Sensitivity Analysis of Sentinel-2 Imagery to Assess Urban Tree Functional Traits: A Physical Approach Based on Local Climate Zones
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodological Framework
2.2. Experimental Design for DART Modelling
2.2.1. Urban Scene and Tree Modelling Strategies
2.2.2. DART Modelling
2.3. Generating LUT from Simulated Sentinel-2 Images
2.3.1. Extracting Spectral Features
2.3.2. Vegetation Indices Calculation
2.4. Sensitivity Analysis
2.5. Comparing Simulated and Real Data
2.5.1. Real Dataset
2.5.2. Extracting Pixel Values
2.5.3. Cross-Table Analysis
3. Results
3.1. Sensitivity Analysis of the Simulated Isolated-Tree Scenario (SC1)
3.1.1. Spectral Bands
3.1.2. Vegetation Indices
3.2. Sensitivity Analysis of the Simulated Tree Row Scenario (SC2)
3.3. Comparison of Simulated and Real Data
4. Discussion
4.1. Modelling Assumptions and Choice of LCZs
4.1.1. Tree-Endogenous Parameters
4.1.2. Tree-Exogenous Parameters
4.1.3. The LCZ Approach
4.2. Sensitivity Analysis Based on Simulated Data
4.2.1. VI Performances to Characterize Functional Traits of Trees
4.2.2. Influence of the Radiative Transfer Model Chosen
4.3. The Extraction-Window Method for Capturing Pixel Heterogeneity in Urban Areas
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Detailed Description of DART Input Parameters
Appendix A.1. Tree-Exogenous Parameters
Appendix A.1.1. Sensor Settings, Direction Input Parameter and Atmosphere
Appendix A.1.2. Spectral Library
Appendix A.1.3. Earth Scene and Tree Planting Context
Appendix A.2. Tree-Endogenous Parameters
Appendix A.2.1. Tree Structural Parameters
Parameter | Value [m] |
---|---|
Tree height | 15 |
Trunk height under the crown | 4 |
Trunk height in the crown | 6 |
Trunk diameter | 0.4 |
Crown diameter | 10 |
Appendix A.2.2. Leaf Parameters
Appendix B. Ancillary Tables and Figures Comparing Simulated and Real Data
VI | SP | Window 1 | Window 2 | Window 3 | Window 4 | All Windows | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | r | RMSE | r | RMSE | r | RMSE | r | RMSE | r | ||
NDVI | AC | 0.05 | 0.79 | 0.07 | 0.44 | 0.10 | 0.36 | 0.02 | 0.99 | 0.05 | 0.9 |
FR | 0.01 | 0.99 | 0.12 | 0.51 | 0.14 | 0.27 | 0.02 | 0.99 | 0.1 | 0.62 | |
PL | 0.11 | 0.53 | 0.14 | −0.22 | 0.17 | −0.07 | 0.01 | 1 | 0.08 | 0.81 | |
QR | 0.06 | 0.85 | 0.04 | −0.07 | 0.09 | 0.25 | 0.02 | 0.98 | 0.05 | 0.86 | |
ALL | 0.08 | 0.82 | 0.10 | 0.28 | 0.13 | 0.17 | 0.02 | 0.99 | 0.07 | 0.84 | |
ARVI | AC | 0.05 | 0.86 | 0.09 | 0.52 | 0.13 | 0.36 | 0.02 | 0.98 | 0.06 | 0.89 |
FR | 0.01 | 0.99 | 0.15 | 0.38 | 0.16 | 0.37 | 0.02 | 0.98 | 0.11 | 0.63 | |
PL | 0.12 | 0.63 | 0.18 | −0.20 | 0.18 | 0.15 | 0.02 | 0.99 | 0.09 | 0.81 | |
QR | 0.07 | 0.87 | 0.04 | 0.82 | 0.12 | 0.34 | 0.02 | 0.98 | 0.06 | 0.86 | |
ALL | 0.09 | 0.84 | 0.12 | 0.23 | 0.15 | 0.27 | 0.02 | 0.99 | 0.08 | 0.84 | |
NGBDI | AC | 0.08 | 0.69 | 0.19 | 0.26 | 0.10 | 0.54 | 0.03 | 0.94 | 0.08 | 0.71 |
FR | 0.04 | 0.92 | 0.14 | 0.2 | 0.06 | 0.57 | 0.01 | 0.99 | 0.06 | 0.70 | |
PL | 0.10 | 0.42 | 0.17 | 0.01 | 0.10 | −0.12 | 0.03 | 0.95 | 0.08 | 0.67 | |
QR | 0.07 | 0.55 | 0.06 | 0.68 | 0.08 | 0.57 | 0.02 | 0.97 | 0.05 | 0.8 | |
ALL | 0.09 | 0.57 | 0.16 | 0.11 | 0.08 | 0.4 | 0.02 | 0.96 | 0.072 | 0.7 | |
RGBVI | AC | 0.2 | 0.55 | 0.29 | 0.57 | 0.2 | 0.26 | 0.04 | 0.95 | 0.14 | 0.71 |
FR | 0.06 | 0.85 | 0.2 | 0.21 | 0.1 | 0.5 | 0.01 | 1 | 0.1 | 0.73 | |
PL | 0.22 | 0.07 | 0.28 | −0.45 | 0.16 | −0.26 | 0.04 | 0.96 | 0.15 | 0.59 | |
QR | 0.19 | 0.31 | 0.07 | 0.59 | 0.16 | 0.56 | 0.02 | 0.99 | 0.12 | 0.69 | |
ALL | 0.19 | 0.3 | 0.25 | 0.05 | 0.15 | 0.24 | 0.03 | 0.97 | 0.13 | 0.67 | |
OSAVI | AC | 0.12 | 0.52 | 0.24 | 0.27 | 0.16 | 0.15 | 0.02 | 0.99 | 0.11 | 0.83 |
FR | 0.03 | 0.96 | 0.15 | 0.61 | 0.2 | 0.29 | 0.02 | 0.99 | 0.13 | 0.73 | |
PL | 0.23 | 0.34 | 0.27 | −0.28 | 0.23 | 0 | 0.04 | 0.99 | 0.17 | 0.78 | |
QR | 0.17 | 0.64 | 0.06 | 0.39 | 0.15 | 0.24 | 0.04 | 0.97 | 0.11 | 0.76 | |
ALL | 0.19 | 0.69 | 0.21 | 0.18 | 0.19 | 0.24 | 0.04 | 0.99 | 0.13 | 0.8 | |
MCARI | AC | 0.12 | 0.31 | 0.24 | 0.23 | 0.12 | 0.11 | 0.03 | 0.97 | 0.10 | 0.7 |
FR | 0.04 | 0.84 | 0.10 | 0.58 | 0.10 | 0.4 | 0.01 | 1 | 0.07 | 0.79 | |
PL | 0.17 | 0.20 | 0.25 | −0.39 | 0.12 | 0 | 0.04 | 0.97 | 0.12 | 0.67 | |
QR | 0.15 | 0.53 | 0.04 | 0.53 | 0.09 | 0.32 | 0.02 | 0.98 | 0.09 | 0.68 | |
ALL | 0.15 | 0.57 | 0.2 | −0.02 | 0.11 | 0.28 | 0.03 | 0.98 | 0.10 | 0.7 |
VI | SP | Window 1 | Window 2 | Window 3 | Window 4 | All Windows | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | r | RMSE | r | RMSE | r | RMSE | r | RMSE | r | ||
NDVI | AC | 0.07 | 0.66 | 0.08 | 0.31 | 0.11 | 0.23 | 0.06 | 0.81 | 0.07 | 0.74 |
FR | 0.02 | 0.91 | 0.12 | 0.48 | 0.17 | 0.27 | 0.09 | 0.86 | 0.12 | 0.6 | |
PL | 0.15 | 0.12 | 0.14 | −0.22 | 0.17 | −0.05 | 0.06 | 0.93 | 0.12 | 0.66 | |
QR | 0.09 | 0.71 | 0.04 | 0.35 | 0.11 | 0.33 | 0.1 | 0.82 | 0.10 | 0.59 | |
ALL | 0.12 | 0.65 | 0.10 | 0.23 | 0.15 | 0.1 | 0.07 | 0.88 | 0.10 | 0.66 | |
ARVI | AC | 0.08 | 0.71 | 0.10 | 0.37 | 0.15 | 0.24 | 0.08 | 0.79 | 0.09 | 0.72 |
FR | 0.03 | 0.90 | 0.15 | 0.36 | 0.19 | 0.34 | 0.11 | 0.8 | 0.14 | 0.58 | |
PL | 0.17 | 0.27 | 0.18 | −0.2 | 0.19 | 0.09 | 0.07 | 0.91 | 0.13 | 0.65 | |
QR | 0.11 | 0.70 | 0.04 | 0.86 | 0.14 | 0.39 | 0.11 | 0.79 | 0.11 | 0.58 | |
ALL | 0.13 | 0.68 | 0.13 | 0.19 | 0.17 | 0.18 | 0.09 | 0.86 | 0.12 | 0.66 | |
NGBDI | AC | 0.14 | 0.46 | 0.2 | 0.27 | 0.11 | 0.47 | 0.07 | 0.72 | 0.11 | 0.57 |
