A GIS Plugin for the Assessment of Deformations in Existing Bridge Portfolios via MTInSAR Data
Abstract
:1. Introduction
2. Integration of Satellite Data in GIS Environment: State-of-the-Art
3. BAS-MTInSAR: Definition of a New GIS Plugin
3.1. Analytical Steps of BAS-MTInSAR
3.2. BAS-MTInSAR GUI Description
- QDialog, top-level window used to store other elements of the GUI.
- QTabWidget, stack of tabbed widgets.
- QFrame, frame to store and organize elements of the GUI.
- QGroupBox, group box frame with a title.
- QComboBox, combines a button with a dropdown list (mainly layer of the QGIS project in this application).
- QgsFileWidget, provides a dialog that allows users to select files or directories (mainly .CSV files in this application).
- QTableWidget, table to store and visualize numerical and categorical data.
- QSpinBox, spin box widget.
- QCheckBox, checkbox with a text label.
- QPushButton, command button to perform actions when pressed.
- QLineEdit, one-line text editor for textual input.
- QTextEdit, used to edit and display both plain and rich text.
- QLabel, text or image display.
- QStackedWidget, a stack of widgets where only one widget is visible at a time.
- QWidget, base class of all user interface objects.
- QListWidget, list of elements.
4. Application Example on a Real Case Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Calvi, G.M.; Moratti, M.; O’Reilly, G.J.; Scattarreggia, N.; Monteiro, R.; Malomo, D.; Calvi, P.M.; Pinho, R. Once upon a Time in Italy: The Tale of the Morandi Bridge. Struct. Eng. Int. 2018, 29, 198–217. [Google Scholar] [CrossRef]
- Farneti, E.; Cavalagli, N.; Costantini, M.; Trillo, F.; Minati, F.; Venanzi, I.; Ubertini, F. A method for structural monitoring of multispan bridges using satellite InSAR data with uncertainty quantification and its pre-collapse application to the Albiano-Magra Bridge in Italy. Struct. Health Monit. 2023, 22, 353–371. [Google Scholar] [CrossRef]
- AASHTO, American Association of State Highway and Transportation Officials. The Manual for Bridge Evaluation; AASHTO: Washington, DC, USA, 2019. [Google Scholar]
- MIT, Ministero delle Infrastrutture e dei Trasporti. Linee Guida per la Classificazione e Gestione del Rischio, la Valutazione della Sicurezza ed il Monitoraggio dei Ponti Esistenti; Ministero delle Infrastrutture e dei Trasporti: Rome, Italy, 2020. (In Italian) [Google Scholar]
- Calò, M.; Ruggieri, S.; Nettis, A.; Uva, G. Multi source Interferometry Synthetic Aperture Radar for monitoring existing bridges: A case study. Ce/papers 2023, 6, 787–793. [Google Scholar] [CrossRef]
- Orellana, F.; Delgado Blasco, J.M.; Foumelis, M.; D’Aranno, P.J.V.; Marsella, M.A.; Di Mascio, P. DInSAR for Road Infrastructure Monitoring: Case Study Highway Network of Rome Metropolitan (Italy). Remote Sens. 2020, 12, 3697. [Google Scholar] [CrossRef]
- Bordoni, M.; Bonì, R.; Colombo, A.; Lanteri, L.; Meisina, C. A methodology for ground motion area detection (GMA-D) using A-DInSAR time series in landslide investigations. Catena 2018, 163, 89–110. [Google Scholar] [CrossRef]
- Meisina, C.; Zucca, F.; Notti, D.; Colombo, A.; Cucchi, A.; Savio, G.; Giannico, C.; Bianchi, M. Geological interpretation of PSINSAR data at regional scale. Sensors 2008, 8, 7469–7492. [Google Scholar] [CrossRef]
- Calò, M.; Ruggieri, S.; Doglioni, A.; Morga, M.; Nettis, A.; Simeone, V.; Uva, G. Probabilistic-based assessment of subsidence phenomena on the existing built heritage by combining MTInSAR data and UAV photogrammetry. Struct. Infrastruct. Eng. 2024, 1–16. [Google Scholar] [CrossRef]
- Miano, A.; Mele, A.; Calcaterra, D.; Di Martire, D.; Infante, D.; Prota, A.; Ramondini, M. The use of satellite data to support the structural health monitoring in areas affected by slow-moving landslides: A potential application to reinforced concrete buildings. Struct. Health Monit. 2021, 20, 3265–3287. [Google Scholar] [CrossRef]
