Spatiotemporal Characteristics and Influencing Factors of PM2.5 Levels in Lianyungang: Insights from a Multidimensional Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition and Processing
2.1.1. PM2.5 Data
2.1.2. Meteorological Data
2.1.3. Statistical Data
2.2. Data Analysis Methods
2.2.1. EOF Analysis
2.2.2. Statistical Methods
2.2.3. Trend and Seasonal Change Analyses
3. Results
3.1. Spatiotemporal Distribution of Climatological PM2.5
3.2. Long-Term Spatiotemporal Distribution Characteristics of PM2.5
3.3. Long-Term Changes in PM2.5 Concentration
4. Discussion
4.1. Comprehensive Analysis of Seasonal Variations in PM2.5 Levels
4.1.1. Topographic Constraints on PM2.5 Dispersion
4.1.2. Climatic Drivers of Seasonal PM2.5 Variations
4.1.3. Anthropogenic Drivers of Seasonal PM2.5 Variations
4.1.4. Deciphering Meteorological Drivers of PM2.5 Variations
4.2. Policy Implementation and Socioeconomic Drivers
4.2.1. Period of Rapid Economic Growth and Intensified Pollution
4.2.2. Period of Economic Development and Pollution Decoupling
4.2.3. Period of Green Transition and Quality Improvement
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fino, A. Air Quality Legislation. In Encyclopedia of Environmental Health; Elsevier: Amsterdam, The Netherlands, 2019; pp. 61–70. [Google Scholar] [CrossRef]
- Chaudhary, E.; George, F.; Saji, A.; Dey, S.; Ghosh, S.; Thomas, T.; Kurpad, A.V.; Sharma, S.; Singh, N.; Agarwal, S.; et al. Cumulative effect of PM2.5 components is larger than the effect of PM2.5 mass on child health in India. Nat. Commun. 2023, 14, 6955. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Lin, C.; Li, W.; Chen, Y.; Huang, Y.; Fung, J.C.H.; Lau, A.K.H. Analysis of the adverse health effects of PM2.5 from 2001 to 2017 in China and the role of urbanization in aggravating the health burden. Sci. Total Environ. 2019, 652, 683–695. [Google Scholar] [CrossRef] [PubMed]
- McDuffie, E.E.; Martin, R.V.; Spadaro, J.V.; Burnett, R.; Smith, S.J.; O’Rourke, P.; Hammer, M.S.; van Donkelaar, A.; Bindle, L.; Shah, V.; et al. Source sector and fuel contributions to ambient PM2.5 and attributable mortality across multiple spatial scales. Nat. Commun. 2021, 12, 3594. [Google Scholar] [CrossRef]
- Han, L.; Zhou, W.; Li, W. Increasing impact of urban fine particles (PM2.5) on areas surrounding Chinese cities. Sci. Rep. 2015, 5, srep12467. [Google Scholar] [CrossRef]
- Fang, K.; Wang, T.; He, J.; Wang, T.; Xie, X.; Tang, Y.; Shen, Y.; Xu, A. The distribution and drivers of PM2.5 in a rapidly urbanizing region: The Belt and Road Initiative in focus. Sci. Total Environ. 2020, 716, 137010. [Google Scholar] [CrossRef]
- Li, X.; Shang, S.; Lee, Z.; Lin, G.; Zhang, Y.; Wu, J.; Kang, Z.; Liu, X.; Yin, C.; Gao, Y. Detection and Biomass Estimation of Phaeocystis globosa Blooms off Southern China From UAV-Based Hyperspectral Measurements. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4200513. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Fu, D.; Liao, S. Strengthening effect of super typhoon Rammasun (2014) on upwelling and cold eddies in the South China Sea. J. Oceanol. Limnol. 2021, 39, 403–419. [Google Scholar] [CrossRef]
- Semlali, B.-E.B.; Amrani, C.E. A stream processing software for air quality satellite datasets. In Proceedings of the International Conference on Advanced Intelligent Systems for Sustainable Development, Tangier, Morocco, 21–26 December 2020; pp. 839–853. [Google Scholar]