FR | 0.09 | 0.70 | 0.14 | 0.23 | 0.07 | 0.49 | 0.04 | 0.83 | 0.08 | 0.58 | |
PL | 0.18 | 0.24 | 0.17 | 0.01 | 0.11 | −0.18 | 0.08 | 0.75 | 0.13 | 0.41 | |
QR | 0.14 | 0.10 | 0.06 | 0.63 | 0.09 | 0.47 | 0.04 | 0.87 | 0.09 | 0.52 | |
ALL | 0.16 | 0.24 | 0.17 | 0.08 | 0.09 | 0.3 | 0.06 | 0.76 | 0.10 | 0.48 | |
RGBVI | AC | 0.27 | 0.44 | 0.31 | 0.51 | 0.23 | 0.29 | 0.09 | 0.77 | 0.17 | 0.59 |
FR | 0.13 | 0.57 | 0.21 | 0.24 | 0.12 | 0.42 | 0.06 | 0.87 | 0.12 | 0.63 | |
PL | 0.30 | 0.09 | 0.29 | −0.47 | 0.17 | −0.32 | 0.09 | 0.77 | 0.21 | 0.41 | |
QR | 0.27 | 0.04 | 0.08 | 0.48 | 0.17 | 0.48 | 0.06 | 0.89 | 0.17 | 0.48 | |
ALL | 0.28 | 0.12 | 0.27 | 0 | 0.17 | 0.16 | 0.08 | 0.8 | 0.18 | 0.49 | |
OSAVI | AC | 0.16 | 0.22 | 0.24 | 0.28 | 0.18 | 0.05 | 0.08 | 0.87 | 0.13 | 0.69 |
FR | 0.06 | 0.81 | 0.15 | 0.58 | 0.23 | 0.25 | 0.14 | 0.88 | 0.17 | 0.66 | |
PL | 0.31 | 0.18 | 0.27 | −0.31 | 0.23 | −0.06 | 0.11 | 0.92 | 0.22 | 0.65 | |
QR | 0.22 | 0.44 | 0.06 | 0.35 | 0.17 | 0.18 | 0.15 | 0.80 | 0.17 | 0.49 | |
ALL | 0.25 | 0.54 | 0.21 | 0.15 | 0.21 | 0.14 | 0.11 | 0.88 | 0.18 | 0.63 | |
MCARI | AC | 0.17 | 0.35 | 0.24 | 0.33 | 0.14 | −0.01 | 0.05 | 0.86 | 0.12 | 0.57 |
FR | 0.06 | 0.70 | 0.10 | 0.59 | 0.12 | 0.29 | 0.06 | 0.91 | 0.09 | 0.68 | |
PL | 0.23 | 0.16 | 0.26 | −0.40 | 0.12 | −0.06 | 0.07 | 0.87 | 0.16 | 0.52 | |
QR | 0.20 | 0.21 | 0.04 | 0.32 | 0.09 | 0.31 | 0.07 | 0.89 | 0.13 | 0.42 | |
ALL | 0.20 | 0.37 | 0.20 | 0.01 | 0.12 | 0.15 | 0.06 | 0.88 | 0.13 | 0.52 |
VI | DOY | Window 1 | Window 2 | Window 3 | Window 4 | All Windows | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | r | RMSE | r | RMSE | r | RMSE | r | RMSE | r | ||
NDVI | 156 | 0.07 | 0.87 | 0.07 | 0.53 | 0.12 | 0.24 | 0.02 | 0.99 | 0.06 | 0.88 |
166 | 0.09 | 0.79 | 0.08 | 0.43 | 0.16 | 0 | 0.02 | 0.99 | 0.08 | 0.83 | |
201 | 0.10 | 0.82 | 0.12 | 0.28 | 0.13 | −0.03 | 0.02 | 0.99 | 0.08 | 0.83 | |
226 | 0.09 | 0.82 | 0.10 | 0.31 | 0.14 | 0.18 | 0.02 | 0.99 | 0.07 | 0.83 | |
248 | 0.07 | 0.81 | 0.11 | −0.16 | 0.10 | 0.37 | 0.01 | 0.99 | 0.06 | 0.86 | |
ALL | 0.08 | 0.82 | 0.10 | 0.28 | 0.13 | 0.17 | 0.02 | 0.99 | 0.07 | 0.84 | |
ARVI | 156 | 0.08 | 0.88 | 0.08 | 0.53 | 0.14 | 0.43 | 0.02 | 0.99 | 0.07 | 0.86 |
166 | 0.09 | 0.83 | 0.09 | 0.39 | 0.17 | 0.17 | 0.02 | 0.99 | 0.08 | 0.83 | |
201 | 0.11 | 0.83 | 0.15 | 0.22 | 0.16 | 0.09 | 0.02 | 0.99 | 0.09 | 0.81 | |
226 | 0.09 | 0.85 | 0.13 | 0.27 | 0.16 | 0.20 | 0.02 | 0.99 | 0.09 | 0.82 | |
248 | 0.07 | 0.87 | 0.15 | −0.29 | 0.11 | 0.52 | 0.02 | 0.99 | 0.07 | 0.88 | |
ALL | 0.09 | 0.84 | 0.12 | 0.23 | 0.15 | 0.27 | 0.02 | 0.99 | 0.08 | 0.84 | |
NGBDI | 156 | 0.08 | 0.66 | 0.15 | −0.09 | 0.09 | 0.32 | 0.02 | 0.97 | 0.07 | 0.73 |
166 | 0.08 | 0.73 | 0.13 | 0.26 | 0.09 | 0.08 | 0.02 | 0.97 | 0.06 | 0.77 | |
201 | 0.10 | 0.41 | 0.17 | 0.12 | 0.06 | 0.42 | 0.03 | 0.94 | 0.08 | 0.63 | |
226 | 0.09 | 0.36 | 0.18 | −0.12 | 0.09 | 0.32 | 0.02 | 0.94 | 0.08 | 0.65 | |
248 | 0.08 | 0.30 | 0.17 | −0.11 | 0.08 | 0.32 | 0.02 | 0.95 | 0.07 | 0.64 | |
ALL | 0.09 | 0.57 | 0.16 | 0.11 | 0.08 | 0.40 | 0.02 | 0.96 | 0.072 | 0.7 | |
RGBVI | 156 | 0.19 | 0.33 | 0.21 | 0.12 | 0.15 | 0.10 | 0.03 | 0.98 | 0.13 | 0.71 |
166 | 0.18 | 0.40 | 0.22 | −0.01 | 0.13 | 0.31 | 0.03 | 0.97 | 0.12 | 0.71 | |
201 | 0.21 | 0.19 | 0.26 | 0.12 | 0.14 | 0.03 | 0.04 | 0.94 | 0.14 | 0.6 | |
226 | 0.21 | 0.20 | 0.28 | −0.11 | 0.18 | 0.13 | 0.03 | 0.97 | 0.15 | 0.63 | |
248 | 0.18 | 0.20 | 0.3 | −0.37 | 0.14 | 0.13 | 0.03 | 0.96 | 0.13 | 0.61 | |
ALL | 0.19 | 0.30 | 0.25 | 0.05 | 0.15 | 0.24 | 0.03 | 0.97 | 0.13 | 0.67 | |
OSAVI | 156 | 0.15 | 0.79 | 0.13 | 0.51 | 0.18 | 0.43 | 0.03 | 0.99 | 0.11 | 0.85 |
166 | 0.18 | 0.67 | 0.15 | 0.35 | 0.24 | 0.08 | 0.04 | 0.99 | 0.13 | 0.8 | |
201 | 0.22 | 0.68 | 0.24 | 0.07 | 0.17 | 0.11 | 0.04 | 0.99 | 0.14 | 0.79 | |
226 | 0.21 | 0.70 | 0.26 | 0.42 | 0.2 | 0.16 | 0.04 | 0.98 | 0.15 | 0.77 | |
248 | 0.18 | 0.61 | 0.24 | −0.70 | 0.14 | 0.28 | 0.03 | 0.99 | 0.12 | 0.81 | |
ALL | 0.19 | 0.69 | 0.21 | 0.18 | 0.19 | 0.24 | 0.04 | 0.99 | 0.13 | 0.8 | |
MCARI | 156 | 0.12 | 0.68 | 0.14 | 0.32 | 0.10 | 0.33 | 0.02 | 0.99 | 0.08 | 0.78 |
166 | 0.13 | 0.59 | 0.14 | 0.33 | 0.13 | 0.13 | 0.03 | 0.98 | 0.09 | 0.73 | |
201 | 0.16 | 0.59 | 0.21 | −0.20 | 0.08 | 0.40 | 0.03 | 0.97 | 0.11 | 0.68 | |
226 | 0.17 | 0.55 | 0.25 | 0 | 0.13 | 0.13 | 0.03 | 0.97 | 0.12 | 0.66 | |
248 | 0.16 | 0.45 | 0.22 | −0.76 | 0.07 | 0.31 | 0.03 | 0.96 | 0.10 | 0.68 | |
ALL | 0.15 | 0.57 | 0.2 | −0.02 | 0.11 | 0.28 | 0.03 | 0.98 | 0.10 | 0.7 |
VI | DOY | Window 1 | Window 2 | Window 3 | Window 4 | All Windows | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | r | RMSE | r | RMSE | r | RMSE | r | RMSE | r | ||
NDVI | 156 | 0.11 | 0.72 | 0.07 | 0.46 | 0.14 | 0.23 | 0.07 | 0.9 | 0.09 | 0.72 |
166 | 0.11 | 0.65 | 0.09 | 0.27 | 0.17 | −0.06 | 0.08 | 0.87 | 0.10 | 0.67 | |
201 | 0.14 | 0.60 | 0.13 | 0.23 | 0.14 | −0.03 | 0.07 | 0.9 | 0.11 | 0.64 | |
226 | 0.12 | 0.70 | 0.11 | 0.3 | 0.15 | 0.10 | 0.07 | 0.88 | 0.10 | 0.64 | |
248 | 0.11 | 0.66 | 0.11 | −0.32 | 0.13 | 0.18 | 0.07 | 0.86 | 0.09 | 0.66 | |
ALL | 0.12 | 0.65 | 0.1 | 0.23 | 0.15 | 0.10 | 0.07 | 0.88 | 0.10 | 0.66 | |
ARVI | 156 | 0.12 | 0.75 | 0.09 | 0.54 | 0.16 | 0.36 | 0.09 | 0.86 | 0.11 | 0.7 |
166 | 0.13 | 0.67 | 0.1 | 0.26 | 0.19 | 0.06 | 0.08 | 0.86 | 0.11 | 0.67 | |
201 | 0.16 | 0.64 | 0.16 | 0.13 | 0.17 | 0.06 | 0.08 | 0.89 | 0.12 | 0.64 | |
