New Evidence of Holocene Faulting Activity and Strike-Slip Rate of the Eastern Segment of the Sunan–Qilian Fault from UAV-Based Photogrammetry and Radiocarbon Dating, NE Tibetan Plateau
Abstract
:1. Introduction
2. Seismotectonic Setting
2.1. Qilian–Haiyuan Fault
2.2. Sunan–Qilian Fault
3. Data and Methods
3.1. Detailed Mapping of the ES-SQF
3.2. Constraining the Latest Activity Timing of the Fault
3.3. Determination of Fault Slip Rate
3.3.1. Measurement of Horizontal Displacement
3.3.2. Selection of Layered Geomorphic Surfaces and Abandonment Age Constraints
3.4. Seismic Stress Triggering Theory and Calculation Procedures
4. Geological and Topographical Characteristics and Slip Rates
4.1. Qingsha River Section
4.1.1. Faulted Geomorphic Features and Displacement Restoration Measurement
4.1.2. Geological Faulting Characteristics
4.1.3. Slip Rate
4.2. Dangzhong River Section
4.2.1. Faulted Geomorphic Features and Displacement Restoration Measurement
4.2.2. Geological Faulting Characteristics
4.2.3. Slip Rate
5. Discussion
5.1. Recent Activity Period and Slip Rate of the ES-SQF
5.2. Strain Distribution Patterns in the Central–Western Segment of the QHY
5.3. Implications for Seismic Hazards Along the ES-SQF
6. Conclusions
- (1)
- There is geological and geomorphological evidence of Holocene activity along the ES-SQF. At the Qingsha River and Dangzhong River sites, there are typical synchronous left lateral displacements of ridges, gullies, and terraces. The fault-crossing stripped profiles reveal that the most recent surface-rupturing earthquake occurred between 3500 and 2328 y BP.
- (2)
- Based on the correlation between the faulted landforms and the ages of the terraced landforms, the slip rates obtained at the Qingsha River and Dangzhong River sites are 1.8 ± 0.1 mm/y and 2.2 ± 0.1 mm/y, respectively. Comprehensive analysis indicates that the slip rate of the ES-SQF since the Holocene is 2.0 ± 0.3 mm/y. The ES-SQF plays an important role in the strain distribution of the middle and western segments of the QHF. The slip rate of the western faults may have decreased due to the influence of branching faults.
- (3)
- Based on the activity research results of the ES-SQF, it is estimated that a seismic moment equivalent to Mw7.5 has accumulated. The trends in strong earthquake spatial migration, aftershock spatial distribution, strain distribution, and elapsed time indicate that stress accumulation in the ES-SQF is at a relatively high state. Along with the Coulomb stress loading from the 2016 and 2022 Menyuan earthquakes, the seismic hazard of this fault in the future should not be underestimated.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allen, M.B.; Walters, R.J.; Song, S.; Saville, C.; De Paola, N.; Ford, J.; Hu, Z.; Sun, W. Partitioning of oblique convergence coupled to the fault locking behavior of fold-and-thrust belts: Evidence from the Qilian Shan, northeastern Tibetan Plateau. Tectonics 2017, 36, 1679–1698. [Google Scholar] [CrossRef]