- Wei, J.; Li, Z.; Lyapustin, A.; Sun, L.; Peng, Y.; Xue, W.; Su, T.; Cribb, M. Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: Spatiotemporal variations and policy implications. Remote Sens. Environ. 2021, 252, 112136. [Google Scholar] [CrossRef]
- Hubert, D.; Heue, K.-P.; Lambert, J.-C.; Verhoelst, T.; Allaart, M.; Compernolle, S.; Cullis, P.D.; Dehn, A.; Félix, C.; Johnson, B.J. TROPOMI tropospheric ozone column data: Geophysical assessment and comparison to ozonesondes, GOME-2B and OMI. Atmos. Meas. Tech. Discuss. 2021, 14, 7405–7433. [Google Scholar] [CrossRef]
- Liang, L.; Daniels, J.; Biancardi, M.; Zhou, Y. Reconstructing aerosol optical depth using spatiotemporal Long Short-Term Memory convolutional autoencoder. Sci. Data 2023, 10, 842. [Google Scholar] [CrossRef]
- Su, Y.; Xie, Y.; Tao, Z.; Hu, Q.; Yu, T.; Gu, X. Validation and inter-comparison of MODIS and VIIRS aerosol optical depth products against data from multiple observation networks over East China. Atmos. Environ. 2021, 247, 118205. [Google Scholar] [CrossRef]
- Handschuh, J.; Erbertseder, T.; Baier, F. Systematic Evaluation of Four Satellite AOD Datasets for Estimating PM2.5 Using a Random Forest Approach. Remote Sens. 2023, 15, 2064. [Google Scholar] [CrossRef]
- Wu, J.; Yao, F.; Li, W.; Si, M. VIIRS-based remote sensing estimation of ground-level PM2.5 concentrations in Beijing–Tianjin–Hebei: A spatiotemporal statistical model. Remote Sens. Environ. 2016, 184, 316–328. [Google Scholar] [CrossRef]
- Qin, X. Study on Countermeasures for the Coordinated Development of Economy and Environment in Lianyungang City; Tongfang Knowledge Network (Beijing) Technology Co., Ltd.: Bejing, China, 2020. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, T.; Chen, L.; Li, L.; Wang, S.; Hu, S.; Yuan, L.; Wang, J.; Wen, M. Investigating the Impacts of Urbanization on PM2.5 Pollution in the Yangtze River Delta of China: A Spatial Panel Data Approach. Atmosphere 2020, 11, 1058. [Google Scholar] [CrossRef]
- Chen, M.; Zou, X.; Liu, A. Quantitative calculation of the economic losses of atmosphere and water pollution and adjustment of GDP in Lianyungang area. China Popul. Resour. Environ. 2004, 14, 88–93. [Google Scholar] [CrossRef]
- Chen, L.; Chen, D.; Yang, W.; Shao, S.; Ling, J.; Li, X.; Wang, L.; Zhang, Y.; Zhu, T.; Zhu, L. Cause Analysis and Emergency Control Effect Evaluation of Winter Haze Pollution in Lianyungang. Environ. Monit. Forewarning 2023, 15, 43–50. [Google Scholar] [CrossRef]
- Cheng, C.; Zhang, L.; Yao, Y.; Wang, Y. Pollution Characteristics and Source Apportionment of Water Soluble Inorganic Ions in PM2.5 in Lianyungang City during Spring. Environ. Monit. Forewarning 2019, 11, 41–46. [Google Scholar] [CrossRef]
- Jiang, W.; Gao, X.; Yan, H.; Guo, L.; Zhang, H.; Ran, Z. Spatiotemporal Distribution Characteristics of PM2.5 in Coastal Areas of Lianyungang and Its Relationship with Meteorological Conditions. Technol. Innov. Appl. 2022, 12, 73–75. [Google Scholar] [CrossRef]
- Lu, J.; Liu, F.; Li, T. Long-term correlational analysis for air pollutants in Lianyungang city. Environ. Pollut. Control 2007, 390–393. [Google Scholar]
