Successful Precipitation Downscaling Through an Innovative Transformer-Based Model
Abstract
:1. Introduction
- We introduced a downscaled spatio-temporal precipitation model based on a Transformer attention mechanism (STTA). STTA extracts features of meteorological elements from low-resolution data through convolution. Input a Transformer encoder to enhance resolution, realize downscaling operation of meteorological element data, and generate high-resolution layers of meteorological elements and related information.
- We built the ST-Transformer attention module so that the model can effectively be guided to accentuate or diminish specific aspects and enhance intermediate characteristics, which can solve the spatial sparsity of precipitation data.
- We conducted validation of our model using two datasets derived from RCM simulations of the Weather Research and Forecasting Model (WRF) version 3.3.1, and juxtaposed our model’s performance with that of prevailing sophisticated precipitation downscaling models. The empirical outcomes affirm the model’s superiority.
2. Related Work
3. Methods
3.1. Problem Description
3.2. Network Structure
3.2.1. CNN Feature Encoder
3.2.2. ST-Transformer
3.3. Implementation
Algorithm 1 Algorithmic flow of STTA |
|
4. Data and Experimental Configuration
4.1. Data Description and Pretreatment
4.2. Comparing Models
4.3. Evaluation Criteria
5. Experimental Results and Analysis
5.1. Qualitative Visual Analysis
5.2. Quantitative Index Analysis
5.2.1. MSE
5.2.2. Probability Density Function
5.2.3. Jensen–Shannon Distance
5.2.4. Event-Based Precipitation Characteristics
5.3. Ablation Experiment
6. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ghajarnia, N.; Liaghat, A.; Daneshkar Arasteh, P. Comparison and evaluation of high resolution precipitation estimation products in Urmia Basin-Iran. Atmos. Res. 2015, 158, 50–65. [Google Scholar] [CrossRef]
- Held, I.M.; Soden, B.J. Robust responses of the hydrological cycle to global warming. J. Clim. 2006, 19, 5686–5699. [Google Scholar] [CrossRef]
- Giorgi, F.; Im, E.S.; Coppola, E.; Diffenbaugh, N.; Gao, X.; Mariotti, L.; Shi, Y. Higher hydroclimatic intensity with global warming. J. Clim. 2011, 24, 5309–5324. [Google Scholar] [CrossRef]
- Yu, Y.; Fu, L.; Cheng, Y.; Ye, Q. Multi-view distance metric learning via independent and shared feature subspace with applications to face and forest fire recognition, and remote sensing classification. Knowl. Based Syst. 2022, 243, 108350. [Google Scholar] [CrossRef]
- Cheng, Y.; Fu, L.; Luo, P.; Ye, Q.; Liu, F.; Zhu, W. Multi-view generalized support vector machine via mining the inherent relationship between views with applications to face and fire smoke recognition. Knowl. Based Syst. 2020, 210, 106488. [Google Scholar] [CrossRef]
- Michaelides, S.; Levizzani, V.; Anagnostou, E.; Bauer, P.; Kasparis, T.; Lane, J. Precipitation: Measurement, remote sensing, climatology and modeling. Atmos. Res. 2009, 94, 512–533. [Google Scholar] [CrossRef]
- Duan, Z.; Bastiaanssen, W. First results from Version 7 TRMM 3B43 precipitation product in combination with a new downscaling–calibration procedure. Remote Sens. Environ. 2013, 131, 1–13. [Google Scholar] [CrossRef]
- Fowler, H.J.; Blenkinsop, S.; Tebaldi, C. Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol. 2007, 27, 1547–1578. [Google Scholar] [CrossRef]
- Groppelli, B.; Bocchiola, D.; Rosso, R. Spatial downscaling of precipitation from GCMs for climate change projections using random cascades: A case study in Italy. Water Resour. Res. 2011, 47, W03519. [Google Scholar] [CrossRef]