- Hu, X.; Pan, B.; Kirby, E.; Gao, H.; Hu, Z.; Cao, B.; Geng, H.; Li, Q.; Zhang, G. Rates and kinematics of active shortening along the eastern Qilian Shan, China, inferred from deformed fluvial terraces. Tectonics 2015, 34, 2478–2493. [Google Scholar] [CrossRef]
- Tapponnier, P.; Zhiqin, X.; Roger, F.; Meyer, B.; Arnaud, N.; Wittlinger, G.; Jingsui, Y. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science 2001, 294, 1671–1677. [Google Scholar] [CrossRef]
- Xiong, J.; Li, Y.; Zhong, Y.; Lu, H.; Lei, J.; Xin, W.; Wang, L.; Hu, X.; Zhang, P. Latest Pleistocene to Holocene Thrusting Recorded by a Flight of Strath Terraces in the Eastern Qilian Shan, NE Tibetan Plateau. Tectonics 2017, 36, 2973–2986. [Google Scholar] [CrossRef]
- Zheng, W.; Zhang, P.; Ge, W.; Molnar, P.; Zhang, H.; Yuan, D.; Liu, J. Late Quaternary slip rate of the South Heli Shan Fault (northern Hexi Corridor, NW China) and its implications for northeastward growth of the Tibetan Plateau. Tectonics 2013, 32, 271–293. [Google Scholar] [CrossRef]
- Gu, G. Catalogue of Chinese Earthquakes (1831BC–1969AD); Science Press: Beijing, China, 1983. [Google Scholar]
- Gaudemer, Y.; Tapponnier, P.; Meyer, B.; Peltzer, G.; Shunmin, G.; Zhitai, C.; Huagung, D.; Cifuentes, I. Partitioning of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the ‘Tianzhu gap’, on the western Haiyuan Fault, Gansu (China). Geophys. J. Int. 1995, 120, 599–645. [Google Scholar] [CrossRef]
- Liu, J.; Liu, B.; Yuan, D. Late Quaternary active characteristics of Sunan fault and preliminary study of paleoearthquakes. In Research on Active Faults in China; Seismological Press: Beijing, China, 1994; pp. 36–41. [Google Scholar]
- Xu, X.; Han, Z.; Yang, X. Seismotectonic Map of China and Adjacent Areas; Seismological Press: Beijing, China, 2016. [Google Scholar]
- Yuan, D.; Xie, H.; Su, R.; Li, Z.; Wen, Y.; Si, G.; Xue, S.; Chen, G.; Liu, B.; Liang, S.; et al. Characteristics of co-seismic surface rupture zone of Menyuan MS6.9 earthquake in Qinghai Province on January 8, 2022 and seismogenic mechanism. Chin. J. Geophys. 2023, 66, 229–244. [Google Scholar]
- Yuan, D.; Zhang, P.; Liu, B.; Gan, W.; Mao, F.; Wang, Z.; Zheng, W.; Guo, H. Geometrical Imagery and Tectonic Transformation of Late QuaternaryActive Tectonics in Northeastern Margin of Qinghai–Xizang Plateau. Acta Geol. Sin. 2004, 78, 270–278. [Google Scholar]
- Zheng, D.; Zhang, P.; Wan, J.; Yuan, D.; Li, C.; Yin, G.; Zhang, G.; Wang, Z.; Min, W.; Chen, J. Rapid exhumation at ~8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: Implications for growth of the northeastern Tibetan Plateau margin. Earth Planet. Sci. Lett. 2006, 248, 198–208. [Google Scholar] [CrossRef]
- Yuan, D.; Ge, W.; Chen, Z.; Li, C.; Wang, Z.; Zhang, H.; Zhang, P.; Zheng, D.; Zheng, W.; Craddock, W.H.; et al. The growth of northeastern Tibet and its relevance to large-scale continental geodynamics: A review of recent studies. Tectonics 2013, 32, 1358–1370. [Google Scholar] [CrossRef]