- Sun, C.; Tu, M. Analysis on Infl uencing Factors of PM2.5 Emission in Lianyungang Urban Area During Winter Spring Transition Period. Leather Manuf. Environ. Technol. 2023, 4, 36–38. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, F.; Zhu, J. Multifractal Analysis of Air Pollutant Concentration Time Series Data in Lianyungang City. J. Huaihai Inst. Technol. 2011, 20, 41–45. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, T. Analysis of the Change Tendency of Air Quality in LianYungang. Environ. Monit. China 2014, 30, 66–69. [Google Scholar] [CrossRef]
- Xue, W.; Zhang, J.; Zhong, C.; Ji, D.; Huang, W. Satellite-derived spatiotemporal PM2.5 concentrations and variations from 2006 to 2017 in China. Sci. Total Environ. 2020, 712, 134577. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Li, Z. ChinaHighPM2.5: Big Data Seamless 1 km Ground-Level PM2.5 Dataset for China (2000–2021); National Tibetan Plateau/Third Pole Environment Data Center: Beijing, China, 2023. [Google Scholar]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Hayes, L.; Stocks, M.; Blakers, A. Accurate long-term power generation model for offshore wind farms in Europe using ERA5 reanalysis. Energy 2021, 229, 120603. [Google Scholar] [CrossRef]
- Hoffmann, L.; Günther, G.; Li, D.; Stein, O.; Wu, X.; Griessbach, S.; Heng, Y.; Konopka, P.; Müller, R.; Vogel, B.; et al. From ERA-Interim to ERA5: The considerable impact of ECMWF’s next-generation reanalysis on Lagrangian transport simulations. Atmos. Chem. Phys. 2019, 19, 3097–3124. [Google Scholar] [CrossRef]
- Davis, E.V.; Raju, C.S.; Rajeev, K. Comprehensive observational evidence for the effect of clouds in the diurnal evolution of atmospheric boundary layer. In Proceedings of the 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC), New Delhi, India, 9–15 March 2019; p. 1. [Google Scholar]
- Ceamanos, X.; Roujean, J.-L.; Carrer, D.; Meurey, C. Downwelling shortwave surface flux from MSG geostationary satellite: Impact assessment on Land Surface Models and improvements on consideration of aerosol effects. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS, Melbourne, VIC, Australia, 21–26 July 2013; pp. 3068–3071. [Google Scholar]
- Guo, L.; Zhang, Y.; Lin, H.; Zeng, W.; Liu, T.; Xiao, J.; Rutherford, S.; You, J.; Ma, W. The washout effects of rainfall on atmospheric particulate pollution in two Chinese cities. Environ. Pollut. 2016, 215, 195–202. [Google Scholar] [CrossRef]
- Karimi, F.; Amanollahi, J.; Reisi, M.; Darand, M. Prediction of air quality using vertical atmospheric condition and developing hybrid models. Adv. Space Res. 2023, 72, 1172–1182. [Google Scholar] [CrossRef]
- Zhao, P.; Ge, S.; Su, J.; Ding, J.; Kuang, Y. Relative humidity dependence of hygroscopicity parameter of ambient aerosols. J. Geophys. Res. Atmos. 2022, 127, e2021JD035647. [Google Scholar] [CrossRef]
- Sheng, P.X.; Mao, J.T.; Li, J.G. Atmospheric Physics; Peking University Press: Beijing, China, 2003. [Google Scholar]
- Fatahillah, A.; Masyhudi, M.; Setiawan, T. Numerical analysis of air pollutant dispersion in steam power plant area using the finite volume method. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2020; p. 012002. [Google Scholar]
- Lianyungang Statistics Bureau. Lianyungang Statistical Yearbook; China Statistics Press: Beijing, China, 2001. [Google Scholar]
- Alkemade, F. Empirical orthogonal function (EOF) analysis of ozone variability. In Studies in Environmental Science; Elsevier: Amsterdam, The Netherlands, 1995; Volume 65, pp. 275–278. [Google Scholar]