- Wilby, R.L.; Wigley, T. Precipitation predictors for downscaling: Observed and general circulation model relationships. Int. J. Climatol. 2000, 20, 641–661. [Google Scholar] [CrossRef]
- Sylla, M.; Gaye, A.; Pal, J.S.; Jenkins, G.; Bi, X. High-resolution simulations of West African climate using regional climate model (RegCM3) with different lateral boundary conditions. Theor. Appl. Climatol. 2009, 98, 293–314. [Google Scholar] [CrossRef]
- Sachindra, D.; Perera, B. Statistical downscaling of general circulation model outputs to precipitation accounting for non-stationarities in predictor-predictand relationships. PLoS ONE 2016, 11, e0168701. [Google Scholar] [CrossRef] [PubMed]
- Kirchmeier-Young, M.C.; Gillett, N.P.; Zwiers, F.W.; Cannon, A.J.; Anslow, F. Attribution of the influence of human-induced climate change on an extreme fire season. Earth’s Future 2019, 7, 2–10. [Google Scholar] [CrossRef]
- Gutmann, E.D.; Rasmussen, R.M.; Liu, C.; Ikeda, K.; Gochis, D.J.; Clark, M.P.; Dudhia, J.; Thompson, G. A comparison of statistical and dynamical downscaling of winter precipitation over complex terrain. J. Clim. 2012, 25, 262–281. [Google Scholar] [CrossRef]
- Schmidli, J.; Goodess, C.; Frei, C.; Haylock, M.; Hundecha, Y.; Ribalaygua, J.; Schmith, T. Statistical and dynamical downscaling of precipitation: An evaluation and comparison of scenarios for the European Alps. J. Geophys. Res. Atmos. 2007, 112, D04105. [Google Scholar] [CrossRef]
- Sun, L.; Fang, Y.; Chen, Y.; Huang, W.; Wu, Z.; Jeon, B. Multi-structure KELM with attention fusion strategy for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5539217. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, H.; Zheng, Y.; Wu, Z.; Ye, Z.; Zhao, H. MASSFormer: Memory-Augmented Spectral-Spatial Transformer for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5516415. [Google Scholar] [CrossRef]
- Sun, L.; Wang, X.; Zheng, Y.; Wu, Z.; Fu, L. Multiscale 3-D–2-D Mixed CNN and Lightweight Attention-Free Transformer for Hyperspectral and LiDAR Classification. IEEE Trans. Geosci. Remote Sens. 2024, 62, 2100116. [Google Scholar] [CrossRef]
- Jing, W.; Yang, Y.; Yue, X.; Zhao, X. A comparison of different regression algorithms for downscaling monthly satellite-based precipitation over North China. Remote Sens. 2016, 8, 835. [Google Scholar] [CrossRef]
- Chen, F.; Liu, Y.; Liu, Q.; Li, X. Spatial downscaling of TRMM 3B43 precipitation considering spatial heterogeneity. Int. J. Remote Sens. 2014, 35, 3074–3093. [Google Scholar] [CrossRef]
- Ye, Q.; Huang, P.; Zhang, Z.; Zheng, Y.; Fu, L.; Yang, W. Multiview learning with robust double-sided twin SVM. IEEE Trans. Cybern. 2021, 52, 12745–12758. [Google Scholar] [CrossRef] [PubMed]
- Bannister, R.N. A review of operational methods of variational and ensemble-variational data assimilation. Q. J. R. Meteorol. Soc. 2017, 143, 607–633. [Google Scholar] [CrossRef]
- Wang, J.; Xu, Y.; Yang, L.; Wang, Q.; Yuan, J.; Wang, Y. Data assimilation of high-resolution satellite rainfall product improves rainfall simulation associated with landfalling tropical cyclones in the Yangtze river Delta. Remote Sens. 2020, 12, 276. [Google Scholar] [CrossRef]
- Prein, A.F.; Langhans, W.; Fosser, G.; Ferrone, A.; Ban, N.; Goergen, K.; Keller, M.; Tölle, M.; Gutjahr, O.; Feser, F.; et al. A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys. 2015, 53, 323–361. [Google Scholar] [CrossRef]
- Fu, L.; Zhang, D.; Ye, Q. Recurrent thrifty attention network for remote sensing scene recognition. IEEE Trans. Geosci. Remote Sens. 2020, 59, 8257–8268. [Google Scholar] [CrossRef]
