A Synergistic Framework for Coupling Crop Growth, Radiative Transfer, and Machine Learning to Estimate Wheat Crop Traits in Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Geo-Tagged Ground Data Information
2.3. Agricultural Production Systems Simulator Next Generation (APSIM NG)
2.4. Calibration of APSIM NG
2.4.1. Ground Data Collection
2.4.2. Leaf Area Index Measurement
2.4.3. APSIM NG Simulation
2.4.4. Model Validation
2.4.5. Other Crop Trait Calculations
2.5. Reflectance Data (RTM and HLS)
2.5.1. Radiative Transfer Model Reflectance
2.5.2. HLS Reflectance (Farmers’ Fields)
2.5.3. Data Pre-Processing, Standardization, and Feature Selection
2.6. Machine Learning Models
2.6.1. Model Input and Output Parameters
2.6.2. Model Optimization and Performance Analysis
3. Results
3.1. Model Performance
3.2. Wheat Trait Temporal Mapping
4. Discussion
4.1. PROSAIL and HLS Reflectance
4.2. Model Performance
4.3. Traits Performance
4.4. Temporal Mapping of Crop Traits
4.5. Limitations of This Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clark, M.; Tilman, D. Comparative Analysis of Environmental Impacts of Agricultural Production Systems, Agricultural Input Efficiency, and Food Choice. Environ. Res. Lett. 2017, 12, 064016. [Google Scholar] [CrossRef]
- De los Santos-Montero, L.A.; Bravo-Ureta, B.E.; von Cramon-Taubadel, S.; Hasiner, E. The Performance of Natural Resource Management Interventions in Agriculture: Evidence from Alternative Meta-Regression Analyses. Ecol. Econ. 2020, 171, 106605. [Google Scholar] [CrossRef]
- Kganyago, M.; Mhangara, P.; Adjorlolo, C. Estimating Crop Biophysical Parameters Using Machine Learning Algorithms and Sentinel-2 Imagery. Remote Sens. 2021, 13, 4314. [Google Scholar] [CrossRef]
- van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A Meta-Analysis of Projected Global Food Demand and Population at Risk of Hunger for the Period 2010–2050. Nat. Food 2021, 2, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global Food Demand and the Sustainable Intensification of Agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef]
- Croce, R.; Carmo-Silva, E.; Cho, Y.B.; Ermakova, M.; Harbinson, J.; Lawson, T.; McCormick, A.J.; Niyogi, K.K.; Ort, D.R.; Patel-Tupper, D.; et al. Perspectives on Improving Photosynthesis to Increase Crop Yield. Plant Cell 2024, 36, 3944–3973. [Google Scholar] [CrossRef]
- Abdelbaki, A.; Schlerf, M.; Retzlaff, R.; Machwitz, M.; Verrelst, J.; Udelhoven, T. Comparison of Crop Trait Retrieval Strategies Using UAV-Based VNIR Hyperspectral Imaging. Remote Sens. 2021, 13, 1748. [Google Scholar] [CrossRef]
- Lu, N.; Wang, W.; Zhang, Q.; Li, D.; Yao, X.; Tian, Y.; Zhu, Y.; Cao, W.; Baret, F.; Liu, S.; et al. Estimation of Nitrogen Nutrition Status in Winter Wheat From Unmanned Aerial Vehicle Based Multi-Angular Multispectral Imagery. Front. Plant Sci. 2019, 10, 1601. [Google Scholar] [CrossRef]
- Murchie, E.H.; Burgess, A.J. Casting Light on the Architecture of Crop Yield. Crop Environ. 2022, 1, 74–85. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, Y. Agriculture in Silico: Perspectives on Radiative Transfer Optimization Using Vegetation Modeling. Crop Environ. 2023, 2, 175–183. [Google Scholar] [CrossRef]
- Walker, B.J.; Drewry, D.T.; Slattery, R.A.; VanLoocke, A.; Cho, Y.B.; Ort, D.R. Chlorophyll Can Be Reduced in Crop Canopies with Little Penalty to Photosynthesis. Plant Physiol. 2018, 176, 1215–1232. [Google Scholar] [CrossRef] [PubMed]