- Selvakumaran, S.; Plank, S.; Geiß, C.; Rossi, C.; Middleton, C. Remote monitoring to predict bridge scour failure using Interferometric Synthetic Aperture Radar (InSAR) stacking techniques. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 463–470. [Google Scholar] [CrossRef]
- Calò, M.; Ruggieri, S.; Nettis, A.; Uva, G. A MTInSAR-Based Early Warning System to Appraise Deformations in Simply Supported Concrete Girder Bridges. Struct. Control Health Monit. 2024, 2024, 8978782. [Google Scholar] [CrossRef]
- Nettis, A.; Massimi, V.; Nutricato, R.; Nitti, D.O.; Samarelli, S.; Uva, G. Satellite-based interferometry for monitoring structural deformations of bridge portfolios. Autom. Constr. 2023, 147, 104707. [Google Scholar] [CrossRef]
- DePrekel, K.; Bouali, E.H.; Oommen, T. Monitoring the impact of groundwater pumping on infrastructure using Geographic Information System (GIS) and Persistent Scatterer interferometry (PSI). Infrastructures 2018, 3, 57. [Google Scholar] [CrossRef]
- Macchiarulo, V.; Milillo, P.; Blenkinsopp, C.; Giardina, G. Monitoring deformations of infrastructure networks: A fully automated GIS integration and analysis of InSAR time-series. Struct. Health Monit. 2022, 21, 1849–1878. [Google Scholar] [CrossRef]
- QGIS. Spatial Without Compromise QGIS Web Site. Available online: https://www.qgis.org/ (accessed on 14 November 2024).
- Peduto, D.; Elia, F.; Montuori, R. Probabilistic analysis of settlement-induced damage to bridges in the city of Amsterdam (The Netherlands). Transp. Geotech. 2018, 14, 169–182. [Google Scholar] [CrossRef]
- Del Soldato, M.; Tomás, R.; Pont, J.; Herrera, G.; Lopez-Davalillos, J.C.G.; Mora, O. A multi-sensor approach for monitoring a road bridge in the Valencia harbor (SE Spain) by SAR Interferometry (InSAR). Rend. Online Della Soc. Geol. Ital. 2016, 41, 235–238. [Google Scholar] [CrossRef]
- Hoppe, E.J.; Novali, F.; Rucci, A.; Fumagalli, A.; Del Conte, S.; Falorni, G.; Toro, N. Deformation monitoring of posttensioned bridges using High-Resolution satellite Remote sensing. J. Bridge Eng. 2019, 24, 04019115. [Google Scholar] [CrossRef]
- Giordano, P.; Turksezer, Z.; Previtali, M.; Limongelli, M. Damage detection on a historic iron bridge using satellite DInSAR data. Struct. Health Monit. 2022, 21, 2291–2311. [Google Scholar] [CrossRef]
- Markogiannaki, O.; Xu, H.; Chen, F.; Mitoulis, S.A.; Parcharidis, I. Monitoring of a landmark bridge using SAR interferometry coupled with engineering data and forensics. Int. J. Remote Sens 2021, 43, 95–119. [Google Scholar] [CrossRef]
- Infante, D.; Di Martire, D.; Confuorto, P.; Tessitore, S.; Ramondini, M.; Calcaterra, D. Differential Sar Interferometry Technique for Control of Linear Infrastructures Affected by Ground Instability Phenomena. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2018, 42, 251–258. [Google Scholar] [CrossRef]
- Vaccari, A.; Batabyal, T.; Tabassum, N.; Hoppe, E.J.; Bruckno, B.S.; Acton, S.T. Integrating remote sensing data in decision support systems for transportation asset management. Transp. Res. Rec. 2018, 2672, 23–35. [Google Scholar] [CrossRef]
- Ciampoli, L.B.; Gagliardi, V.; Calvi, A.; D’Amico, F.; Tosti, F. Automatic network level bridge monitoring by integration of InSAR and GIS catalogues. In Proceedings of the SPIE Optical Metrology, Munich, Germany, 24–27 June 2019. [Google Scholar] [CrossRef]
- Cleveland, R.B.; Cleveland, W.S.; McRae, J.E.; Terpenning, I. STL: A Seasonal-Trend Decomposition Procedure based on Loess. J. Off. Stat. 1990, 6, 3–73. [Google Scholar]
- Nettis, A.; Nettis, A.; Sergio, R.; Uva, G. Corrosion-induced fragility of existing prestressed concrete girder bridges under traffic loads. Eng. Struct. 2024, 314, 118302. [Google Scholar] [CrossRef]
- Python. Welcome to Python.org. Available online: https://www.python.org/ (accessed on 14 November 2024).