- Vandal, T.; Kodra, E.; Ganguly, S.; Michaelis, A.; Nemani, R.; Ganguly, A.R. DeepSD: Generating high resolution climate change projections through single image super-resolution. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017. [Google Scholar] [CrossRef]
- Rodrigues, E.R.; Oliveira, I.; Cunha, R.; Netto, M. DeepDownscale: A deep learning strategy for high-resolution weather forecast. In Proceedings of the 2018 IEEE 14th International Conference on e-Science (e-Science), Amsterdam, The Netherlands, 29 October–1 November 2018; pp. 415–422. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Z.; Foster, I.; Chang, W.; Kettimuthu, R.; Kotamarthi, V.R. Fast and accurate learned multiresolution dynamical downscaling for precipitation. Geosci. Model Dev. 2021, 14, 6355–6372. [Google Scholar] [CrossRef]
- Jing, Y.; Lin, L.; Li, X.; Li, T.; Shen, H. An attention mechanism based convolutional network for satellite precipitation downscaling over China. J. Hydrol. 2022, 613, 128388. [Google Scholar] [CrossRef]
- Harris, L.; McRae, A.T.; Chantry, M.; Dueben, P.D.; Palmer, T.N. A generative deep learning approach to stochastic downscaling of precipitation forecasts. J. Adv. Model. Earth Syst. 2022, 14, e2022MS003120. [Google Scholar] [CrossRef]
- Wang, F.; Tian, D.; Carroll, M. Customized deep learning for precipitation bias correction and downscaling. Geosci. Model Dev. 2023, 16, 535–556. [Google Scholar] [CrossRef]
- Zhuang, Q.; Zhou, Z.; Liu, S.; Wright, D.B.; Gao, L. The evaluation and downscaling-calibration of IMERG precipitation products at sub-daily scales over a metropolitan region. J. Flood Risk Manag. 2023, 16, e12902. [Google Scholar] [CrossRef]
- Nishant, N.; Hobeichi, S.; Sherwood, S.; Abramowitz, G.; Shao, Y.; Bishop, C.; Pitman, A. Comparison of a novel machine learning approach with dynamical downscaling for Australian precipitation. Environ. Res. Lett. 2023, 18, 094006. [Google Scholar] [CrossRef]
- Yoshikane, T.; Yoshimura, K. A downscaling and bias correction method for climate model ensemble simulations of local-scale hourly precipitation. Sci. Rep. 2023, 13, 9412. [Google Scholar] [CrossRef] [PubMed]
- Pierce, D.W.; Cayan, D.R.; Feldman, D.R.; Risser, M.D. Future increases in North American Extreme Precipitation in CMIP6 downscaled with LOCA. J. Hydrometeorol. 2023, 24, 951–975. [Google Scholar] [CrossRef]
- Legates, D.R. Climate models and their simulation of precipitation. Energy Environ. 2014, 25, 1163–1175. [Google Scholar] [CrossRef]
- Komurcu, M.; Emanuel, K.; Huber, M.; Acosta, R. High-resolution climate projections for the Northeastern United States using dynamical downscaling at convection-permitting scales. Earth Space Sci. 2018, 5, 801–826. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys. 2008, 227, 3465–3485. [Google Scholar] [CrossRef]
- Barrett, A.I.; Wellmann, C.; Seifert, A.; Hoose, C.; Vogel, B.; Kunz, M. One step at a time: How model time step significantly affects convection-permitting simulations. J. Adv. Model. Earth Syst. 2019, 11, 641–658. [Google Scholar] [CrossRef]
- Melillo, J.M.; Richmond, T.; Yohe, G. Climate change impacts in the United States. Third Natl. Clim. Assess. 2014, 52, 150–174. [Google Scholar]
- Osterreicher, F.; Vajda, I. A new class of metric divergences on probability spaces and its applicability in statistics. Ann. Inst. Stat. Math. 2003, 55, 639–653. [Google Scholar] [CrossRef]
- Endres, D.M.; Schindelin, J.E. A new metric for probability distributions. IEEE Trans. Inf. Theory 2003, 49, 1858–1860. [Google Scholar] [CrossRef]
- Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [Google Scholar] [CrossRef]