- Iwahashi, Y.; Sigit, G.; Utoyo, B.; Lubis, I.; Junaedi, A.; Trisasongko, B.H.; Wijaya, I.M.A.S.; Maki, M.; Hongo, C.; Homma, K. Drought Damage Assessment for Crop Insurance Based on Vegetation Index by Unmanned Aerial Vehicle (UAV) Multispectral Images of Paddy Fields in Indonesia. Agriculture 2022, 13, 113. [Google Scholar] [CrossRef]
- Vollmer, J.; Johnson, B.L.; Deckard, E.L.; Rahman, M. Evaluation of Simulated Hail Damage on Seed Yield and Agronomic Traits in Canola (Brassica Napus L.). Can. J. Plant Sci. 2020, 100, 597–608. [Google Scholar] [CrossRef]
- Ishaq, R.A.F.; Zhou, G.; Tian, C.; Tan, Y.; Jing, G.; Jiang, H. Obaid-ur-Rehman A Systematic Review of Radiative Transfer Models for Crop Yield Prediction and Crop Traits Retrieval. Remote Sens. 2024, 16, 121. [Google Scholar] [CrossRef]
- Verrelst, J.; Malenovský, Z.; Van der Tol, C.; Camps-Valls, G.; Gastellu-Etchegorry, J.P.; Lewis, P.; North, P.; Moreno, J. Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods. Surv. Geophys. 2019, 40, 589–629. [Google Scholar] [CrossRef]
- Gewali, U.B.; Monteiro, S.T.; Saber, E. Gaussian Processes for Vegetation Parameter Estimation from Hyperspectral Data with Limited Ground Truth. Remote Sens. 2019, 11, 1614. [Google Scholar] [CrossRef]
- Ali, A.M.; Darvishzadeh, R.; Skidmore, A.; Gara, T.W.; Heurich, M. Machine Learning Methods’ Performance in Radiative Transfer Model Inversion to Retrieve Plant Traits from Sentinel-2 Data of a Mixed Mountain Forest. Int. J. Digit. Earth 2021, 14, 106–120. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, G.P.; François, C.; Ustin, S.L. PROSPECT + SAIL Models: A Review of Use for Vegetation Characterization. Remote Sens. Environ. 2009, 113, S56–S66. [Google Scholar] [CrossRef]
- Zhou, G.; Niu, C.; Xu, W.; Yang, W.; Wang, J.; Zhao, H. Canopy Modeling of Aquatic Vegetation: A Radiative Transfer Approach. Remote Sens. Environ. 2015, 163, 186–205. [Google Scholar] [CrossRef]
- Zhang, L.; Jia, M.; Guo, X.; Zhang, L.; Wang, M.; Wang, W. Mapping Mangrove Functional Traits from Sentinel-2 Imagery Based on Hybrid Models Coupled with Active Learning Strategies International Journal of Applied Earth Observation and Geoinformation Mapping Mangrove Functional Traits from Sentinel-2 Imagery Base. Int. J. Appl. Earth Obs. Geoinf. 2024, 130, 103905. [Google Scholar] [CrossRef]
- Abdelbaki, A.; Schlerf, M.; Verhoef, W.; Udelhoven, T. Introduction of Variable Correlation for the Improved Retrieval of Crop Traits Using Canopy Reflectance Model Inversion. Remote Sens. 2019, 11, 2681. [Google Scholar] [CrossRef]
- Quan, X.; He, B.; Li, X. A Bayesian Network-Based Method to Alleviate the Ill-Posed Inverse Problem: A Case Study on Leaf Area Index and Canopy Water Content Retrieval. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6507–6517. [Google Scholar] [CrossRef]
- Chen, Q.; Zheng, B.; Chen, T.; Chapman, S.C. Integrating a Crop Growth Model and Radiative Transfer Model to Improve Estimation of Crop Traits Based on Deep Learning. J. Exp. Bot. 2022, 73, 6558–6574. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, Z.; Fairbairn, D.; Li, N.; Xu, B.; Feng, H.; Yang, G. Multi-LUTs Method for Canopy Nitrogen Density Estimation in Winter Wheat by Field and UAV Hyperspectral. Comput. Electron. Agric. 2019, 162, 174–182. [Google Scholar] [CrossRef]