- Zheng, W.; Zhang, P.; He, W.; Yuan, D.; Shao, Y.; Zheng, D.; Ge, W.; Min, W. Transformation of displacement between strike-slip and crustal shortening in the northern margin of the Tibetan Plateau: Evidence from decadal GPS measurements and late Quaternary slip rates on faults. Tectonophysics 2013, 584, 267–280. [Google Scholar] [CrossRef]
- Institute of Geology, China Earthquake Administration. The Qilianshan–Hexi Corridor Active Fault System; Seismogical Press: Beijing, China, 1993. [Google Scholar]
- Huang, Z.; Zhou, Y.; Qiao, X.; Zhang, P.; Cheng, X.J.E.; Letters, P.S. Kinematics of the ∼1000 km Haiyuan fault system in northeastern Tibet from high-resolution Sentinel-1 InSAR velocities: Fault architecture, slip rates, and partitioning. Earth Planet. Sci. Lett. 2022, 583, 117450. [Google Scholar] [CrossRef]
- Niu, P.; Han, Z.; Li, K.; Lv, L.; Guo, P. The 2022 Mw 6.7 Menyuan Earthquake on the Northeastern Margin of the Tibetan Plateau, China: Complex Surface Ruptures and Large Slip. Bull. Seismol. Soc. Am. 2023, 113, 976–996. [Google Scholar] [CrossRef]
- Guo, P.; Han, Z.; An, Y.; Jiang, W.; Mao, Z.; Feng, W. Activity of the Lenglongling fault system and seismotectonics of the 2016 MS6.4 Menyuan earthquake. Sci. China Earth Sci. 2017, 60, 929–942. [Google Scholar] [CrossRef]
- England, P.; Molnar, P. Active Deformation of Asia: From Kinematics to Dynamics. Science 1997, 278, 647–650. [Google Scholar] [CrossRef]
- Molnar, P.; Tapponnier, P. Cenozoic Tectonics of Asia: Effects of a Continental Collision. Science 1975, 189, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Huang, Y.; Zhang, C.; Wang, W.; Tan, K.; Du, R. Crustal deformation on the Chinese mainland during 1998–2014 based on GPS data. Geod. Geodyn. 2015, 6, 7–15. [Google Scholar] [CrossRef]
- Zhang, W.; Jiao, D.; Zhang, P.; Peter, M.; Burchfield, B.C.; Deng, Q.; Wang, Y.; Song, F. Displacement along the Haiyuan fault associated with the great 1920 Haiyuan, China, earthquake. Bull. Seismol. Soc. Am. 1987, 77, 117–131. [Google Scholar] [CrossRef]
- Guo, P.; Han, Z.; Gao, F.; Zhu, C.; Gai, H. A New Tectonic Model for the 1927 M8.0 Gulang Earthquake on the NE Tibetan Plateau. Tectonics 2020, 39, e2020TC006064. [Google Scholar] [CrossRef]
- Du, J.; Fu, B.; Guo, Q.; Shi, P.; Xue, G.; Xu, H. Segmentation and termination of the surface rupture zone produced by the 1932 Ms 7.6 Changma earthquake: New insights into the slip partitioning of the eastern Altyn Tagh fault system. Lithosphere 2019, 12, 19–39. [Google Scholar] [CrossRef]
- Pan, J.; Li, H.; CHEVALIER, M.-L.; Liu, D.; Li, C.; Liu, F.; Wu, Q.; Lu, H.; Jiao, L. Coseismic surtace rupture and seismogenic structure of the 2022 M6.9 Menyuan earthquake. Qinghai Province, China. Acta Geol. Sin. 2022, 96, 215–231. [Google Scholar] [CrossRef]
- Lasserre, C.; Morel, P.-H.; Gaudemer, Y.; Tapponnier, P.; Ryerson, F.J.; King, G.C.P.; Métivier, F.; Kasser, M.; Kashgarian, M.; Liu, B.; et al. Postglacial left slip rate and past occurrence of M ≥ 8 earthquakes on the Western Haiyuan Fault, Gansu, China. J. Geophys. Res. Solid Earth 1999, 104, 17633–17651. [Google Scholar] [CrossRef]