226 | 0.14 | 0.69 | 0.13 | 0.27 | 0.19 | 0.07 | 0.08 | 0.89 | 0.12 | 0.64 | |
248 | 0.11 | 0.70 | 0.16 | −0.34 | 0.15 | 0.35 | 0.10 | 0.80 | 0.11 | 0.64 | |
ALL | 0.13 | 0.68 | 0.13 | 0.19 | 0.17 | 0.18 | 0.09 | 0.86 | 0.12 | 0.66 | |
NGBDI | 156 | 0.15 | 0.41 | 0.16 | −0.19 | 0.09 | 0.22 | 0.06 | 0.81 | 0.11 | 0.54 |
166 | 0.14 | 0.31 | 0.14 | 0.12 | 0.09 | 0.02 | 0.06 | 0.87 | 0.10 | 0.52 | |
201 | 0.17 | 0.10 | 0.17 | 0.10 | 0.08 | 0.23 | 0.07 | 0.57 | 0.12 | 0.36 | |
226 | 0.16 | −0.08 | 0.18 | −0.12 | 0.1 | 0.23 | 0.07 | 0.64 | 0.11 | 0.43 | |
248 | 0.15 | 0.09 | 0.17 | −0.07 | 0.09 | 0.20 | 0.06 | 0.66 | 0.10 | 0.44 | |
ALL | 0.16 | 0.24 | 0.17 | 0.08 | 0.09 | 0.30 | 0.06 | 0.76 | 0.10 | 0.48 | |
RGBVI | 156 | 0.27 | 0.27 | 0.24 | 0.04 | 0.17 | 0.02 | 0.08 | 0.86 | 0.17 | 0.55 |
166 | 0.25 | 0.06 | 0.25 | −0.32 | 0.14 | 0.19 | 0.08 | 0.85 | 0.16 | 0.52 | |
201 | 0.30 | 0.09 | 0.27 | 0.10 | 0.15 | 0.02 | 0.09 | 0.62 | 0.19 | 0.41 | |
226 | 0.29 | −0.12 | 0.28 | −0.07 | 0.21 | 0.09 | 0.08 | 0.77 | 0.19 | 0.47 | |
248 | 0.26 | 0.2 | 0.3 | −0.36 | 0.16 | 0.10 | 0.08 | 0.73 | 0.17 | 0.43 | |
ALL | 0.28 | 0.12 | 0.27 | 0 | 0.17 | 0.16 | 0.08 | 0.80 | 0.18 | 0.49 | |
OSAVI | 156 | 0.20 | 0.68 | 0.13 | 0.47 | 0.20 | 0.32 | 0.12 | 0.91 | 0.16 | 0.70 |
166 | 0.23 | 0.54 | 0.16 | 0.25 | 0.25 | 0 | 0.12 | 0.87 | 0.18 | 0.62 | |
201 | 0.28 | 0.53 | 0.25 | 0.03 | 0.20 | −0.07 | 0.12 | 0.87 | 0.19 | 0.59 | |
226 | 0.28 | 0.56 | 0.26 | 0.42 | 0.23 | 0.06 | 0.11 | 0.88 | 0.20 | 0.6 | |
248 | 0.25 | 0.45 | 0.24 | −0.72 | 0.15 | 0.14 | 0.09 | 0.88 | 0.16 | 0.64 | |
ALL | 0.25 | 0.54 | 0.21 | 0.15 | 0.21 | 0.14 | 0.11 | 0.88 | 0.18 | 0.63 | |
MCARI | 156 | 0.17 | 0.49 | 0.15 | 0.34 | 0.12 | 0.15 | 0.06 | 0.91 | 0.12 | 0.59 |
166 | 0.18 | 0.39 | 0.15 | 0.26 | 0.13 | 0.11 | 0.06 | 0.9 | 0.12 | 0.55 | |
201 | 0.22 | 0.34 | 0.21 | −0.21 | 0.10 | 0.18 | 0.07 | 0.85 | 0.14 | 0.47 | |
226 | 0.22 | 0.33 | 0.26 | 0.10 | 0.15 | 0.01 | 0.07 | 0.86 | 0.15 | 0.48 | |
248 | 0.21 | 0.34 | 0.23 | −0.77 | 0.09 | 0.14 | 0.06 | 0.81 | 0.13 | 0.51 | |
ALL | 0.20 | 0.37 | 0.20 | 0.01 | 0.12 | 0.15 | 0.06 | 0.88 | 0.13 | 0.52 |
References
- Xu, F.; Yan, J.; Heremans, S.; Somers, B. Pan-European urban green space dynamics: A view from space between 1990 and 2015. Landsc. Urban Plan. 2022, 226, 104477. [Google Scholar] [CrossRef]
- Andersson-Sköld, Y.; Thorsson, S.; Rayner, D.; Lindberg, F.; Janhäll, S.; Jonsson, A.; Moback, U.; Bergman, R.; Granberg, M. An integrated method for assessing climate-related risks and adaptation alternatives in urban areas. Clim. Risk Manag. 2015, 7, 31–50. [Google Scholar] [CrossRef]
- Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E. Carbon storage and sequestration by urban trees in the USA. Environ. Pollut. 2002, 116, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Andersson, E.; Barthel, S.; Ahrné, K. Measuring Social–Ecological Dynamics Behind the Generation of Ecosystem Services. Ecol. Appl. 2007, 17, 1267–1278. [Google Scholar] [CrossRef]
- Wolf, K.L.; Lam, S.T.; McKeen, J.K.; Richardson, G.R.A.; van den Bosch, M.; Bardekjian, A.C. Urban Trees and Human Health: A Scoping Review. Int. J. Environ. Res. Public Health 2020, 17, 4371. [Google Scholar] [CrossRef]
- Czaja, M.; Kołton, A.; Muras, P. The Complex Issue of Urban Trees—Stress Factor Accumulation and Ecological Service Possibilities. Forests 2020, 11, 932. [Google Scholar] [CrossRef]
- Sæbø, A.; Borzan, Ž.; Ducatillion, C.; Hatzistathis, A.; Lagerström, T.; Supuka, J.; García-Valdecantos, J.L.; Rego, F.; Van Slycken, J. The Selection of Plant Materials for Street Trees, Park Trees and Urban Woodland. In Urban Forests and Trees: A Reference Book; Konijnendijk, C., Nilsson, K., Randrup, T., Schipperijn, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 257–280. ISBN 978-3-540-27684-5. [Google Scholar]
- Ma, B.; Hauer, R.J.; Östberg, J.; Koeser, A.K.; Wei, H.; Xu, C. A global basis of urban tree inventories: What comes first the inventory or the program. Urban For. Urban Green. 2021, 60, 127087. [Google Scholar] [CrossRef]
- Hilbert, D.; Roman, L.; Koeser, A.; Vogt, J.; van Doorn, N. Urban Tree Mortality: A Literature Review. Arboric. Urban For. 2019, 45, 167–200. [Google Scholar] [CrossRef]
- Shahtahmassebi, A.R.; Li, C.; Fan, Y.; Wu, Y.; Lin, Y.; Gan, M.; Wang, K.; Malik, A.; Blackburn, G.A. Remote sensing of urban green spaces: A review. Urban For. Urban Green. 2021, 57, 126946. [Google Scholar] [CrossRef]
- Velasquez-Camacho, L.; Cardil, A.; Mohan, M.; Etxegarai, M.; Anzaldi, G.; de-Miguel, S. Remotely Sensed Tree Characterization in Urban Areas: A Review. Remote Sens. 2021, 13, 4889. [Google Scholar] [CrossRef]
- Jia, W.; Zhao, S.; Zhang, X.; Liu, S.; Henebry, G.M.; Liu, L. Urbanization imprint on land surface phenology: The urban–rural gradient analysis for Chinese cities. Glob. Chang. Biol. 2021, 27, 2895–2904. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Li, X.; Xu, Y.; Huang, Z.; Chen, C.; Chen, J.; Du, H. Remote sensing monitoring of the spatiotemporal dynamics of urban forest phenology and its response to climate and urbanization. Urban Clim. 2024, 53, 101810. [Google Scholar] [CrossRef]
- Zhang, Y.; Yin, P.; Li, X.; Niu, Q.; Wang, Y.; Cao, W.; Huang, J.; Chen, H.; Yao, X.; Yu, L.; et al. The divergent response of vegetation phenology to urbanization: A case study of Beijing city, China. Sci. Total Environ. 2022, 803, 150079. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Jia, L.; Menenti, M.; Gorte, B. On the performance of remote sensing time series reconstruction methods—A spatial comparison. Remote Sens. Environ. 2016, 187, 367–384. [Google Scholar] [CrossRef]