- De Grave, C.; Verrelst, J.; Morcillo-Pallarés, P.; Pipia, L.; Rivera-Caicedo, J.P.; Amin, E.; Belda, S.; Moreno, J. Quantifying Vegetation Biophysical Variables from the Sentinel-3/FLEX Tandem Mission: Evaluation of the Synergy of OLCI and FLORIS Data Sources. Remote Sens. Environ. 2020, 251, 112101. [Google Scholar] [CrossRef] [PubMed]
- Caballero, G.; Pezzola, A.; Winschel, C.; Casella, A.; Sanchez Angonova, P.; Rivera-Caicedo, J.P.; Berger, K.; Verrelst, J.; Delegido, J. Seasonal Mapping of Irrigated Winter Wheat Traits in Argentina with a Hybrid Retrieval Workflow Using Sentinel-2 Imagery. Remote Sens. 2022, 14, 4531. [Google Scholar] [CrossRef] [PubMed]
- Jamali, M.; Soufizadeh, S.; Yeganeh, B.; Emam, Y. Wheat Leaf Traits Monitoring Based on Machine Learning Algorithms and High-Resolution Satellite Imagery. Ecol. Inform. 2023, 74, 101967. [Google Scholar] [CrossRef]
- Luo, S.; He, Y.; Li, Q.; Jiao, W.; Zhu, Y.; Zhao, X. Nondestructive Estimation of Potato Yield Using Relative Variables Derived from Multi-Period LAI and Hyperspectral Data Based on Weighted Growth Stage. Plant Methods 2020, 16, 1–14. [Google Scholar] [CrossRef]
- Danner, M.; Berger, K.; Wocher, M.; Mauser, W.; Hank, T. Efficient RTM-Based Training of Machine Learning Regression Algorithms to Quantify Biophysical & Biochemical Traits of Agricultural Crops. ISPRS J. Photogramm. Remote Sens. 2021, 173, 278–296. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, J.; Liu, X.; Du, L.; Shi, S.; Sun, J.; Chen, B. Estimation of Multi-Species Leaf Area Index Based on Chinese GF-1 Satellite Data Using Look-up Table and Gaussian Process Regression Methods. Sensors 2020, 20, 2460. [Google Scholar] [CrossRef]
- Kganyago, M.; Adjorlolo, C.; Mhangara, P. Exploring Transferable Techniques to Retrieve Crop Biophysical and Biochemical Variables Using Sentinel-2 Data. Remote Sens. 2022, 14, 3968. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Tazwar, M.T.; Khan, H.; Roy, S.; Iqbal, J.; Rabiul Alam, M.G.; Hassan, M.R.; Hassan, M.M. Yield Response of Different Rice Ecotypes to Meteorological, Agro-Chemical, and Soil Physiographic Factors for Interpretable Precision Agriculture Using Extreme Gradient Boosting and Support Vector Regression. Complexity 2022, 2022, 5305353. [Google Scholar] [CrossRef]
- Chergui, N.; Kechadi, M.T. Data Analytics for Crop Management: A Big Data View. J. Big Data 2022, 9, 123. [Google Scholar] [CrossRef]
- Chapagain, R.; Remenyi, T.A.; Harris, R.M.B.; Mohammed, C.L.; Huth, N.; Wallach, D.; Rezaei, E.E.; Ojeda, J.J. Decomposing Crop Model Uncertainty: A Systematic Review. Field Crops Res. 2022, 279, 108448. [Google Scholar] [CrossRef]
- Pasqualotto, N.; D’Urso, G.; Bolognesi, S.F.; Belfiore, O.R.; Van Wittenberghe, S.; Delegido, J.; Pezzola, A.; Winschel, C.; Moreno, J. Retrieval of Evapotranspiration from Sentinel-2: Comparison of Vegetation Indices, Semi-Empirical Models and SNAP Biophysical Processor Approach. Agronomy 2019, 9, 663. [Google Scholar] [CrossRef]
- Amin, E.; Verrelst, J.; Rivera-Caicedo, J.P.; Pipia, L.; Ruiz-Verdú, A.; Moreno, J. Prototyping Sentinel-2 Green LAI and Brown LAI Products for Cropland Monitoring. Remote Sens. Environ. 2021, 255, 112168. [Google Scholar] [CrossRef]
- Government of Pakistan. Crops Area & Production (District Wise) 2022–2023; Ministry of National Food Security and Research (Economic Wing): Islamabad, Pakistan, 2024.