- Lasserre, C.; Gaudemer, Y.; Tapponnier, P.; Mériaux, A.-S.; Van der Woerd, J.; Daoyang, Y.; Ryerson, F.J.; Finkel, R.C.; Caffee, M.W. Fast late Pleistocene slip rate on the Leng Long Ling segment of the Haiyuan fault, Qinghai, China. J. Geophys. Res. Solid Earth 2002, 107, ETG 4-1–ETG 4-15. [Google Scholar] [CrossRef]
- Liu, J.; Ren, Z.; Zhang, H.; Li, C.; Zhang, Z.; Zheng, W.; Li, X.; Liu, C. Slip Rates Along the Laohushan Fault and Spatial Variation in Slip Rate Along the Haiyuan Fault Zone. Tectonics 2022, 41, e2021TC006992. [Google Scholar] [CrossRef]
- Daout, S.; Jolivet, R.; Lasserre, C.; Doin, M.-P.; Barbot, S.; Tapponnier, P.; Peltzer, G.; Socquet, A.; Sun, J. Along-strike variations of the partitioning of convergence across the Haiyuan fault system detected by InSAR. Geophys. J. Int. 2016, 205, 536–547. [Google Scholar] [CrossRef]
- Yuan, D.; Zhang, P.; Ge, W.; Liu, X.; Zhang, H.; Liang, M. Late Quaternary strike-slip features along the western segment of Haiyuan-Qilianshan fault, NE Tibetan Plateau. In Proceedings of the AGUFM, San Francisco, CA, USA, 15–19 December 2008; p. T33B–2057. [Google Scholar]
- Gao, F.; Zielke, O.; Han, Z.; Guo, P.; Gai, H.; Dai, C. Faulted landforms, slip-rate, and tectonic implications of the eastern Lenglongling fault, northeastern Tibetan Plateau. Tectonophysics 2022, 823, 229195. [Google Scholar] [CrossRef]
- Jiang, W.; Han, Z.; Guo, P.; Zhang, J.; Jiao, Q.; Kang, S.; Tian, Y. Slip rate and recurrence intervals of the east Lenglongling fault constrained by morphotectonics: Tectonic implications for the northeastern Tibetan Plateau. Lithosphere 2017, 9, 417–430. [Google Scholar] [CrossRef]
- Guo, P.; Han, Z.; Jiang, W.; Mao, Z. Holocene left-lateral sliprate of the Lenglongling fault, northeastern margin of the Tibetan Plateau. Seismol. Geol. 2017, 39, 323–341. [Google Scholar]
- Shao, Y.; Liu-Zeng, J.; Van der Woerd, J.; Klinger, Y.; Oskin, M.E.; Zhang, J.; Wang, P.; Wang, P.; Wang, W.; Yao, W. Late Pleistocene slip rate of the central Haiyuan fault constrained from optically stimulated luminescence, 14C, and cosmogenic isotope dating and high-resolution topography. GSA Bull. 2020, 133, 1347–1369. [Google Scholar] [CrossRef]
- Yuan, D.; Liu, B.; Lv, T.; He, W.; Liu, X.; Gan, W. Study on the segmentation in east segment of the northernoilianshan fault zone. Northwest. Seismol. J. 1998, 20, 27–34. [Google Scholar]
- Yao, W.; Liu-Zeng, J.; Oskin, M.E.; Wang, W.; Li, Z.; Prush, V.; Zhang, J.; Shao, Y.; Yuan, Z.; Klinger, Y. Reevaluation of the Late Pleistocene Slip Rate of the Haiyuan Fault Near Songshan, Gansu Province, China. J. Geophys. Res. Solid Earth 2019, 124, 5217–5240. [Google Scholar] [CrossRef]
- He, W.; Liu, B.; Lv, T.; Yuan, D.; Liu, J.; Liu, X. Study on the segmentation of Laohushan fault zone. Northwest. Seismol. J. 1994, 16, 66–72. [Google Scholar]
- Li, C.; Zhang, P.-z.; Yin, J.; Min, W. Late Quaternary left-lateral slip rate of the Haiyuan fault, northeastern margin of the Tibetan Plateau. Tectonics 2009, 28, TC5010. [Google Scholar] [CrossRef]
