystem. Remote. Sens. Environ. 2019, 233, 111325. [Google Scholar] [CrossRef]
- Coppo Frias, M.; Liu, S.; Mo, X.; Nielsen, K.; Ranndal, H.; Jiang, L.; Ma, J.; Bauer-Gottwein, P. River Hydraulic Modeling with ICESat-2 Land and Water Surface Elevation. Hydrol. Earth Syst. Sci. 2023, 27, 1011–1032. [Google Scholar] [CrossRef]
- Pavlis, N.K.; Holmes, S.A.; Kenyon, S.C.; Factor, J.K. The Development and Evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res. Solid Earth 2012, 117, B4. [Google Scholar] [CrossRef]
- The Global Runoff Data Centre—Data Download The Global Runoff Data Centre. Available online: https://portal.grdc.bafg.de/applications/public.html?publicuser=PublicUser#dataDownload/Stations (accessed on 8 April 2024).
- Harrigan, S.; Zsoter, E.; Alfieri, L.; Prudhomme, C.; Salamon, P.; Wetterhall, F.; Barnard, C.; Cloke, H.; Pappenberger, F. GloFAS-ERA5 Operational Global River Discharge Reanalysis 1979-Present. Earth Syst. Sci. Data 2020, 12, 2043–2060. [Google Scholar] [CrossRef]
- Copernicus Climate Change Service (C3S). River Discharge and Related Forecasted Data from the Global Flood Awareness System. 2020. Available online: https://ewds.climate.copernicus.eu/datasets/cems-glofas-historical?tab=overview (accessed on 15 August 2024).
- VESI Waterinfo.Fi. Available online: https://www.vesi.fi/en/karttapalvelu/ (accessed on 12 April 2024).
- Ukrainian Nature Conservation Group The Consequences of the Russian Terrorist Attack on the Kakhovka Hydroelectric Power Plant (HPP) for Wildlife. Available online: https://uncg.org.ua/en/the-consequences-of-the-russian-terrorist-attack-on-the-kakhovka-hydroelectric-power-station-hps-for-wildlife/ (accessed on 11 April 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bauer-Gottwein, P.; Christoffersen, L.; Musaeus, A.; Frías, M.C.; Nielsen, K. Hydraulics of Time-Variable Water Surface Slope in Rivers Observed by Satellite Altimetry. Remote Sens. 2024, 16, 4010. https://doi.org/10.3390/rs16214010
Bauer-Gottwein P, Christoffersen L, Musaeus A, Frías MC, Nielsen K. Hydraulics of Time-Variable Water Surface Slope in Rivers Observed by Satellite Altimetry. Remote Sensing. 2024; 16(21):4010. https://doi.org/10.3390/rs16214010
Chicago/Turabian StyleBauer-Gottwein, Peter, Linda Christoffersen, Aske Musaeus, Monica Coppo Frías, and Karina Nielsen. 2024. "Hydraulics of Time-Variable Water Surface Slope in Rivers Observed by Satellite Altimetry" Remote Sensing 16, no. 21: 4010. https://doi.org/10.3390/rs16214010
APA StyleBauer-Gottwein, P., Christoffersen, L., Musaeus, A., Frías, M. C., & Nielsen, K. (2024). Hydraulics of Time-Variable Water Surface Slope in Rivers Observed by Satellite Altimetry. Remote Sensing, 16(21), 4010. https://doi.org/10.3390/rs16214010