- Togliatti, K.; Archontoulis, S.V.; Dietzel, R.; Puntel, L.; VanLoocke, A. How Does Inclusion of Weather Forecasting Impact In-Season Crop Model Predictions? Field Crops Res. 2017, 214, 261–272. [Google Scholar] [CrossRef]
- Gaydon, D.S.; Balwinder-Singh, J.; Wang, E.; Poulton, P.L.; Ahmad, B.; Ahmed, F.; Akhter, S.; Ali, I.; Amarasingha, R.; Chaki, A.K.; et al. Evaluation of the APSIM Model in Cropping Systems of Asia. Field Crops Res. 2017, 204, 52–75. [Google Scholar] [CrossRef]
- Shahid, M.R.; Wakeel, A.; Ullah, M.S.; Gaydon, D.S. Identifying Changes to Key APSIM-Wheat Constants to Sensibly Simulate High Temperature Crop Response in Pakistan. Field Crops Res. 2024, 307, 109265. [Google Scholar] [CrossRef]
- Holzworth, D.; Huth, N.I.; Fainges, J.; Brown, H.; Zurcher, E.; Cichota, R.; Verrall, S.; Herrmann, N.I.; Zheng, B.; Snow, V. APSIM Next Generation: Overcoming Challenges in Modernising a Farming Systems Model. Environ. Model. Softw. 2018, 103, 43–51. [Google Scholar] [CrossRef]
- Martin, T.N.; Fipke, G.M.; Winck, J.E.M.; Marchese, J.A. ImageJ Software as an Alternative Method for Estimating Leaf Area in Oats. Acta Agron. 2020, 69, 162–169. [Google Scholar] [CrossRef]
- Easlon, H.M.; Bloom, A.J. Easy Leaf Area: Automated Digital Image Analysis for Rapid and Accurate Measurement of Leaf Area. Appl. Plant Sci. 2014, 2, 2–5. [Google Scholar] [CrossRef] [PubMed]
- Singh Negi, N.; Singh, M. An Image Analysis Based System (Image J) for Determination of Leaf Area in Seven Chrysanthemum Varieties. Pharma Innov. J. 2023, 12, 2275–2281. [Google Scholar]
- Hussain, J.; Khaliq, T.; Ahmad, A.; Akhtar, J. Performance of Four Crop Model for Simulations of Wheat Phenology, Leaf Growth, Biomass and Yield across Planting Dates. PLoS ONE 2018, 13, e0197546. [Google Scholar] [CrossRef] [PubMed]
- Azmat, M.; Ilyas, F.; Sarwar, A.; Huggel, C.; Vaghefi, S.A.; Hui, T.; Qamar, M.U.; Bilal, M.; Ahmed, Z. Impacts of Climate Change on Wheat Phenology and Yield in Indus Basin, Pakistan. Sci. Total Environ. 2021, 790, 148221. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Baret, F. PROSPECT: A Model of Leaf Optical Properties Spectra. Remote Sens. Environ. 1990, 34, 75–91. [Google Scholar] [CrossRef]
- Yang, G.; Zhao, C.; Pu, R.; Feng, H.; Li, Z.; Li, H.; Sun, C. Leaf Nitrogen Spectral Reflectance Model of Winter Wheat (Triticum aestivum) Based on PROSPECT: Simulation and Inversion. J. Appl. Remote Sens. 2015, 9, 095976. [Google Scholar] [CrossRef]
- Verhoef, W.; Bach, H. Simulation of Hyperspectral and Directional Radiance Images Using Coupled Biophysical and Atmospheric Radiative Transfer Models. Remote Sens. Environ. 2003, 87, 23–41. [Google Scholar] [CrossRef]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 Surface Reflectance Data Set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Ali, A.; Zhou, G.; Pablo Antezana Lopez, F.; Xu, C.; Jing, G.; Tan, Y. Deep Learning for Water Quality Multivariate Assessment in Inland Water across China. Int. J. Appl. Earth Obs. Geoinf. 2024, 133, 104078. [Google Scholar] [CrossRef]
- Zhu, J.; Lu, J.; Li, W.; Wang, Y.; Jiang, J.; Cheng, T.; Zhu, Y.; Cao, W.; Yao, X. Estimation of Canopy Water Content for Wheat through Combining Radiative Transfer Model and Machine Learning. Field Crops Res. 2023, 302, 109077. [Google Scholar] [CrossRef]