- Institute of Geology, S.S.B. Qilian Mountains Hexi Corridor Active Fault System; Seismological Press: Beijing, China, 1993. [Google Scholar]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef]
- Cirillo, D.; Cerritelli, F.; Agostini, S.; Bello, S.; Lavecchia, G.; Brozzetti, F. Integrating post-processing kinematic (PPK)–structure-from-motion (SfM) with unmanned aerial vehicle (UAV) photogrammetry and digital field mapping for structural geological analysis. ISPRS Int. J. Geo-Inf. 2022, 11, 437. [Google Scholar] [CrossRef]
- Cirillo, D.; Zappa, M.; Tangari, A.C.; Brozzetti, F.; Ietto, F. Rockfall analysis from UAV-based photogrammetry and 3D models of a cliff area. Drones 2024, 8, 31. [Google Scholar] [CrossRef]
- Bi, H.; Zheng, W.; Ren, Z.; Zeng, J.; Yu, J. Using an unmanned aerial vehicle for topography mapping of the fault zone based on structure from motion photogrammetry. Int. J. Remote Sens. 2017, 38, 2495–2510. [Google Scholar] [CrossRef]
- Guo, P.; Han, Z.; Mao, Z.; Xie, Z.; Dong, S.; Gao, F.; Gai, H. Paleoearthquakes and Rupture Behavior of the Lenglongling Fault: Implications for Seismic Hazards of the Northeastern Margin of the Tibetan Plateau. J. Geophys. Res. Solid Earth 2019, 124, 1520–1543. [Google Scholar] [CrossRef]
- Yuan, Z.; Liu-Zeng, J.; Wang, W.; Weldon, R.J.; Oskin, M.E.; Shao, Y.; Li, Z.; Li, Z.; Wang, P.; Zhang, J. A 6000-year-long paleoseismologic record of earthquakes along the Xorkoli section of the Altyn Tagh fault, China. Earth Planet. Sci. Lett. 2018, 497, 193–203. [Google Scholar] [CrossRef]
- Zielke, O.; Arrowsmith, J.R.; Ludwig, L.G.; Akçiz, S.O. Slip in the 1857 and Earlier Large Earthquakes Along the Carrizo Plain, San Andreas Fault. Science 2010, 327, 1119–1122. [Google Scholar] [CrossRef]
- Zielke, O.; Arrowsmith, J.R.; Grant Ludwig, L.; Akciz, S.O. High-Resolution Topography-Derived Offsets along the 1857 Fort Tejon Earthquake Rupture Trace, San Andreas Fault. Bull. Seismol. Soc. Am. 2012, 102, 1135–1154. [Google Scholar] [CrossRef]
- Cowgill, E. Impact of riser reconstructions on estimation of secular variation in rates of strike–slip faulting: Revisiting the Cherchen River site along the Altyn Tagh Fault, NW China. Earth Planet. Sci. Lett. 2007, 254, 239–255. [Google Scholar] [CrossRef]
- Zhang, P.Z.; Molnar, P.; Xu, X. Late Quaternary and present-day rates of slip along the Altyn Tagh Fault, northern margin of the Tibetan Plateau. Tectonics 2007, 26, TC5010.5011–TC5010.5024. [Google Scholar] [CrossRef]
- King, G.C.P.; Stein, R.S.; Lin, J. Static stress changes and the triggering of earthquakes. Bull. Seismol. Soc. Am. 1994, 84, 935–953. [Google Scholar] [CrossRef]
- Han, z.; Dong, S.; Xie, F.; An, Y. Earthquake triggering by static stress: The 5 major earthquakes with M > 7 (1561~1920)in the northern section of South north seismic zone, China. Chin. J. Geophys. 2008, 51, 1776–1784. [Google Scholar]
- Lin, J.; Stein, R.S. Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults. J. Geophys. Res. Solid Earth 2004, 109, B02303. [Google Scholar] [CrossRef]