- Chang, M.-E.; Zhao, Z.-Q.; Chang, H.-T.; Shu, B. Urban green infrastructure health assessment, based on landsat 8 remote sensing and entropy landscape metrics. Eur. J. Remote Sens. 2021, 54, 417–430. [Google Scholar] [CrossRef]
- Li, L.; Zhou, X.; Chen, L.; Chen, L.; Zhang, Y.; Liu, Y. Estimating Urban Vegetation Biomass from Sentinel-2A Image Data. Forests 2020, 11, 125. [Google Scholar] [CrossRef]
- Degerickx, J.; Roberts, D.A.; McFadden, J.P.; Hermy, M.; Somers, B. Urban tree health assessment using airborne hyperspectral and LiDAR imagery. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 26–38. [Google Scholar] [CrossRef]
- Näsi, R.; Honkavaara, E.; Blomqvist, M.; Lyytikäinen-Saarenmaa, P.; Hakala, T.; Viljanen, N.; Kantola, T.; Holopainen, M. Remote sensing of bark beetle damage in urban forests at individual tree level using a novel hyperspectral camera from UAV and aircraft. Urban For. Urban Green. 2018, 30, 72–83. [Google Scholar] [CrossRef]
- Granero-Belinchon, C.; Adeline, K.; Lemonsu, A.; Briottet, X. Phenological Dynamics Characterization of Alignment Trees with Sentinel-2 Imagery: A Vegetation Indices Time Series Reconstruction Methodology Adapted to Urban Areas. Remote Sens. 2020, 12, 639. [Google Scholar] [CrossRef]
- Leisenheimer, L.; Wellmann, T.; Jänicke, C.; Haase, D. Monitoring drought impacts on street trees using remote sensing— Disentangling temporal and species-specific response patterns with Sentinel-2 imagery. Ecol. Inform. 2024, 82, 102659. [Google Scholar] [CrossRef]
- Lausch, A.; Erasmi, S.; King, D.J.; Magdon, P.; Heurich, M. Understanding Forest Health with Remote Sensing -Part I—A Review of Spectral Traits, Processes and Remote-Sensing Characteristics. Remote Sens. 2016, 8, 1029. [Google Scholar] [CrossRef]
- Houborg, R.; Fisher, J.B.; Skidmore, A.K. Advances in remote sensing of vegetation function and traits. Int. J. Appl. Earth Obs. Geoinf. 2015, 43, 1–6. [Google Scholar] [CrossRef]
- Padalia, H.; Sinha, S.K.; Bhave, V.; Trivedi, N.K.; Senthil Kumar, A. Estimating canopy LAI and chlorophyll of tropical forest plantation (North India) using Sentinel-2 data. Adv. Space Res. 2020, 65, 458–469. [Google Scholar] [CrossRef]
- Miraglio, T.; Adeline, K.; Huesca, M.; Ustin, S.; Briottet, X. Assessing vegetation traits estimates accuracies from the future SBG and biodiversity hyperspectral missions over two Mediterranean Forests. Int. J. Remote Sens. 2022, 43, 3537–3562. [Google Scholar] [CrossRef]
- Croft, H.; Chen, J.M.; Luo, X.; Bartlett, P.; Chen, B.; Staebler, R.M. Leaf chlorophyll content as a proxy for leaf photosynthetic capacity. Glob. Chang. Biol. 2017, 23, 3513–3524. [Google Scholar] [CrossRef]
- Filella, I.; Penuelas, J. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. Int. J. Remote Sens. 1994, 15, 1459–1470. [Google Scholar] [CrossRef]
- Massacci, A.; Lannelli, M.A.; Pietrini, F.; Loreto, F. The effect of growth at low temperature on photosynthetic characteristics and mechanisms of photoprotection of maize leaves. J. Exp. Bot. 1995, 46, 119–127. [Google Scholar] [CrossRef]
- Talebzadeh, F.; Valeo, C. Evaluating the Effects of Environmental Stress on Leaf Chlorophyll Content as an Index for Tree Health. IOP Conf. Ser. Earth Environ. Sci. 2022, 1006, 012007. [Google Scholar] [CrossRef]
- Colombo, R.; Busetto, L.; Meroni, M.; Rossini, M.; Panigada, C. Optical Remote Sensing of Vegetation Water Content. In Hyperspectral Indices and Image Classifications for Agriculture and Vegetation; CRC Press: Boca Raton, FL, USA, 2018; ISBN 978-1-315-15933-1. [Google Scholar]
- Gara, T.W.; Rahimzadeh-Bajgiran, P.; Darvishzadeh, R. Forest Leaf Mass per Area (LMA) through the Eye of Optical Remote Sensing: A Review and Future Outlook. Remote Sens. 2021, 13, 3352. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Ustin, S. Leaf Optical Properties; Cambridge University Press: Cambridge, UK, 2019; ISBN 978-1-108-48126-7. [Google Scholar]
- Peñuelas, J.; Rutishauser, T.; Filella, I. Phenology Feedbacks on Climate Change. Science 2009, 324, 887–888. [Google Scholar] [CrossRef] [PubMed]
- Duncan, W.G. Leaf Angles, Leaf Area, and Canopy Photosynthesis1. Crop Sci. 1971, 11, 482–485. [Google Scholar] [CrossRef]
- Sinoquet, H.; Stephan, J.; Sonohat, G.; Lauri, P.É.; Monney, P. Simple equations to estimate light interception by isolated trees from canopy structure features: Assessment with three-dimensional digitized apple trees. New Phytol. 2007, 175, 94–106. [Google Scholar] [CrossRef] [PubMed]
- Helsen, K.; Bassi, L.; Feilhauer, H.; Kattenborn, T.; Matsushima, H.; Van Cleemput, E.; Somers, B.; Honnay, O. Evaluating different methods for retrieving intraspecific leaf trait variation from hyperspectral leaf reflectance. Ecol. Indic. 2021, 130, 108111. [Google Scholar] [CrossRef]
- Granero-Belinchon, C.; Adeline, K.; Briottet, X. Impact of the number of dates and their sampling on a NDVI time series reconstruction methodology to monitor urban trees with Venμs satellite. Int. J. Appl. Earth Obs. Geoinform. 2021, 95, 102257. [Google Scholar] [CrossRef]