- Ji, J.; Wang, X.; Ma, H.; Zheng, F.; Shi, Y.; Cui, H.; Zhao, S. Synchronous Retrieval of Wheat Cab and LAI from UAV Remote Sensing: Application of the Optimized Estimation Inversion Framework. Agronomy 2024, 14, 359. [Google Scholar] [CrossRef]
- Chen, L.; Liu, G.; Zhang, T. Integrating Machine Learning and Genome Editing for Crop Improvement. aBIOTECH 2024, 5, 262–277. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Yin, H.; Li, F.; Hu, Y.; Yu, K. Machine Learning Models Fed with Optimized Spectral Indices to Advance Crop Nitrogen Monitoring. Field Crops Res. 2023, 293, 108844. [Google Scholar] [CrossRef]
- Wang, T.; Gao, M.; Cao, C.; You, J.; Zhang, X.; Shen, L. Winter Wheat Chlorophyll Content Retrieval Based on Machine Learning Using in Situ Hyperspectral Data. Comput. Electron. Agric. 2022, 193, 106728. [Google Scholar] [CrossRef]
- Wang, Q.; Moreno-Martínez, Á.; Muñoz-Marí, J.; Campos-Taberner, M.; Camps-Valls, G. Estimation of Vegetation Traits with Kernel NDVI. ISPRS J. Photogramm. Remote Sens. 2023, 195, 408–417. [Google Scholar] [CrossRef]
- Qayyum, A.; Pervaiz, M.K. Full Length Research Paper A Detailed Descriptive Study of All the Wheat Production Parameters in Punjab, Pakistan. Afr. J. Agric. Res. 2013, 8, 4209–4230. [Google Scholar] [CrossRef]
- Bao, X.; Liu, X.; Hou, X.; Yin, B.; Duan, W.; Wang, Y.; Ren, J.; Gu, L.; Zhen, W. Single Irrigation at the Four-Leaf Stage in the Spring Optimizes Winter Wheat Water Consumption Characteristics and Water Use Efficiency. Sci. Rep. 2022, 12, 14257. [Google Scholar] [CrossRef]
- Li, J.; Lu, X.; Ju, W.; Li, J.; Zhu, S.; Zhou, Y. Seasonal Changes of Leaf Chlorophyll Content as a Proxy of Photosynthetic Capacity in Winter Wheat and Paddy Rice. Ecol. Indic. 2022, 140, 109018. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, C.; Guan, B.; Yang, R.; Liu, K.; Wang, Z.; Li, X.; Xue, K.; Yin, L.; Wang, X. The Effect of Different Sowing Dates on Dry Matter and Nitrogen Dynamics for Winter Wheat: An Experimental Simulation Study. PeerJ 2021, 9, e11700. [Google Scholar] [CrossRef]
- Liu, X.; Yin, B.; Bao, X.; Hou, X.; Wang, T.; Shang, C.; Yang, M.; Zhen, W. Optimization of Irrigation Period Improves Wheat Yield by Regulating Source-Sink Relationship under Water Deficit. Eur. J. Agron. 2024, 156, 127164. [Google Scholar] [CrossRef]
- Tomíček, J.; Mišurec, J.; Lukeš, P. Prototyping a Generic Algorithm for Crop Parameter Retrieval across the Season Using Radiative Transfer Model Inversion and Sentinel-2 Satellite Observations. Remote Sens. 2021, 13, 3659. [Google Scholar] [CrossRef]
- Sehgal, V.K.; Chakraborty, D.; Sahoo, R.N. Inversion of Radiative Transfer Model for Retrieval of Wheat Biophysical Parameters from Broadband Reflectance Measurements. Inf. Process. Agric. 2016, 3, 107–118. [Google Scholar] [CrossRef]
- Boren, E.J.; Boschetti, L. Landsat-8 and Sentinel-2 Canopy Water Content Estimation in Croplands through Radiative Transfer Model Inversion. Remote Sens. 2020, 12, 2803. [Google Scholar] [CrossRef]
- Lunagaria, M.M.; Patel, H.R. Evaluation of PROSAIL Inversion for Retrieval of Chlorophyll, Leaf Dry Matter, Leaf Angle, and Leaf Area Index of Wheat Using Spectrodirectional Measurements. Int. J. Remote Sens. 2019, 40, 8125–8145. [Google Scholar] [CrossRef]