- Toda, S.; Stein, R.S.; Richards-Dinger, K.; Bozkurt, S.B. Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer. J. Geophys. Res. 2005, 110, B05S16. [Google Scholar] [CrossRef]
- Bendick, R.; Bilham, R.; Freymueller, J.; Larson, K.; Yin, G.J.N. Geodetic evidence for a low slip rate in the Altyn Tagh fault system. Nature 2000, 404, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Shen, Z.; Wang, M.; Gan, W.; Burgmann, R.; Molnar, P.; Wang, Q.; Niu, Z.; Sun, J.; Wu, J. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology 2004, 32, 809–812. [Google Scholar] [CrossRef]
- Jolivet, R.; Lasserre, C.; Doin, M.P.; Guillaso, S.; Peltzer, G.; Dailu, R.; Sun, J.; Shen, Z.K.; Xu, X. Shallow creep on the Haiyuan fault (Gansu, China) revealed by SAR interferometry. J. Geophys. Res. Solid Earth 2012, 117, B06401. [Google Scholar] [CrossRef]
- Chevalier, M.-L.; Ryerson, F.; Tapponnier, P.; Finkel, R.; Van Der Woerd, J.; Haibing, L.; Qing, L. Slip-rate measurements on the Karakorum fault may imply secular variations in fault motion. Science 2005, 307, 411–414. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wang, F.; Zheng, R.; Chen, W.; Ma, W.; Yu, G.; Chen, G.; Tapponnier, P.; Van Der Woerd, J.; Meriaux, A.S.; et al. Late Quaternary sinistral slip rate along the Altyn Tagh fault and its structural transformation model. Sci. China Ser. D Earth Sci. 2005, 48, 384–397. [Google Scholar] [CrossRef]
- Cowgill, E.; Gold, R.D.; Xuanhua, C.; Xiao-Feng, W.; Arrowsmith, J.R.; Southon, J.J.G. Low Quaternary slip rate reconciles geodetic and geologic rates along the Altyn Tagh fault, northwestern Tibet. Geology 2009, 37, 647–650. [Google Scholar] [CrossRef]
- Gold, R.D.; Cowgill, E.; Arrowsmith, J.R.; Chen, X.; Sharp, W.D.; Cooper, K.M.; Wang, X.-F.J.B. Faulted terrace risers place new constraints on the late Quaternary slip rate for the central Altyn Tagh fault, northwest Tibet. GSA Bull. 2011, 123, 958–978. [Google Scholar] [CrossRef]
- Yin, A.; Dang, Y.-Q.; Zhang, M.; Chen, X.-H.; McRivette, M.W. Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (Part 3): Structural geology, sedimentation, and regional tectonic reconstruction. GSA Bull. 2008, 120, 847–876. [Google Scholar] [CrossRef]
- Lanzhou Institute of Seismology, C.E.A. Changma Active Fault Zone; Seismogical Press: Beijing, China, 1992. [Google Scholar]
- He, W.; Yuan, D.; Ge, W.; Luo, H. Determination of the slip-rate of the Lenglongling Fault in the middle and eastern segments of the Qilian mountain active fault zone. Earthquake 2010, 30, 131–137. [Google Scholar]
- Zhang, P.; Peter, M.; Burchfiel, B.C.; Royden, L.; Wang, Y.; Deng, Q.; Song, F.; Zhang, W.; Jiao, D. Bounds on the Holocene slip rate of the Haiyuan fault, north-central China. Quat. Res. 1988, 30, 151–164. [Google Scholar]