- Zhen, J.; Jiang, X.; Xu, Y.; Miao, J.; Zhao, D.; Wang, J.; Wang, J.; Wu, G. Mapping leaf chlorophyll content of mangrove forests with Sentinel-2 images of four periods. Int. J. Appl. Earth Obs. Geoinform. 2021, 102, 102387. [Google Scholar] [CrossRef]
- Li, Y.; Ma, Q.; Chen, J.M.; Croft, H.; Luo, X.; Zheng, T.; Rogers, C.; Liu, J. Fine-scale leaf chlorophyll distribution across a deciduous forest through two-step model inversion from Sentinel-2 data. Remote Sens. Environ. 2021, 264, 112618. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W.; Kooistra, L.; Van den Brande, M.M.M. Using Sentinel-2 Data for Retrieving LAI and Leaf and Canopy Chlorophyll Content of a Potato Crop. Remote Sens. 2017, 9, 405. [Google Scholar] [CrossRef]
- Qian, B.; Ye, H.; Huang, W.; Xie, Q.; Pan, Y.; Xing, N.; Ren, Y.; Guo, A.; Jiao, Q.; Lan, Y. A sentinel-2-based triangular vegetation index for chlorophyll content estimation. Agric. For. Meteorol. 2022, 322, 109000. [Google Scholar] [CrossRef]
- Wu, C.; Niu, Z.; Tang, Q.; Huang, W. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agric. For. Meteorol. 2008, 148, 1230–1241. [Google Scholar] [CrossRef]
- Pasqualotto, N.; Delegido, J.; Van Wittenberghe, S.; Rinaldi, M.; Moreno, J. Multi-Crop Green LAI Estimation with a New Simple Sentinel-2 LAI Index (SeLI). Sensors 2019, 19, 904. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Wang, J.; Zhao, D.; Shen, Z.; Xiang, H.; Gao, C.; Li, W.; Cui, L.; Wu, G. Modeling strategies and influencing factors in retrieving canopy equivalent water thickness of mangrove forest with Sentinel-2 image. Ecol. Indic. 2024, 158, 111497. [Google Scholar] [CrossRef]
- Zhou, T.; Fu, H.; Sun, C.; Wang, S. Shadow Detection and Compensation from Remote Sensing Images under Complex Urban Conditions. Remote Sens. 2021, 13, 699. [Google Scholar] [CrossRef]
- Jilge, M.; Heiden, U.; Neumann, C.; Feilhauer, H. Gradients in urban material composition: A new concept to map cities with spaceborne imaging spectroscopy data. Remote Sens. Environ. 2019, 223, 179–193. [Google Scholar] [CrossRef]
- Kotthaus, S.; Smith, T.E.L.; Wooster, M.J.; Grimmond, C.S.B. Derivation of an urban materials spectral library through emittance and reflectance spectroscopy. ISPRS J. Photogramm. Remote Sens. 2014, 94, 194–212. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanre, D. Atmospherically Resistant Vegetation Index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- De Castro Oliveira, J.; Féret, J.-B.; Ponzoni, F.J.; Nouvellon, Y.; Gastellu-Etchegorry, J.-P.; Campoe, O.C.; Stape, J.L.; Rodriguez, L.C.E.; le Maire, G. Simulating the Canopy Reflectance of Different Eucalypt Genotypes With the DART 3-D Model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4844–4852. [Google Scholar] [CrossRef]
- Morcillo-Pallarés, P.; Rivera-Caicedo, J.P.; Belda, S.; De Grave, C.; Burriel, H.; Moreno, J.; Verrelst, J. Quantifying the Robustness of Vegetation Indices through Global Sensitivity Analysis of Homogeneous and Forest Leaf-Canopy Radiative Transfer Models. Remote Sens. 2019, 11, 2418. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhao, W.; Zhou, D.; Gong, H. Sensitivity Analysis of Vegetation Reflectance to Biochemical and Biophysical Variables at Leaf, Canopy, and Regional Scales. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4014–4024. [Google Scholar] [CrossRef]
- Gu, C.; Du, H.; Mao, F.; Han, N.; Zhou, G.; Xu, X.; Sun, S.; Gao, G. Global sensitivity analysis of PROSAIL model parameters when simulating Moso bamboo forest canopy reflectance. Int. J. Remote Sens. 2016, 37, 5270–5286. [Google Scholar] [CrossRef]
- Wang, Y.; Kallel, A.; Yang, X.; Regaieg, O.; Lauret, N.; Guilleux, J.; Chavanon, E.; Gastellu-Etchegorry, J.-P. DART-Lux: An unbiased and rapid Monte Carlo radiative transfer method for simulating remote sensing images. Remote Sens. Environ. 2022, 274, 112973. [Google Scholar] [CrossRef]
- Widlowski, J.-L.; Mio, C.; Disney, M.; Adams, J.; Andredakis, I.; Atzberger, C.; Brennan, J.; Busetto, L.; Chelle, M.; Ceccherini, G.; et al. The fourth phase of the radiative transfer model intercomparison (RAMI) exercise: Actual canopy scenarios and conformity testing. Remote Sens. Environ. 2015, 169, 418–437. [Google Scholar] [CrossRef]
- Zhen, Z.; Benromdhane, N.; Kallel, A.; Wang, Y.; Regaieg, O.; Boitard, P.; Landier, L.; Chavanon, E.; Lauret, N.; Guilleux, J.; et al. DART: A 3D radiative transfer model for urban studies. In Proceedings of the 2023 Joint Urban Remote Sensing Event (JURSE), Herklion, Greece, 17–19 May 2023. [Google Scholar]
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Aslam, A.; Rana, I.A. The use of local climate zones in the urban environment: A systematic review of data sources, methods, and themes. Urban Clim. 2022, 42, 101120. [Google Scholar] [CrossRef]
- Zhao, C.; Weng, Q.; Wang, Y.; Hu, Z.; Wu, C. Use of local climate zones to assess the spatiotemporal variations of urban vegetation phenology in Austin, Texas, USA. GIScience Remote Sens. 2022, 59, 393–409. [Google Scholar] [CrossRef]
- Demuzere, M.; Bechtel, B.; Middel, A.; Mills, G. Mapping Europe into local climate zones. PLoS ONE 2019, 14, e0214474. [Google Scholar] [CrossRef]
- Gascon, F.; Gastellu-Etchegorry, J.-P.; Lefevre-Fonollosa, M.-J.; Dufrene, E. Retrieval of forest biophysical variables by inverting a 3-D radiative transfer model and using high and very high resolution imagery. Int. J. Remote Sens. 2004, 25, 5601–5616. [Google Scholar] [CrossRef]