- Jiang, J.; Comar, A.; Burger, P.; Bancal, P.; Weiss, M.; Baret, F. Estimation of Leaf Traits from Reflectance Measurements: Comparison between Methods Based on Vegetation Indices and Several Versions of the PROSPECT Model. Plant Methods 2018, 14, 1–16. [Google Scholar] [CrossRef]
- Schiefer, F.; Schmidtlein, S.; Kattenborn, T. The Retrieval of Plant Functional Traits from Canopy Spectra through RTM-Inversions and Statistical Models Are Both Critically Affected by Plant Phenology. Ecol. Indic. 2021, 121, 107062. [Google Scholar] [CrossRef]
- Shrestha, A.; Bheemanahalli, R.; Adeli, A.; Samiappan, S.; Czarnecki, J.M.P.; McCraine, C.D.; Reddy, K.R.; Moorhead, R. Phenological Stage and Vegetation Index for Predicting Corn Yield under Rainfed Environments. Front. Plant Sci. 2023, 14, 1168732. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sensors 2017, 2017, 1353691. [Google Scholar] [CrossRef]
- Ge, Y.; Atefi, A.; Zhang, H.; Miao, C.; Ramamurthy, R.K.; Sigmon, B.; Yang, J.; Schnable, J.C. High-Throughput Analysis of Leaf Physiological and Chemical Traits with VIS-NIR-SWIR Spectroscopy: A Case Study with a Maize Diversity Panel. Plant Methods 2019, 15, 1–12. [Google Scholar] [CrossRef]
- Kamenova, I.; Dimitrov, P. Evaluation of Sentinel-2 Vegetation Indices for Prediction of LAI, FAPAR and FCover of Winter Wheat in Bulgaria. Eur. J. Remote Sens. 2021, 54, 89–108. [Google Scholar] [CrossRef]
- Braga, P.; Crusiol, L.G.T.; Nanni, M.R.; Caranhato, A.L.H.; Fuhrmann, M.B.; Nepomuceno, A.L.; Neumaier, N.; Farias, J.R.B.; Koltun, A.; Gonçalves, L.S.A.; et al. Vegetation Indices and NIR-SWIR Spectral Bands as a Phenotyping Tool for Water Status Determination in Soybean. Precis. Agric. 2021, 22, 249–266. [Google Scholar] [CrossRef]
- Zhou, G.; Tian, C.; Han, Y.; Niu, C.; Miao, H.; Jing, G.; Lopez, F.P.A.; Yan, G.; Najjar, H.S.M.; Zhao, F.; et al. Canopy Reflectance Modeling of Row Aquatic Vegetation: AVRM and AVMC. Remote Sens. Environ. 2024, 311, 114296. [Google Scholar] [CrossRef]
- Shah, S.R.A.; Ishaq, R.A.F.; Shabbir, Y.; Ahmad, I. Deep Learning on High Spatial and Temporal Cadence Satellite Imagery for Field Boundary Delineation. In Proceedings of the 2021 7th International Conference on Aerospace Science and Engineering, ICASE 2021, Islamabad, Pakistan, 14–16 December 2021. [Google Scholar]
- D’andrimont, R.; Claverie, M.; Kempeneers, P.; Muraro, D.; Yordanov, M.; Peressutti, D.; Batič, M.; Waldner, F. AI4Boundaries: An Open AI-Ready Dataset to Map Field Boundaries with Sentinel-2 and Aerial Photography. Earth Syst. Sci. Data 2023, 15, 317–329. [Google Scholar] [CrossRef]
- Shao, Z.; Ahmad, M.N.; Javed, A. Comparison of Random Forest and XGBoost Classifiers Using Integrated Optical and SAR Features for Mapping Urban Impervious Surface. Remote Sens. 2024, 16, 665. [Google Scholar] [CrossRef]
- Fawagreh, K.; Gaber, M.M.; Elyan, E. Random Forests: From Early Developments to Recent Advancements. Syst. Sci. Control Eng. 2014, 2, 602–609. [Google Scholar] [CrossRef]
- Omer, Z.M.; Shareef, H. Comparison of Decision Tree Based Ensemble Methods for Prediction of Photovoltaic Maximum Current. Energy Convers. Manag. X 2022, 16, 100333. [Google Scholar] [CrossRef]