- Fu, D.; Zhang, X.; Li, X.; Liu, D.; Yu, G.; Xu, H. Changes in the hydrodynamic characteristics of the upper layer of the South China Sea during the period of super typhoon Rammasun (2014). Tellus A Dyn. Meteorol. Oceanogr. 2020, 72, 1–15. [Google Scholar] [CrossRef]
- Neha; Marwah, R.; Pasari, S. Application of Empirical Orthogonal Function on Geodetic Time-Series Data. In Proceedings of the 2021 IEEE International India Geoscience and Remote Sensing Symposium (InGARSS), Ahmedabad, India, 6–10 December 2021; pp. 198–201. [Google Scholar]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, X.; Wang, S.; Tang, D.; Zhu, D. Interannual variability and trends in sea surface temperature, sea surface wind, and sea level anomaly in the South China Sea. Int. J. Remote Sens. 2020, 41, 4160–4173. [Google Scholar] [CrossRef]
- Zeng, J.; Liu, C.; Li, X.; Zhao, H.; Lu, X. Comparative study of the variability and trends of phytoplankton biomass between spring and winter upwelling systems in the South China Sea. J. Mar. Syst. 2022, 231, 103738. [Google Scholar] [CrossRef]
- Benesty, J. Noise Reduction in Speech Processing; Springer: Berlin/Heidelberg, Germany, 2009; Volume 14. [Google Scholar]
- Zhao, K.; Wulder, M.A.; Hu, T.; Bright, R.; Wu, Q.; Qin, H.; Li, Y.; Toman, E.; Mallick, B.; Zhang, X.; et al. Detecting change-point, trend, and seasonality in satellite time series data to track abrupt changes and nonlinear dynamics: A Bayesian ensemble algorithm. Remote Sens. Environ. 2019, 232, 111181. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, X.; Ding, Y.; Liu, Y.; Zhang, H.; Wang, Y.; Zhong, J. The impact of meteorological changes from 2013 to 2017 on PM2.5 mass reduction in key regions in China. Sci. China Earth Sci. 2019, 62, 1885–1902. [Google Scholar] [CrossRef]
- The State Council of the People’s Republic of China. Pollution Prevention and Control Action Plan. Available online: https://www.gov.cn/jrzg/2013-09/12/content_2486918.htm (accessed on 12 September 2013).
- Lianyungang Municipal People’s Government. Notice on Further Strengthening Air Pollution Prevention and Control Across the City. Available online: https://www.lyg.gov.cn/zglygzfmhwz/sxwj/content/zwgk_89c72f1e7e284818ac1058df8e82c97f.htm (accessed on 12 September 2014).
- Chen, C.; Yang, W. Analysis on Pollution Characteristics and Influencing Factors of PM2.5 in Lianyungang. Environ. Sci. Manag. 2014, 39, 120–122. [Google Scholar]
- Dai, Y.; Tao, J.; Lin, Z.; Xie, S.; Cao, J.; Zhang, R. Characteristics of Haze and Its Impact Factors in Four Megacities in China During 2006–2009. Environ. Sci. 2013, 34, 2925–2932. [Google Scholar] [CrossRef]
- Li, J.; Wang, G. Impact of Sandstorm on Air Quality of Huangshi and Its Control. Environ. Sci. Technol. 2003, 47–49. [Google Scholar] [CrossRef]
- Li, M.; Zhang, L. Haze in China: Current and future challenges. Environ. Pollut. 2014, 189, 85–86. [Google Scholar] [CrossRef]
- Li, R.; Zhao, Y.; Fu, H.; Chen, J.; Peng, M.; Wang, C. Substantial changes in gaseous pollutants and chemical compositions in fine particles in the North China Plain during the COVID-19 lockdown period: Anthropogenic vs. meteorological influences. Atmos. Chem. Phys. 2021, 21, 8677–8692. [Google Scholar] [CrossRef]
- Niu, R.; Cai, X.; Zou, X.; Jiao, M. The Characteristics of Sand and Dust Weather Events in China in 2005. Clim. Environ. Res. 2007, 12, 358–364. [Google Scholar] [CrossRef]