- Gastellu-Etchegorry, J.-P.; Yin, T.; Lauret, N.; Cajgfinger, T.; Gregoire, T.; Grau, E.; Feret, J.-B.; Lopes, M.; Guilleux, J.; Dedieu, G.; et al. Discrete Anisotropic Radiative Transfer (DART 5) for Modeling Airborne and Satellite Spectroradiometer and LIDAR Acquisitions of Natural and Urban Landscapes. Remote Sens. 2015, 7, 1667–1701. [Google Scholar] [CrossRef]
- Gastellu-Etchegorry, J.P.; Demarez, V.; Pinel, V.; Zagolski, F. Modeling radiative transfer in heterogeneous 3-D vegetation canopies. Remote Sens. Environ. 1996, 58, 131–156. [Google Scholar] [CrossRef]
- Féret, J.-B.; Gitelson, A.A.; Noble, S.D.; Jacquemoud, S. PROSPECT-D: Towards modeling leaf optical properties through a complete lifecycle. Remote Sens. Environ. 2017, 193, 204–215. [Google Scholar] [CrossRef]
- Feret, J.-B.; François, C.; Asner, G.P.; Gitelson, A.A.; Martin, R.E.; Bidel, L.P.R.; Ustin, S.L.; le Maire, G.; Jacquemoud, S. PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments. Remote Sens. Environ. 2008, 112, 3030–3043. [Google Scholar] [CrossRef]
- Miraglio, T.; Huesca, M.; Gastellu-Etchegorry, J.-P.; Schaaf, C.; Adeline, K.R.M.; Ustin, S.L.; Briottet, X. Impact of Modeling Abstractions When Estimating Leaf Mass per Area and Equivalent Water Thickness over Sparse Forests Using a Hybrid Method. Remote Sens. 2021, 13, 3235. [Google Scholar] [CrossRef]
- Gaubert, T.; Adeline, K.; Huesca, M.; Ustin, S.; Briottet, X. Estimation of Oak Leaf Functional Traits for California Woodland Savannas and Mixed Forests: Comparison between Statistical, Physical, and Hybrid Methods Using Spectroscopy. Remote Sens. 2024, 16, 29. [Google Scholar] [CrossRef]
- Lacherade, S.; Miesch, C.; Briottet, X.; Le Men, H. Spectral variability and bidirectional reflectance behaviour of urban materials at a 20 cm spatial resolution in the visible and near-infrared wavelengths. A case study over Toulouse (France). Int. J. Remote Sens. 2005, 26, 3859–3866. [Google Scholar] [CrossRef]
- Baudin, M.; Dutfoy, A.; Iooss, B.; Popelin, A.-L. OpenTURNS: An Industrial Software for Uncertainty Quantification in Simulation. In Handbook of Uncertainty Quantification; Ghanem, R., Higdon, D., Owhadi, H., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 2001–2038. ISBN 978-3-319-12385-1. [Google Scholar]
- ESA. Sentinel-2 Annual Performance Report—Year 2022; European Space Agency (ESA): Paris, France, 2022. [Google Scholar]
- Richardson, A.J.; Wiegand, C.L. Distinguishing vegetation from soil background information. Photogramm. Eng. Remote Sens. 1977, 43, 1541–1552. [Google Scholar]
- Louhaichi, M.; Borman, M.M.; Johnson, D.E. Spatially Located Platform and Aerial Photography for Documentation of Grazing Impacts on Wheat. Geocarto Int. 2001, 16, 65–70. [Google Scholar] [CrossRef]
- Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. Color Indices for Weed Identification Under Various Soil, Residue, and Lighting Conditions. Trans. ASAE 1995, 38, 259–269. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
- Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinformation 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems. In The Great Plains with ERTS; NASA Special Publications: Washington, DC, USA, 1974. [Google Scholar]
- Gitelson, A.; Merzlyak, M.N. Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. J. Photochem. Photobiol. B Biol. 1994, 22, 247–252. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Huang, W.; Wang, Z.; Huang, L.; Lamb, D.W.; Ma, Z.; Zhang, J.; Wang, J.; Zhao, C. Estimation of vertical distribution of chlorophyll concentration by bi-directional canopy reflectance spectra in winter wheat. Precis. Agric. 2011, 12, 165–178. [Google Scholar] [CrossRef]
- Iooss, B.; Lemaître, P. A Review on Global Sensitivity Analysis Methods. In Uncertainty Management in Simulation-Optimization of Complex Systems: Algorithms and Applications; Dellino, G., Meloni, C., Eds.; Operations Research/Computer Science Interfaces Series; Springer: Boston, MA, USA, 2015; pp. 101–122. ISBN 978-1-4899-7547-8. [Google Scholar]
- Le Gratiet, L.; Marelli, S.; Sudret, B. Metamodel-Based Sensitivity Analysis: Polynomial Chaos Expansions and Gaussian Processes. In Handbook of Uncertainty Quantification; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1289–1325. [Google Scholar]
- Saltelli, A. Making best use of model evaluations to compute sensitivity indices. Comput. Phys. Commun. 2002, 145, 280–297. [Google Scholar] [CrossRef]
- INSEE (French National Institute of Statistics and Economic Studies). Population Census 2020; INSEE: Paris, France, 2022. [Google Scholar]
- Scheffler, D.; Hollstein, A.; Diedrich, H.; Segl, K.; Hostert, P. AROSICS: An Automated and Robust Open-Source Image Co-Registration Software for Multi-Sensor Satellite Data. Remote Sens. 2017, 9, 676. [Google Scholar] [CrossRef]
- Wei, S.; Yin, T.; Dissegna, M.A.; Whittle, A.J.; Ow, G.L.F.; Yusof, M.L.M.; Lauret, N.; Gastellu-Etchegorry, J.-P. An assessment study of three indirect methods for estimating leaf area density and leaf area index of individual trees. Agric. For. Meteorol. 2020, 292–293, 108101. [Google Scholar] [CrossRef]
- Le Saint, T.; Nabucet, J.; Sulmon, C.; Pellen, J.; Adeline, K.; Hubert-Moy, L. A spatio-temporal dataset for ecophysiological monitoring of urban trees. Data Brief 2024, 57, 111010. [Google Scholar] [CrossRef]
- OpenStreetMap Contributors. Planet Dump. 2017. Available online: https://planet.osm.org (accessed on 1 September 2024).