- Vitart, F.; Robertson, A.W.; Anderson, D.L. Subseasonal to Seasonal Prediction Project: Bridging the gap between weather and climate. Bull. World Meteorol. Organ. 2012, 61, 23. [Google Scholar]
- Chang, W.; Stein, M.L.; Wang, J.; Kotamarthi, V.R.; Moyer, E.J. Changes in spatiotemporal precipitation patterns in changing climate conditions. J. Clim. 2016, 29, 8355–8376. [Google Scholar] [CrossRef]
CONUS | Southwest | Northeast | Midwest | S Great Pl. | Northwest | N Great Pl. | Southeast | |
---|---|---|---|---|---|---|---|---|
Interpolator | 0.248 | 0.067 | 0.040 | 0.046 | 0.004 | 0.175 | 0.062 | 0.033 |
ESPCN | 0.233 | 0.061 | 0.037 | 0.042 | 0.003 | 0.169 | 0.058 | 0.030 |
SRCNN | 0.223 | 0.062 | 0.037 | 0.044 | 0.004 | 0.171 | 0.059 | 0.030 |
Encoded-CNN | 0.218 | 0.061 | 0.037 | 0.040 | 0.003 | 0.154 | 0.055 | 0.029 |
Direct-CNN | 0.211 | 0.059 | 0.036 | 0.043 | 0.003 | 0.166 | 0.054 | 0.029 |
STTA | 0.205 | 0.057 | 0.035 | 0.040 | 0.003 | 0.157 | 0.052 | 0.027 |
CONUS | Southwest | Northeast | Midwest | S Great Pl. | Northwest | N Great Pl. | Southeast | |
---|---|---|---|---|---|---|---|---|
Interpolator | 0.169 | 0.318 | 0.240 | 0.239 | 0.208 | 0.375 | 0.299 | 0.153 |
ESPCN | 0.163 | 0.216 | 0.185 | 0.145 | 0.137 | 0.163 | 0.277 | 0.152 |
SRCNN | 0.163 | 0.327 | 0.176 | 0.211 | 0.178 | 0.318 | 0.259 | 0.149 |
Encoded-CNN | 0.139 | 0.107 | 0.188 | 0.071 | 0.118 | 0.067 | 0.268 | 0.121 |
Direct-CNN | 0.083 | 0.209 | 0.141 | 0.124 | 0.149 | 0.184 | 0.238 | 0.109 |
STTA | 0.041 | 0.102 | 0.185 | 0.073 | 0.107 | 0.056 | 0.242 | 0.117 |
Type | Patch Size/Stride | Input Size | Output Size | MSE | J-S Distance |
---|---|---|---|---|---|
Conv2d | 3 × 3/2 | B × S × 1 × 64 × 128 | B × S × 32 × 32 × 64 | 0.258 | 0.089 |
Conv2d | 3 × 3/2 | B × S × 32 × 32 × 64 | B × S × 64 × 16 × 32 | ||
Conv2d | 3 × 3/1 | B × S × 64 × 16 × 32 | B × S × 32 × 16 × 32 | ||
Conv2d | 3 × 3/2 | B × S × 32 × 16 × 32 | B × S × 32 × 8 × 16 | ||
Inceptionx1 MaxPool | As in Figure 2 | B × S × 1 × 64 × 128 | B × S × 32 × 32 × 64 | 0.205 | 0.041 |
Conv2d | 3 × 3/2 | B × S × 32 × 32 × 64 | B × S × 64 × 16 × 32 | ||
Conv2d | 3 × 3/1 | B × S × 64 × 16 × 32 | B × S × 32 × 16 × 32 | ||
Conv2d | 3 × 3/2 | B × S × 32 × 16 × 32 | B × S × 32 × 8 × 16 | ||
Inceptionx1 MaxPool | As in Figure 2 | B × S × 1 × 64 × 128 | B × S × 32 × 32 × 64 | 0.298 | 0.114 |
Inceptionx1 MaxPool | As in Figure 2 | B × S × 32 × 32 × 64 | B × S × 64 × 16 × 32 | ||
Conv2d | 3 × 3/1 | B × S × 64 × 16 × 32 | B × S × 32 × 8 × 16 | ||
Conv2d | 3 × 3/2 | B × S × 32 × 8 × 16 | B × S × 32 × 8 × 16 | ||
Inceptionx1 MaxPool | As in Figure 2 | B × S × 1 × 64 × 128 | B × S × 32 × 32 × 64 | 0.363 | 0.153 |
Inceptionx1 MaxPool | As in Figure 2 | B × S × 32 × 32 × 64 | B × S × 64 × 16 × 32 | ||
Inceptionx1 MaxPool | As in Figure 2 | B × S × 64 × 16 × 32 | B × S × 32 × 8 × 16 | ||
Conv2d | 3 × 3/2 | B × S × 32 × 8 × 16 | B × S × 32 × 8 × 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Ye, Q.; Wang, K.; Sun, L. Successful Precipitation Downscaling Through an Innovative Transformer-Based Model. Remote Sens. 2024, 16, 4292. https://doi.org/10.3390/rs16224292
Yang F, Ye Q, Wang K, Sun L. Successful Precipitation Downscaling Through an Innovative Transformer-Based Model. Remote Sensing. 2024; 16(22):4292. https://doi.org/10.3390/rs16224292
Chicago/Turabian StyleYang, Fan, Qiaolin Ye, Kai Wang, and Le Sun. 2024. "Successful Precipitation Downscaling Through an Innovative Transformer-Based Model" Remote Sensing 16, no. 22: 4292. https://doi.org/10.3390/rs16224292
APA StyleYang, F., Ye, Q., Wang, K., & Sun, L. (2024). Successful Precipitation Downscaling Through an Innovative Transformer-Based Model. Remote Sensing, 16(22), 4292. https://doi.org/10.3390/rs16224292