- Burchfiel, B.; Zhang, P.; Wang, Y.; Zhang, W.; Song, F.; Deng, Q.; Molnar, P.; Royden, L. Geology of the Haiyuan fault zone, Ningxia-Hui Autonomous Region, China, and its relation to the evolution of the northeastern margin of the Tibetan Plateau. Tectonics 1991, 10, 1091–1110. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, W.; Zhang, D.; Zhang, P.; Yuan, D.; Tian, Q.; Zhang, B.; Liang, S. Late Pleistocene left-lateral slip rates of the Gulang Fault and its tectonic implications in eastern Qilian Shan (NE Tibetan Plateau), China. Tectonophysics 2019, 756, 97–111. [Google Scholar] [CrossRef]
- Li, X.; Li, C.; Wesnousky, S.G.; Zhang, P.; Zheng, W.; Pierce, I.K.; Wang, X. Paleoseismology and slip rate of the western Tianjingshan fault of NE Tibet, China. J. Asian Earth Sci. 2017, 146, 304–316. [Google Scholar] [CrossRef]
- McGill, S.F.; Owen, L.A.; Weldon, R.J.; Kendrick, K.J.; Burgette, R.J. Latest Quaternary slip rates of the San Bernardino strand of the San Andreas fault, southern California, from Cajon Creek to Badger Canyon. Geosphere 2021, 17, 1354–1381. [Google Scholar] [CrossRef]
- Hatem, A.E.; Dolan, J.F.; Zinke, R.W.; Langridge, R.M.; McGuire, C.P.; Rhodes, E.J.; Brown, N.; Van Dissen, R.J. Holocene to latest Pleistocene incremental slip rates from the east-central Hope fault (Conway segment) at Hossack Station, Marlborough fault system, South Island, New Zealand: Towards a dated path of earthquake slip along a plate boundary fault. Geosphere 2020, 16, 1558–1584. [Google Scholar] [CrossRef]
- Li, K.; Tapponnier, P.; Xu, X.; Kang, W. The 2022, Ms 6.9 Menyuan earthquake: Surface rupture, Paleozoic suture re-activation, slip-rate and seismic gap along the Haiyuan fault system, NE Tibet. Earth Planet. Sci. Lett. 2023, 622, 118412. [Google Scholar] [CrossRef]
- Harris, R.A.; Archuleta, R.J.; Day, S.M. Fault steps and the dynamic rupture process: 2-D numerical simulations of a spontaneously propagating shear fracture. Geophys. Res. Lett. 1991, 18, 893–896. [Google Scholar] [CrossRef]
- Wesnousky, S.G. Predicting the endpoints of earthquake ruptures. Nature 2006, 444, 358–360. [Google Scholar] [CrossRef]
- Wesnousky, S.G. Displacement and Geometrical Characteristics of Earthquake Surface Ruptures: Issues and Implications for Seismic-Hazard Analysis and the Process of Earthquake Rupture. Bull. Seismol. Soc. Am. 2008, 98, 1609–1632. [Google Scholar] [CrossRef]
- Jia, K.; Zhou, S.; Zhuang, J.; Jiang, C. Stress Transfer Along the Western Boundary of the Bayan Har Block on the Tibet Plateau From the 2008 to 2020 Yutian Earthquake Sequence in China. Geophys. Res. Lett. 2021, 48, e2021GL094125. [Google Scholar] [CrossRef]
- Mancini, S.; Segou, M.; Werner, M.J.; Parsons, T. The Predictive Skills of Elastic Coulomb Rate-and-State Aftershock Forecasts during the 2019 Ridgecrest, California, Earthquake Sequence. Bull. Seismol. Soc. Am. 2020, 110, 1736–1751. [Google Scholar] [CrossRef]
- Toda, S.; Lin, J.; Meghraoui, M.; Stein, R.S. 12 May 2008 M = 7.9 Wenchuan, China, earthquake calculated to increase failure stress and seismicity rate on three major fault systems. Geophys. Res. Lett. 2008, 35, L17305. [Google Scholar] [CrossRef]