- Ma, T.; Lu, S.; Jiang, C. A Membership-Based Resampling and Cleaning Algorithm for Multi-Class Imbalanced Overlapping Data. Expert Syst. Appl. 2024, 240, 122565. [Google Scholar] [CrossRef]
- Zheng, F.; Wang, X.; Ji, J.; Ma, H.; Cui, H.; Shi, Y.; Zhao, S. Synchronous Retrieval of LAI and Cab from UAV Remote Sensing: Development of Optimal Estimation Inversion Framework. Agronomy 2023, 13, 1119. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, J.; Wang, A. Comparison of Various Approaches for Estimating Leaf Water Content and Stomatal Conductance in Different Plant Species Using Hyperspectral Data. Ecol. Indic. 2022, 142, 109278. [Google Scholar] [CrossRef]
- Estévez, J.; Salinero-Delgado, M.; Berger, K.; Pipia, L.; Rivera-Caicedo, J.P.; Wocher, M.; Reyes-Muñoz, P.; Tagliabue, G.; Boschetti, M.; Verrelst, J. Gaussian Processes Retrieval of Crop Traits in Google Earth Engine Based on Sentinel-2 Top-of-Atmosphere Data. Remote Sens. Environ. 2022, 273, 112958. [Google Scholar] [CrossRef] [PubMed]
Output Parameter (APSIM) | Variable Transformation Formula and Ranges Applied for PROSAIL Reflectance Simulation | Input Variable (PROSAIL) | Unit |
---|---|---|---|
SLA | Ns = (0.9 × SLA + 0.025)/(SLA − 0.1) [47] (1.0 to 2.1) | Leaf mesophyll structure (Ns) | Unitless |
Zs, LAI total, LAI Dead | [23] where f dead = LAI Dead/LAI Total (0.003829 to 0.027478) | Leaf water content (Cw) | g/cm2 |
LDW, LAI total, | Cm = 10−4 × LDW/LAI Total where LDW = 10 × LAITotal/SLA [23] (0.005025 to 0.007370) | Leaf dry matter content (Cm) | g/cm2 |
CNC, LAI total, | Cab = 26 × LNC [48] where LNC = CNC/LAI total (15.83 to 83.92) | Leaf Chlorophyll a and b content (Cab) | µg/cm2 |
Car = 0.216 × Cab [48] (3.42 to 18.13) | Leaf carotenoid content (Car) | µg/cm2 | |
LAI | Leaf Area Index (0.008 to 4.58) | LAI | - |
LAI total, | hspot = a/LAI [49], where a is an empirical parameter considered as 0.5 (0.098 to 0.224) | Hot spot size parameter (hspot) | m/m1 |
/ | Fixed ALA to 50° [23] | Average Leaf Angle | degree |
/ | Fixed Cant to 0 [23] | Leaf anthocyanin content (Cant) | µg/cm2 |
/ | Fixed Cbrown to 0 [23] | Cbrown | Unitless |
psoil | Fixed psoil to 1 [23] | Reflectance of soil as a libertarian surface | Unitless |
Band Name | Wavelength (Micrometers) | HLS Band Code Name Landsat-8 | HLS Band Code Name Sentienl-2 |
---|---|---|---|
Coastal Aerosol | 0.43–0.45 | B01 | B01 |
Blue | 0.45–0.51 | B02 | B02 |
Green | 0.53–0.59 | B03 | B03 |
Red | 0.64–0.67 | B04 | B04 |
NIR Narrow | 0.85–0.88 | B05 | B8A |
SWIR 1 | 1.57–1.65 | B06 | B11 |
SWIR 2 | 2.11–2.29 | B07 | B12 |
Dataset Name | Dataset Composition | No. of Samples in Dataset | No. of Training and Test Samples |
---|---|---|---|
Dataset-1 | PROSAIL Reflectance HLS Reflectance | PROSAIL = 1281 HLS = 1281 | Training = 1281 Test = 1281 |
Dataset-2 | HLS Reflectance | HLS = 1281 | Training = 1010 (80%) Test = 271 (20%) |
Hyperparameters | Dataset-1 (PROSAIL-HLS) | Dataset-2 (HLS; 80:20) | ||||||
---|---|---|---|---|---|---|---|---|
LAI | Cab | Cm | Cw | LAI | Cab | Cm | Cw | |
Random Forest | ||||||||
Max Depth | 75 | 100 | None | 25 | 25 | 10 | None | 10 |
Min Sample Leaf | 4 | 1 | 1 | 1 | 1 | 4 | 1 | 1 |
Min Sample Split | 10 | 10 | 2 | 5 | 5 | 10 | 2 | 2 |
