Evaluating MULTIOBS Chlorophyll-a with Ground-Truth Observations in the Eastern Mediterranean Sea
Abstract
:1. Introduction
2. Methods
2.1. MULTIOBS Product
2.2. In Situ HPLC Data of Chl-a
2.3. Data Processing and Analysis
2.4. Software
3. Results and Discussion
3.1. Climatological Trends
3.2. Statistical Evaluation of MULTIOBS Data
3.3. Evaluation of Deep Chlorophyll Maximum Location and Magnitude Estimates
3.4. Seasonal and Interannual Variability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pastor, F.; Valiente, J.A.; Khodayar, S. A Warming Mediterranean: 38 Years of Increasing Sea Surface Temperature. Remote Sens. 2020, 12, 2687. [Google Scholar] [CrossRef]
- Raitsos, D.E.; Beaugrand, G.; Georgopoulos, D.; Zenetos, A.; Pancucci-Papadopoulou, A.M.; Theocharis, A.; Papathanassiou, E. Global Climate Change Amplifies the Entry of Tropical Species into the Eastern Mediterranean Sea. Limnol. Oceanogr. 2010, 55, 1478–1484. [Google Scholar] [CrossRef]
- Giorgi, F. Climate Change Hot-spots. Geophys. Res. Lett. 2006, 33, L08707. [Google Scholar] [CrossRef]
- Zittis, G.; Almazroui, M.; Alpert, P.; Ciais, P.; Cramer, W.; Dahdal, Y.; Fnais, M.; Francis, D.; Hadjinicolaou, P.; Howari, F.; et al. Climate Change and Weather Extremes in the Eastern Mediterranean and Middle East. Rev. Geophys. 2022, 60, e2021RG000762. [Google Scholar] [CrossRef]
- Bethoux, J.P.; Gentili, B.; Morin, P.; Nicolas, E.; Pierre, C.; Ruiz-Pino, D. The Mediterranean Sea: A Miniature Ocean for Climatic and Environmental Studies and a Key for the Climatic Functioning of the North Atlantic. Prog. Oceanogr. 1999, 44, 131–146. [Google Scholar] [CrossRef]
- Lejeusne, C.; Chevaldonné, P.; Pergent-Martini, C.; Boudouresque, C.F.; Pérez, T. Climate Change Effects on a Miniature Ocean: The Highly Diverse, Highly Impacted Mediterranean Sea. Trends Ecol. Evol. 2010, 25, 250–260. [Google Scholar] [CrossRef] [PubMed]
- Morel, A.; Berthon, J. Surface Pigments, Algal Biomass Profiles, and Potential Production of the Euphotic Layer: Relationships Reinvestigated in View of Remote-sensing Applications. Limnol. Oceanogr. 1989, 34, 1545–1562. [Google Scholar] [CrossRef]
- Psarra, S.; Tselepides, A.; Ignatiades, L. Primary Productivity in the Oligotrophic Cretan Sea (NE Mediterranean): Seasonal and Interannual Variability. Prog. Oceanogr. 2000, 46, 187–204. [Google Scholar] [CrossRef]
- Reich, T.; Ben-Ezra, T.; Belkin, N.; Tsemel, A.; Aharonovich, D.; Roth-Rosenberg, D.; Givati, S.; Bialik, M.; Herut, B.; Berman-Frank, I.; et al. A Year in the Life of the Eastern Mediterranean: Monthly Dynamics of Phytoplankton and Bacterioplankton in an Ultra-Oligotrophic Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 2022, 182, 103720. [Google Scholar] [CrossRef]
- Moutin, T.; Raimbault, P. Primary Production, Carbon Export and Nutrients Availability in Western and Eastern Mediterranean Sea in Early Summer 1996 (MINOS Cruise). J. Mar. Syst. 2002, 33–34, 273–288. [Google Scholar] [CrossRef]