- PyQGIS. Welcome to the QGIS Python API Documentation Project. Available online: https://qgis.org/pyqgis/3.34/ (accessed on 14 November 2024).
- Qt Designer. Qt5 Designer Manual. Available online: https://doc.qt.io/qt-5/qtdesigner-manual.html (accessed on 14 November 2024).
- PyQt5. PyQt5 PyPi. Available online: https://pypi.org/project/PyQt5/ (accessed on 14 November 2024).
- OpenWeatherMap. Current Weather and Forecast—OpenWeattherMap. Available online: https://openweathermap.org/ (accessed on 14 November 2024).
- Available online: https://jmahaffy.sdsu.edu/courses/f11/math122/beamer_lectures/trig-04.pdf (accessed on 14 November 2024).
- ReLUIS. Linee Guida per L’utilizzo dei Dati Interferometrici Satellitari ai Fini Dell’interpretazione del Comportamento Strutturale delle Costruzioni (Draft); ReLUIS: Naples, Italy, 2023. (In Italian) [Google Scholar]
- Ruggieri, S.; Nettis, A.; Raffaele, D.; Guido, B.; Uva, G. Seismic fragility and risk assessment of Reinforced Concrete bridges undergoing elastomeric bearing deformations induced by landslide. Int. J. Bridge Eng. Manag. Res. 2024, 1, 21424003-1. [Google Scholar] [CrossRef]
- Bovenga, F.; Nutricato, R.; Refice, A.; Guerriero, L.; Chiaradia, M.T. SPINUA: A Flexible Processing Chain for ERS/ENVISAT Long Term Interferometry. European Space Agency (Special Publication): Paris, France, 2005; pp. 473–478. [Google Scholar]
- MIT, Ministero delle Infrastrutture e dei Trasporti. Aggiornamento delle “Norme Tecniche per le Costruzioni”; Ministero delle Infrastrutture e dei Trasporti: Rome, Italy, 2018. (In Italian) [Google Scholar]
Satellite | Mode | Spatial Resolution | Pass Type | Time Span | Incidence Angle | Azimuth Angle |
---|---|---|---|---|---|---|
CSK | StripMap HIMAGE | 3 m × 3 m | ASC | Oct 2017–Nov 2020 | 33.282 | 169.373 |
CSK | StripMap HIMAGE | 3 m × 3 m | DSC | Sept 2017–Dec 2020 | 29.550 | 11.026 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calò, M.; Ruggieri, S.; Nettis, A.; Uva, G. A GIS Plugin for the Assessment of Deformations in Existing Bridge Portfolios via MTInSAR Data. Remote Sens. 2024, 16, 4293. https://doi.org/10.3390/rs16224293
Calò M, Ruggieri S, Nettis A, Uva G. A GIS Plugin for the Assessment of Deformations in Existing Bridge Portfolios via MTInSAR Data. Remote Sensing. 2024; 16(22):4293. https://doi.org/10.3390/rs16224293
Chicago/Turabian StyleCalò, Mirko, Sergio Ruggieri, Andrea Nettis, and Giuseppina Uva. 2024. "A GIS Plugin for the Assessment of Deformations in Existing Bridge Portfolios via MTInSAR Data" Remote Sensing 16, no. 22: 4293. https://doi.org/10.3390/rs16224293
APA StyleCalò, M., Ruggieri, S., Nettis, A., & Uva, G. (2024). A GIS Plugin for the Assessment of Deformations in Existing Bridge Portfolios via MTInSAR Data. Remote Sensing, 16(22), 4293. https://doi.org/10.3390/rs16224293