- Adeline, K.R.M.; Briottet, X.; Lefebvre, S.; Rivière, N.; Gastellu-Etchegorry, J.-P.; Vinatier, F. Impact of Tree Crown Transmittance on Surface Reflectance Retrieval in the Shade for High Spatial Resolution Imaging Spectroscopy: A Simulation Analysis Based on Tree Modeling Scenarios. Remote Sens. 2021, 13, 931. [Google Scholar] [CrossRef]
- Widlowski, J.-L.; Côté, J.-F.; Béland, M. Abstract tree crowns in 3D radiative transfer models: Impact on simulated open-canopy reflectances. Remote Sens. Environ. 2014, 142, 155–175. [Google Scholar] [CrossRef]
- Malenovský, Z.; Martin, E.; Homolová, L.; Gastellu-Etchegorry, J.-P.; Zurita-Milla, R.; Schaepman, M.E.; Pokorný, R.; Clevers, J.G.P.W.; Cudlín, P. Influence of woody elements of a Norway spruce canopy on nadir reflectance simulated by the DART model at very high spatial resolution. Remote Sens. Environ. 2008, 112, 1–18. [Google Scholar] [CrossRef]
- Ichinose, M.; Inoue, T.; Nagahama, T. Effect of retro-reflecting transparent window on anthropogenic urban heat balance. Energy Build. 2017, 157, 157–165. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Y.; Yang, K.; Cermak, J.; Chen, Y. High-resolution aerosol retrieval over urban areas using sentinel-2 data. Atmospheric Res. 2021, 264, 105829. [Google Scholar] [CrossRef]
- Demuzere, M.; Kittner, J.; Bechtel, B. LCZ Generator: A Web Application to Create Local Climate Zone Maps. Front. Environ. Sci. 2021, 9, 637445. [Google Scholar] [CrossRef]
- de Sá, N.C.; Baratchi, M.; Hauser, L.T.; van Bodegom, P. Exploring the Impact of Noise on Hybrid Inversion of PROSAIL RTM on Sentinel-2 Data. Remote Sens. 2021, 13, 648. [Google Scholar] [CrossRef]
- Houborg, R.; Anderson, M.; Daughtry, C. Utility of an image-based canopy reflectance modeling tool for remote estimation of LAI and leaf chlorophyll content at the field scale. Remote Sens. Environ. 2009, 113, 259–274. [Google Scholar] [CrossRef]
- Melendo-Vega, J.R.; Martín, M.P.; Pacheco-Labrador, J.; González-Cascón, R.; Moreno, G.; Pérez, F.; Migliavacca, M.; García, M.; North, P.; Riaño, D. Improving the Performance of 3-D Radiative Transfer Model FLIGHT to Simulate Optical Properties of a Tree-Grass Ecosystem. Remote Sens. 2018, 10, 2061. [Google Scholar] [CrossRef]
- Verrelst, J.; Vicent, J.; Rivera-Caicedo, J.P.; Lumbierres, M.; Morcillo-Pallarés, P.; Moreno, J. Global Sensitivity Analysis of Leaf-Canopy-Atmosphere RTMs: Implications for Biophysical Variables Retrieval from Top-of-Atmosphere Radiance Data. Remote Sens. 2019, 11, 1923. [Google Scholar] [CrossRef]
- Niu, C.; Phinn, S.; Roelfsema, C. Global Sensitivity Analysis for Canopy Reflectance and Vegetation Indices of Mangroves. Remote Sens. 2021, 13, 2617. [Google Scholar] [CrossRef]
- Brede, B.; Verrelst, J.; Gastellu-Etchegorry, J.-P.; Clevers, J.G.P.W.; Goudzwaard, L.; den Ouden, J.; Verbesselt, J.; Herold, M. Assessment of Workflow Feature Selection on Forest LAI Prediction with Sentinel-2A MSI, Landsat 7 ETM+ and Landsat 8 OLI. Remote Sens. 2020, 12, 915. [Google Scholar] [CrossRef]
- Malenovský, Z.; Homolová, L.; Lukeš, P.; Buddenbaum, H.; Verrelst, J.; Alonso, L.; Schaepman, M.E.; Lauret, N.; Gastellu-Etchegorry, J.-P. Variability and Uncertainty Challenges in Scaling Imaging Spectroscopy Retrievals and Validations from Leaves Up to Vegetation Canopies. Surv. Geophys. 2019, 40, 631–656. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Pontius, R.G., Jr.; Rakshit, R. A review of accuracy assessment for object-based image analysis: From per-pixel to per-polygon approaches. ISPRS J. Photogramm. Remote Sens. 2018, 141, 137–147. [Google Scholar] [CrossRef]
- Liu, S.; Brandt, M.; Nord-Larsen, T.; Chave, J.; Reiner, F.; Lang, N.; Tong, X.; Ciais, P.; Igel, C.; Pascual, A.; et al. The overlooked contribution of trees outside forests to tree cover and woody biomass across Europe. Sci. Adv. 2023, 9, eadh4097. [Google Scholar] [CrossRef] [PubMed]
- Tolan, J.; Yang, H.-I.; Nosarzewski, B.; Couairon, G.; Vo, H.V.; Brandt, J.; Spore, J.; Majumdar, S.; Haziza, D.; Vamaraju, J.; et al. Very high resolution canopy height maps from RGB imagery using self-supervised vision transformer and convolutional decoder trained on aerial lidar. Remote Sens. Environ. 2024, 300, 113888. [Google Scholar] [CrossRef]
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef]
- Le Saint, T.; Lefebvre, S.; Hubert-Moy, L.; Nabucet, J.; Adeline, K. Sensitivity Analysis of Sentinel-2 Data for Urban Tree Characterization Using DART Model. In Proceedings of the Remote Sensing Technologies and Applications in Urban Environments VIII, Amsterdam, The Netherlands, 3–4 September 2023; Erbertseder, T., Chrysoulakis, N., Zhang, Y., Eds.; SPIE: Bellingham, WA, USA, 2023; Volume 12735, p. 127350H. [Google Scholar]
- Atmospheric Administration, United States Air Force. US Standard Atmosphere; National Oceanic and Atmospheric Administration: Washington, DC, USA, 1976.