- Varkitzi, I.; Psarra, S.; Assimakopoulou, G.; Pavlidou, A.; Krasakopoulou, E.; Velaoras, D.; Papathanassiou, E.; Pagou, K. Phytoplankton Dynamics and Bloom Formation in the Oligotrophic Eastern Mediterranean: Field Studies in the Aegean, Levantine and Ionian Seas. Deep Sea Res. Part II Top. Stud. Oceanogr. 2020, 171, 104662. [Google Scholar] [CrossRef]
- Barbieux, M.; Uitz, J.; Gentili, B.; Pasqueron de Fommervault, O.; Mignot, A.; Poteau, A.; Schmechtig, C.; Taillandier, V.; Leymarie, E.; Penkerc’h, C.; et al. Bio-Optical Characterization of Subsurface Chlorophyll Maxima in the Mediterranean Sea from a Biogeochemical-Argo Float Database. Biogeosciences 2019, 16, 1321–1342. [Google Scholar] [CrossRef]
- D’Ortenzio, F.; Taillandier, V.; Claustre, H.; Coppola, L.; Conan, P.; Dumas, F.; Durrieu Du Madron, X.; Fourrier, M.; Gogou, A.; Karageorgis, A.; et al. BGC-Argo Floats Observe Nitrate Injection and Spring Phytoplankton Increase in the Surface Layer of Levantine Sea (Eastern Mediterranean). Geophys. Res. Lett. 2021, 48, e2020GL091649. [Google Scholar] [CrossRef]
- Mignot, A.; Claustre, H.; Uitz, J.; Poteau, A.; D’Ortenzio, F.; Xing, X. Understanding the Seasonal Dynamics of Phytoplankton Biomass and the Deep Chlorophyll Maximum in Oligotrophic Environments: A Bio-Argo Float Investigation. Glob. Biogeochem. Cycles 2014, 28, 856–876. [Google Scholar] [CrossRef]
- Lazzari, P.; Solidoro, C.; Ibello, V.; Salon, S.; Teruzzi, A.; Béranger, K.; Colella, S.; Crise, A. Seasonal and Inter-Annual Variability of Plankton Chlorophyll and Primary Production in the Mediterranean Sea: A Modelling Approach. Biogeosciences 2012, 9, 217–233. [Google Scholar] [CrossRef]
- Macías, D.; Stips, A.; Garcia-Gorriz, E. The Relevance of Deep Chlorophyll Maximum in the Open Mediterranean Sea Evaluated through 3D Hydrodynamic-Biogeochemical Coupled Simulations. Ecol. Model. 2014, 281, 26–37. [Google Scholar] [CrossRef]
- Lavigne, H.; D’Ortenzio, F.; Ribera D’Alcalà, M.; Claustre, H.; Sauzède, R.; Gacic, M. On the Vertical Distribution of the Chlorophyll a Concentration in the Mediterranean Sea: A Basin-Scale and Seasonal Approach. Biogeosciences 2015, 12, 5021–5039. [Google Scholar] [CrossRef]
- Siokou-Frangou, I.; Christaki, U.; Mazzocchi, M.G.; Montresor, M.; Ribera d’Alcalá, M.; Vaqué, D.; Zingone, A. Plankton in the Open Mediterranean Sea: A Review. Biogeosciences 2010, 7, 1543–1586. [Google Scholar] [CrossRef]
- Petihakis, G.; Perivoliotis, L.; Korres, G.; Ballas, D.; Frangoulis, C.; Pagonis, P.; Ntoumas, M.; Pettas, M.; Chalkiopoulos, A.; Sotiropoulou, M.; et al. An Integrated Open-Coastal Biogeochemistry, Ecosystem and Biodiversity Observatory of the Eastern Mediterranean—The Cretan Sea Component of the POSEIDON System. Ocean Sci. 2018, 14, 1223–1245. [Google Scholar] [CrossRef]
- Sauzède, R.; Renosh, P.R.; Schmechtig, C.; Uitz, J.; Claustre, H. Quality Information Document. Global Ocean 3D Particulate Organic Carbon and Chlorophyll-a Concentration Product MULTIOBS_GLO_BIO_BGC_3D_REP_015_010. 2024. Available online: https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-MOB-QUID-015-010.pdf (accessed on 6 December 2024).