- Su, B.; Zhan, M.; Zhai, J.; Wang, Y.; Fischer, T. Spatio-temporal variation of haze days and atmospheric circulation pattern in China (1961–2013). Quat. Int. 2015, 380–381, 14–21. [Google Scholar] [CrossRef]
- Liu, Q.; Yao, Y.; Zhao, Q. Impact of Atmospheric Transport on Fine Particulate Matter Concentrations in Lianyungang Urban Area. Qinghai Environ. 2018, 28, 140–144. [Google Scholar]
- Song, R.; Yang, L.; Liu, M.; Li, C.; Yang, Y. Spatiotemporal Distribution of Air Pollution Characteristics in Jiangsu Province, China. Adv. Meteorol. 2019, 2019, 5907673. [Google Scholar] [CrossRef]
- Chen, L.; Xia, M.; Yang, X.; Liu, P.; Cai, Q. Assessment of the emission inventory of air pollutants based on land use. J. China Univ. Min. Technol. 2016, 45, 1271–1277. [Google Scholar] [CrossRef]
- Brehmer, C.; Lai, A.; Clark, S.; Shan, M.; Ni, K.; Ezzati, M.; Yang, X.; Baumgartner, J.; Schauer, J.J.; Carter, E. The oxidative potential of personal and household PM2.5 in a rural setting in southwestern China. Environ. Sci. Technol. 2019, 53, 2788–2798. [Google Scholar] [CrossRef] [PubMed]
- Banks, A.; Kooperman, G.J.; Xu, Y. Meteorological influences on anthropogenic PM2.5 in future climates: Species level analysis in the community earth system model v2. Earth’s Future 2022, 10, e2021EF002298. [Google Scholar] [CrossRef]
- Song, M.; Kim, M.; Oh, S.-H.; Park, C.; Kim, M.; Kim, M.; Lee, H.; Choe, S.; Bae, M.-S. Influences of organic volatile compounds on the secondary organic carbon of fine particulate matter in the fruit tree area. Appl. Sci. 2021, 11, 8193. [Google Scholar] [CrossRef]
- Luo, H.; Chen, J.; Li, G.; An, T. Formation kinetics and mechanisms of ozone and secondary organic aerosols from photochemical oxidation of different aromatic hydrocarbons: Dependence on NO x and organic substituents. Atmos. Chem. Phys. 2021, 21, 7567–7578. [Google Scholar] [CrossRef]
- Quan, J.; Liu, Q.; Li, X.; Gao, Y.; Jia, X.; Sheng, J.; Liu, Y. Effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events. Atmos. Environ. 2015, 122, 306–312. [Google Scholar] [CrossRef]
- Rabha, S.; Saikia, B.K.; Singh, G.K.; Gupta, T. Meteorological influence and chemical compositions of atmospheric particulate matters in an Indian urban area. ACS Earth Space Chem. 2021, 5, 1686–1694. [Google Scholar] [CrossRef]
- Standing Committee of the National People’s Congress. The Air Pollution Prevention and Control Law. 1987. Available online: http://www.law-lib.com/law/law_view.asp?id=95468 (accessed on 20 September 2024).
- Standing Committee of the National People’s Congress. The Air Pollution Prevention and Control Law. 1995. Available online: http://www.law-lib.com/law/law_view.asp?id=96365 (accessed on 20 September 2024).
- The Ninth National People’s Congress. The “Tenth Five-Year Plan”. 2001. Available online: https://www.gov.cn/gongbao/content/2001/content_60699.htm (accessed on 20 September 2024).
- Jin, Y.; Andersson, H.; Zhang, S. Air pollution control policies in China: A retrospective and prospects. Int. J. Environ. Res. Public Health 2016, 13, 1219. [Google Scholar] [CrossRef] [PubMed]
- The 16th Central Committee of the Communist Party of China. The 11th Five-Year Plan. 2005. Available online: https://www.gov.cn/ztzl/2005-10/19/content_79342.htm (accessed on 20 September 2024).
- The 17th Central Committee of the Communist Party of China. The 12th Five-Year Plan. 2011. Available online: https://www.gov.cn/zhuanti/2011-03/16/content_2623428_2.htm (accessed on 20 September 2024).