- Yu, K.; Van Geel, M.; Ceulemans, T.; Geerts, W.; Ramos, M.M.; Sousa, N.; Castro, P.M.L.; Kastendeuch, P.; Najjar, G.; Ameglio, T.; et al. Foliar optical traits indicate that sealed planting conditions negatively affect urban tree health. Ecol. Indic. 2018, 95, 895–906. [Google Scholar] [CrossRef]
- Chianucci, F.; Pisek, J.; Raabe, K.; Marchino, L.; Ferrara, C.; Corona, P. A dataset of leaf inclination angles for temperate and boreal broadleaf woody species. Ann. For. Sci. 2018, 75, 50. [Google Scholar] [CrossRef]
Parameter | LCZ 2 | LCZ 5 | LCZ 6 | LCZ 8 |
---|---|---|---|---|
Height of roughness elements [m] | 18 | 18 | 6.5 | 6.5 |
Aspect ratio | 1.375 | 0.525 | 0.525 | 0.200 |
Building surface fraction [%] | 55 | 30 | 30 | 40 |
Impervious ground surface fraction [%] | 40 | 40 | 35 | 45 |
Pervious ground surface fraction [%] | 5 | 30 | 35 | 15 |
DART Section | Parameter Name | Category | Type | Values and Range |
---|---|---|---|---|
Global settings | Light propagation mode | exogenous | F | Bi-directional (DART-Lux) |
Sensor settings | Spectral bands | exogenous | F | According to Sentinel-2 sensor |
Zenithal angle | exogenous | F | 2.8 [°] | |
Azimuth angle | exogenous | F | 182 [°] | |
Spatial resolution | exogenous | F | 1 [m] | |
Direction input parameter | Hour | exogenous | F | 11:07 UTC |
Day | exogenous | F | Day 15 of each month | |
Month | exogenous | V | From March to November | |
Atmosphere | Atmosphere model | exogenous | F | USSTD76 |
Aerosol properties | exogenous | F | Urban Type Aerosol optical depth = 1 | |
Scene optical properties | Reflection model | exogenous | F | Lambertian |
Roof | exogenous | V | See Appendix A | |
Wall | exogenous | V | See Appendix A | |
Impervious ground | exogenous | V | See Appendix A | |
Pervious ground | exogenous | V | See Appendix A | |
Earth scene | Dimensions | exogenous | F | 100 m × 100 [m] |
Latitude | exogenous | F | 48.1°N | |
Longitude | exogenous | F | 1.68°W | |
Temperature | Exogenous | F | 300 [°K] | |
Tree planting conditions | Distance to nearest building | exogenous | V | LCZ2 and LCZ6: 5.0–6.5 [m] LCZ5 and LCZ8: 6–16 [m] |
Tree exposure | exogenous | V | Shady side or sunny side | |
Street orientation 1 | exogenous | V | 0, 45, 90 and 135 [°] | |
Tree | Geometric parameters | endogenous | F | See Table A1 |
Leaf angle distribution (ldist) | endogenous | V | Plagiophile and planophile | |
Leaf area density (LAD) | endogenous | V | 0.1 and 1.2 [m2/m3] | |
Leaf | Clumping factor | endogenous | V (SC1) | 0–50 [%] |
Structure coefficient (N) | endogenous | V | 1.1–2.3 [arbitrary unit] | |
Leaf chlorophylls content (Cab) | endogenous | V | 5–60 [μg/cm2] | |
Carotenoid content (Car) | endogenous | V | 2.5–25 [μg/cm2] | |
Brown pigment | endogenous | F | 0 [arbitrary unit] | |
Anthocyanin | endogenous | F | 0 [μg/cm2] | |
Equivalent water thickness | endogenous | V (SC1) | 0.004–0.024 [cm] | |
Dry matter content | endogenous | V | 0.002–0.014 [g/cm2] |
Category | Name | Equation (with Band Names) | Band | Spatial Resolution | Reference |
---|---|---|---|---|---|
Simple | Difference vegetation index | MS | 10 m | [72] | |
Normalized | Green Leaf Index | VIS | 10 m | [73] | |
Normalized green–blue difference index | VIS | 10 m | [74] | ||
Normalized green–red difference index | VIS | 10 m | [75] | ||
Red–Green–Blue vegetation Index | VIS | 10 m | [76] | ||
Atmospheric resistant vegetation index | MS | 10 m | [49] | ||
Normalized Vegetation Index | MS | 10 m | [77] | ||
Red-edge NDVI | MS | 20 m | [78] | ||
Sentinel-2 LAI Index | MS | 20 m | [44] | ||
Complex | Sentinel-2 Triangular vegetation index | STVI (See reference) | MS | 20 m | [42] |
Modified Chlorophyll Absorption in Reflectance Index 2 | MCARI2 (See reference) | MS | 10 m | [79] | |
Transformed Chlorophyll Absorption Reflectance Index | MS | 20 m | [80] | ||
Optimized Soil-Adjusted vegetation index | MS | 10 m | [50] | ||
Canopy chlorophyll inversion index | MS | 20 m | [80,81] |
Window Type | Tree A | Tree B | Total | No. of Trees |
---|---|---|---|---|
1 | 78.0% | - | 78% | 1 |
2 | 39.0% | 39.0% | 78% | 2 |
3 | 49.5% | 18.0% | 67.5% | 2 |
4 | 39.0% | - | 39% | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le Saint, T.; Nabucet, J.; Lefebvre, S.; Gastellu-Etchegorry, J.-P.; Hubert-Moy, L.; Adeline, K. Sensitivity Analysis of Sentinel-2 Imagery to Assess Urban Tree Functional Traits: A Physical Approach Based on Local Climate Zones. Remote Sens. 2024, 16, 4402. https://doi.org/10.3390/rs16234402
Le Saint T, Nabucet J, Lefebvre S, Gastellu-Etchegorry J-P, Hubert-Moy L, Adeline K. Sensitivity Analysis of Sentinel-2 Imagery to Assess Urban Tree Functional Traits: A Physical Approach Based on Local Climate Zones. Remote Sensing. 2024; 16(23):4402. https://doi.org/10.3390/rs16234402
Chicago/Turabian StyleLe Saint, Théo, Jean Nabucet, Sidonie Lefebvre, Jean-Philippe Gastellu-Etchegorry, Laurence Hubert-Moy, and Karine Adeline. 2024. "Sensitivity Analysis of Sentinel-2 Imagery to Assess Urban Tree Functional Traits: A Physical Approach Based on Local Climate Zones" Remote Sensing 16, no. 23: 4402. https://doi.org/10.3390/rs16234402
APA StyleLe Saint, T., Nabucet, J., Lefebvre, S., Gastellu-Etchegorry, J. -P., Hubert-Moy, L., & Adeline, K. (2024). Sensitivity Analysis of Sentinel-2 Imagery to Assess Urban Tree Functional Traits: A Physical Approach Based on Local Climate Zones. Remote Sensing, 16(23), 4402. https://doi.org/10.3390/rs16234402