- Global Ocean 3D Chlorophyll-a Concentration, Particulate Backscattering Coefficient and Particulate Organic Carbon; E.U. Copernicus Marine Service Information (CMEMS). Marine Data Store (MDS). Available online: https://data.marine.copernicus.eu/product/MULTIOBS_GLO_BIO_BGC_3D_REP_015_010/description (accessed on 6 December 2024). [CrossRef]
- Sauzède, R.; Claustre, H.; Uitz, J.; Jamet, C.; Dall’Olmo, G.; D’Ortenzio, F.; Gentili, B.; Poteau, A.; Schmechtig, C. A Neural Network-based Method for Merging Ocean Color and Argo Data to Extend Surface Bio-optical Properties to Depth: Retrieval of the Particulate Backscattering Coefficient. JGR Ocean. 2016, 121, 2552–2571. [Google Scholar] [CrossRef]
- Claustre, H.; Johnson, K.S.; Takeshita, Y. Observing the Global Ocean with Biogeochemical-Argo. Annu. Rev. Mar. Sci. 2020, 12, 23–48. [Google Scholar] [CrossRef] [PubMed]
- Multi Observation Global Ocean 3D Temperature Salinity Height Geostrophic Current and MLD; E.U. Copernicus Marine Service Information (CMEMS), Marine Data Store (MDS). Available online: https://data.marine.copernicus.eu/product/MULTIOBS_GLO_PHY_TSUV_3D_MYNRT_015_012/description (accessed on 11 September 2024). [CrossRef]
- Global Ocean Colour (Copernicus-GlobColour), Bio-Geo-Chemical, L3 (Daily) from Satellite Observations (1997-Ongoing); E.U. Copernicus Marine Service Information (CMEMS), Marine Data Store (MDS). Available online: https://data.marine.copernicus.eu/product/OCEANCOLOUR_GLO_BGC_L3_MY_009_103/description (accessed on 11 September 2024). [CrossRef]
- Global Ocean Gridded L 4 Sea Surface Heights and Derived Variables Reprocessed 1993 Ongoing. E.U. Copernicus Marine Service Information (CMEMS). Marine Data Store (MDS). Available online: https://data.marine.copernicus.eu/product/SEALEVEL_GLO_PHY_L4_MY_008_047/description (accessed on 11 September 2024). [CrossRef]
- GlobColour Data. Available online: https://hermes.acri.fr/?class=archive (accessed on 11 September 2024).
- Lagaria, A.; Mandalakis, M.; Mara, P.; Frangoulis, C.; Karatsolis, B.-T.; Pitta, P.; Triantaphyllou, M.; Tsiola, A.; Psarra, S. Phytoplankton Variability and Community Structure in Relation to Hydrographic Features in the NE Aegean Frontal Area (NE Mediterranean Sea). Cont. Shelf Res. 2017, 149, 124–137. [Google Scholar] [CrossRef]
- Taillandier, V.; Wagener, T.; D’Ortenzio, F.; Mayot, N.; Legoff, H.; Ras, J.; Coppola, L.; Pasqueron De Fommervault, O.; Schmechtig, C.; DIamond, E.; et al. Hydrography and Biogeochemistry Dedicated to the Mediterranean BGC-Argo Network during a Cruise with RV Tethys 2 in May 2015. Earth Syst. Sci. Data 2018, 10, 627–641. [Google Scholar] [CrossRef]
- D’Ortenzio, F.; Thierry, V.; Eldin, G.; Claustre, H.; Testor, P.; Coatanoan, C.; Tedetti, M.; Guinet, C.; Poteau, A.; Prieur, L.; et al. White Book on Oceanic Autonomous Platforms for Biogeochemical Studies: Instrumentation and Measure (PABIM) Version 1.3. 2010. Available online: https://www.coriolis.eu.org/News-Events/Latest-News/PABIM-White-BOOK (accessed on 5 November 2023).