- Tian, Z. Analysis of Atmospheric Governance Policy in Yangtze River Delta. Master’s Thesis, Southwest Jiaotong University, Chengdu, China, 2021. [Google Scholar]
- The State Council of the People’s Republic of China. National Action Plan for Sustained Air Quality Improvement. 2023. Available online: https://www.gov.cn/zhengce/zhengceku/202312/content_6919001.htm (accessed on 20 September 2024).
Acronym | Blh | Ssrd | Tp | SP | T2m | D2m | RH | AH | q | W10 | WD |
---|---|---|---|---|---|---|---|---|---|---|---|
Unit | m | J/m2 | mm | Pa | K | K | % | % | g/kg | m/s | (°) |
Pearson Correlation (r) | 0.54 * | −0.45 * | −0.53 * | 0.66 * | −0.74 * | −0.74 * | −0.48 * | −0.71 * | −0.70 * | −0.29 * | −0.20 * |
p-value | <0.0001 | 6.23 × 10−4 |
Period | Correlation and Statistical Significance | GDP (Billion RMB) | GDP per Capita (RMB) | Industrial Output Value (Billion RMB) | Built-Up Area (km2) | Greening Rate of Urban Built-Up Area (%) | Urban Population Density (Person/km2) | Per Capita Daily Residential Electricity Consumption (kWh) | Total Social Electricity Consumption (Billion kWh) | Number of Motor Vehicles | Industrial Particulate Matter Emission (Tons) |
---|---|---|---|---|---|---|---|---|---|---|---|
2000–2006 | Pearson Correlation (r) | 0.87 * | 0.86 * | 0.83 * | 0.91 * | 0.47 | 0.98 * | 0.94 | -- | -- | -- |
p-value | 0.0116 | 0.0127 | 0.0200 | 0.0046 | 0.2821 | 0.0036 | 0.0649 | -- | -- | -- | |
2007–2013 | Pearson Correlation (r) | 0.34 | 0.33 | 0.34 | 0.22 | 0.12 | 0.44 | 0.41 | 0.41 | 0.33 | 0.19 |
p-value | 0.4515 | 0.4677 | 0.4578 | 0.6328 | 0.8021 | 0.3290 | 0.4231 | 0.3626 | 0.5282 | 0.7152 | |
2014–2022 | Pearson Correlation (r) | −0.97 * | −0.97 * | −0.94 * | −0.97 * | −0.95 * | −0.97 * | −0.96 * | −0.88 * | −0.77 * | 0.89 * |
p-value | <0.0001 | <0.0001 | 1.2629 × 10−4 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.002 | 0.0142 | 0.0079 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; He, H.; Wang, D.; Qiao, W.; Liu, C.; Sun, Y.; Li, L.; Han, S.; Zha, G. Spatiotemporal Characteristics and Influencing Factors of PM2.5 Levels in Lianyungang: Insights from a Multidimensional Analysis. Remote Sens. 2024, 16, 4495. https://doi.org/10.3390/rs16234495
Li X, He H, Wang D, Qiao W, Liu C, Sun Y, Li L, Han S, Zha G. Spatiotemporal Characteristics and Influencing Factors of PM2.5 Levels in Lianyungang: Insights from a Multidimensional Analysis. Remote Sensing. 2024; 16(23):4495. https://doi.org/10.3390/rs16234495
Chicago/Turabian StyleLi, Xue, Haihong He, Dewei Wang, Wenli Qiao, Chunli Liu, Yiming Sun, Lulu Li, Shuting Han, and Guozhen Zha. 2024. "Spatiotemporal Characteristics and Influencing Factors of PM2.5 Levels in Lianyungang: Insights from a Multidimensional Analysis" Remote Sensing 16, no. 23: 4495. https://doi.org/10.3390/rs16234495
APA StyleLi, X., He, H., Wang, D., Qiao, W., Liu, C., Sun, Y., Li, L., Han, S., & Zha, G. (2024). Spatiotemporal Characteristics and Influencing Factors of PM2.5 Levels in Lianyungang: Insights from a Multidimensional Analysis. Remote Sensing, 16(23), 4495. https://doi.org/10.3390/rs16234495