- Wu, D.; Qu, C.; Zhao, D.; Shan, X.; Chen, H. Slip Models of the 2016 and 2022 Menyuan, China, Earthquakes, Illustrating Regional Tectonic Structures. Remote Sens. 2022, 14, 6317. [Google Scholar] [CrossRef]
- Shi, F.; Xiong, x.; Wang, P.; Su, L.; Shan, B.; Zhu, L.; Shao, Z. Stress interaction between the two M > 6 earthquake since 20l6 andits implication on the seismie hazard along the Qilian-Haiyuan fault zone. Chin. J. Geophys. 2023, 66, 3230–3241. [Google Scholar]
- Wells, D.L.; Coppersmith, K.J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seismol. Soc. Am. 1994, 84, 974–1002. [Google Scholar] [CrossRef]
- Deng, Q.; Yu, G.; Ye, W. Relationship between earthquake magnitude and parameters of surface ruptures associated with historical earthquakes. Res. Act. Fault 1992, 2, 247–264. (In Chinese) [Google Scholar]
Sample | Lab No. | 13C/12C | Radiocarbon Age | Calendar Years | 14C Age ± σ/y | Description |
---|---|---|---|---|---|---|
(y B.P. ± σ) | (cal BP) | |||||
QSH-T-C3 | 686,895 | −23.6 | 9230 ± 30 | (95.4%) 10,501–10,264 | 10,389 ± 68 | Charcoal |
QSH-T-C4 | 686,896 | −24.2 | 6930 ± 30 | (84.0%) 7800–7680 | 7322 ± 54 | Charcoal |
(11.4%) 7836–7805 | ||||||
QSHPM1-C2 | 686,897 | −23.9 | 2320 ± 30 | (83.6%) 2367–2304 | 2328 ± 48 | Organic sediment |
(10.2%) 2231–2180 | ||||||
(1.5%) 2407–2391 | ||||||
QSHPM1-C3 | 686,898 | −24.4 | 1360 ± 30 | (74.7%) 1312–1260 | 1276 ± 38 | Organic sediment |
(16.3%) 1209–1176 | ||||||
(3.4%) 1342–1328 | ||||||
(1.0%) 1254–1248 | ||||||
DZG-T-C2 | 686,899 | −24.6 | 5760 ± 30 | (94.8%) 6656–6485 | 6561 ± 48 | Charcoal |
(0.6%) 6462–6458 | ||||||
DZG-T-C7 | 686,900 | −23.5 | 4460 ± 30 | (48.5%) 5143–4970 | 5132 ± 100 | Charcoal |
(46.9%) 5285–5160 | ||||||
DZG-C5 | 686,903 | −24 | 3280 ± 30 | (93.3%) 3569–3446 | 3500 ± 39 | Organic sediment |
(2.1%) 3423–3411 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, P.; Han, Z.; Guo, P.; Ma, S.; Ma, H. New Evidence of Holocene Faulting Activity and Strike-Slip Rate of the Eastern Segment of the Sunan–Qilian Fault from UAV-Based Photogrammetry and Radiocarbon Dating, NE Tibetan Plateau. Remote Sens. 2024, 16, 4704. https://doi.org/10.3390/rs16244704
Niu P, Han Z, Guo P, Ma S, Ma H. New Evidence of Holocene Faulting Activity and Strike-Slip Rate of the Eastern Segment of the Sunan–Qilian Fault from UAV-Based Photogrammetry and Radiocarbon Dating, NE Tibetan Plateau. Remote Sensing. 2024; 16(24):4704. https://doi.org/10.3390/rs16244704
Chicago/Turabian StyleNiu, Pengfei, Zhujun Han, Peng Guo, Siyuan Ma, and Haowen Ma. 2024. "New Evidence of Holocene Faulting Activity and Strike-Slip Rate of the Eastern Segment of the Sunan–Qilian Fault from UAV-Based Photogrammetry and Radiocarbon Dating, NE Tibetan Plateau" Remote Sensing 16, no. 24: 4704. https://doi.org/10.3390/rs16244704
APA StyleNiu, P., Han, Z., Guo, P., Ma, S., & Ma, H. (2024). New Evidence of Holocene Faulting Activity and Strike-Slip Rate of the Eastern Segment of the Sunan–Qilian Fault from UAV-Based Photogrammetry and Radiocarbon Dating, NE Tibetan Plateau. Remote Sensing, 16(24), 4704. https://doi.org/10.3390/rs16244704