n-estimator | 200 | 100 | 500 | 100 | 100 | 200 | 500 | 100 |
OOB Error | 0.0049 | 0.4578 | 3.3 × 10−9 | 3.7 × 10−8 | 0.0448 | 7.613 | 4.8 × 10−9 | 6.6 × 10−7 |
Support Vector Machine | ||||||||
C | 100 | 100 | 1 | 250 | 250 | 500 | 1 | 2000 |
Gamma | 0.1 | 0.1 | 0.1 | 5.0 | 5.0 | 1 | 0.1 | 0.1 |
Kernel | rbf | rbf | rbf | rbf | rbf | rbf | rbf | rbf |
Epsilon | 0.05 | 0.001 | 0.1 | 0.001 | 0.05 | 0.05 | 0.1 | 0.001 |
Extreme Gradient Boost | ||||||||
Learning Rate | 0.001 | 0.01 | 0.001 | 0.01 | 0.01 | 0.01 | 0.001 | 0.01 |
Max Depth | 10 | 100 | 4 | 100 | 10 | 10 | 4 | 10 |
Regular Lambda | 2.0 | 1.0 | 1.0 | 1.0 | 2.0 | 2.0 | 1.0 | 2.0 |
n-estimator | 750 | 750 | 500 | 750 | 750 | 500 | 500 | 500 |
Data Type | Model | LAI | Cab (µg/cm2) | Cm (g/cm2) | Cw (g/cm2) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | MAE | R2 | RMSE | MAE | R2 | RMSE | MAE | R2 | RMSE | MAE | R2 | ||
Dataset-1 | RF | 0.93 | 0.64 | 0.62 | 5.94 | 4.63 | 0.75 | 0.0003 | 0.0002 | 0.28 | 0.002 | 0.002 | 0.69 |
SVM | 0.67 | 0.52 | 0.83 | 7.34 | 6.19 | 0.68 | 0.0004 | 0.0003 | 0.14 | 0.003 | 0.002 | 0.59 | |
XGBoost | 0.96 | 0.70 | 0.57 | 5.66 | 4.23 | 0.67 | 0.0004 | 0.0002 | 0.27 | 0.002 | 0.002 | 0.72 | |
Dataset-2 | RF | 0.40 | 0.26 | 0.92 | 3.48 | 2.60 | 0.87 | 0.0002 | 0.0001 | 0.49 | 0.001 | 0.001 | 0.88 |
SVM | 0.41 | 0.27 | 0.92 | 3.28 | 2.42 | 0.89 | 0.0002 | 0.0001 | 0.49 | 0.002 | 0.001 | 0.85 | |
XGBoost | 0.40 | 0.26 | 0.93 | 3.47 | 2.62 | 0.87 | 0.0003 | 0.0002 | 0.41 | 0.001 | 0.001 | 0.88 |
Crop Trait | Crop | Range of R2/r and RMSE Across Techniques | Reference | |
---|---|---|---|---|
R2/r | RMSE (g/cm2) | |||
Cw | Wheat | r = 0.17–0.74 | 0.005–0.009 | [64] |
* CWC | Wheat | R2 = 0.37–0.50 | 0.0096 to 0.027 | [52] |
Cw | Wheat and others | R2 = 0.10–0.30 | 0.019–0.023 | [65] |
Cm | Wheat | r = 0.36–0.69 | 0.0005–0.0006 | [66] |
Cm | Wheat | R2 = 0.00 | 0.0018 | [67] |
Cm | Multiple (herbaceous 45 plants) | R2 = 0.01–0.30 | 0.0015–0.01 | [68] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishaq, R.A.F.; Zhou, G.; Ali, A.; Shah, S.R.A.; Jiang, C.; Ma, Z.; Sun, K.; Jiang, H. A Synergistic Framework for Coupling Crop Growth, Radiative Transfer, and Machine Learning to Estimate Wheat Crop Traits in Pakistan. Remote Sens. 2024, 16, 4386. https://doi.org/10.3390/rs16234386
Ishaq RAF, Zhou G, Ali A, Shah SRA, Jiang C, Ma Z, Sun K, Jiang H. A Synergistic Framework for Coupling Crop Growth, Radiative Transfer, and Machine Learning to Estimate Wheat Crop Traits in Pakistan. Remote Sensing. 2024; 16(23):4386. https://doi.org/10.3390/rs16234386
Chicago/Turabian StyleIshaq, Rana Ahmad Faraz, Guanhua Zhou, Aamir Ali, Syed Roshaan Ali Shah, Cheng Jiang, Zhongqi Ma, Kang Sun, and Hongzhi Jiang. 2024. "A Synergistic Framework for Coupling Crop Growth, Radiative Transfer, and Machine Learning to Estimate Wheat Crop Traits in Pakistan" Remote Sensing 16, no. 23: 4386. https://doi.org/10.3390/rs16234386
APA StyleIshaq, R. A. F., Zhou, G., Ali, A., Shah, S. R. A., Jiang, C., Ma, Z., Sun, K., & Jiang, H. (2024). A Synergistic Framework for Coupling Crop Growth, Radiative Transfer, and Machine Learning to Estimate Wheat Crop Traits in Pakistan. Remote Sensing, 16(23), 4386. https://doi.org/10.3390/rs16234386