- Xing, X.; Claustre, H.; Blain, S.; D’Ortenzio, F.; Antoine, D.; Ras, J.; Guinet, C. Quenching Correction for In Vivo Chlorophyll Fluorescence Acquired by Autonomous Platforms: A Case Study with Instrumented Elephant Seals in the Kerguelen Region (Southern Ocean). Limnol. Oceanogr. Methods 2012, 10, 483–495. [Google Scholar] [CrossRef]
- de Boyer Montégut, C.; Madec, G.; Fischer, A.S.; Lazar, A.; Iudicone, D. Mixed Layer Depth over the Global Ocean: An Examination of Profile Data and a Profile-Based Climatology. J. Geophys. Res. Ocean. 2004, 109, C12003. [Google Scholar] [CrossRef]
- Roesler, C.; Uitz, J.; Claustre, H.; Boss, E.; Xing, X.; Organelli, E.; Briggs, N.; Bricaud, A.; Schmechtig, C.; Poteau, A.; et al. Recommendations for Obtaining Unbiased Chlorophyll Estimates from in Situ Chlorophyll Fluorometers: A Global Analysis of WET Labs ECO Sensors. Limnol. Oceanogr. Methods 2017, 15, 572–585. [Google Scholar] [CrossRef]
- Petit, F.; Uitz, J.; Schmechtig, C.; Dimier, C.; Ras, J.; Poteau, A.; Golbol, M.; Vellucci, V.; Claustre, H. Influence of the Phytoplankton Community Composition on the In Situ Fluorescence Signal: Implication for an Improved Estimation of the Chlorophyll-a Concentration from BioGeoChemical-Argo Profiling Floats. Front. Mar. Sci. 2022, 9, 959131. [Google Scholar] [CrossRef]
- Brewin, R.J.W.; Raitsos, D.E.; Pradhan, Y.; Hoteit, I. Comparison of Chlorophyll in the Red Sea Derived from MODIS-Aqua and in Vivo Fluorescence. Remote Sens. Environ. 2013, 136, 218–224. [Google Scholar] [CrossRef]
- Seegers, B.N.; Stumpf, R.P.; Schaeffer, B.A.; Loftin, K.A.; Werdell, P.J. Performance Metrics for the Assessment of Satellite Data Products: An Ocean Color Case Study. Opt. Express 2018, 26, 7404. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Seabold, S.; Perktold, J. Statsmodels: Econometric and Statistical Modeling with Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010. [Google Scholar] [CrossRef]
- Waskom, M.L. Seaborn: Statistical Data Visualization. J. Open Source Softw. 2021, 6, 3021. [Google Scholar] [CrossRef]
- McKinney, W. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; pp. 56–61. [Google Scholar] [CrossRef]
- Hoyer, S.; Hammer, J. Xarray: N-D Labeled Arrays and Datasets in Python. J. Open Res. Softw. 2017, 5, 10. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Met Office Cartopy: A Cartographic Python Library with a Matplotlib Interface. Available online: https://scitools.org.uk/cartopy (accessed on 5 November 2023).
- D’Ortenzio, F.; Ribera d’Alcalà, M. On the Trophic Regimes of the Mediterranean Sea: A Satellite Analysis. Biogeosciences 2009, 6, 139–148. [Google Scholar] [CrossRef]
- Lavigne, H.; D’Ortenzio, F.; Migon, C.; Claustre, H.; Testor, P.; d’Alcalà, M.R.; Lavezza, R.; Houpert, L.; Prieur, L. Enhancing the Comprehension of Mixed Layer Depth Control on the Mediterranean Phytoplankton Phenology: Mediterranean Phytoplankton Phenology. J. Geophys. Res. Ocean. 2013, 118, 3416–3430. [Google Scholar] [CrossRef]
- Malanotte-Rizzoli, P.; Artale, V.; Borzelli-Eusebi, G.L.; Brenner, S.; Crise, A.; Gacic, M.; Kress, N.; Marullo, S.; Ribera d’Alcalà, M.; Sofianos, S.; et al. Physical Forcing and Physical/Biochemical Variability of the Mediterranean Sea: A Review of Unresolved Issues and Directions for Future Research. Ocean Sci. 2014, 10, 281–322. [Google Scholar] [CrossRef]
- Theocharis, A.; Balopoulos, E.; Kioroglou, S.; Kontoyiannis, H.; Iona, A. A Synthesis of the Circulation and Hydrography of the South Aegean Sea and the Straits of the Cretan Arc (March 1994–January 1995). Progr. Oceanogr. 1999, 44, 469–509. [Google Scholar] [CrossRef]
- McGillicuddy, D.J. Mechanisms of Physical-Biological-Biogeochemical Interaction at the Oceanic Mesoscale. Annu. Rev. Mar. Sci. 2016, 8, 125–159. [Google Scholar] [CrossRef] [PubMed]
- Müller, P.; Li, X.-P.; Niyogi, K.K. Non-Photochemical Quenching. A Response to Excess Light Energy. Plant Physiol. 2001, 125, 1558–1566. [Google Scholar] [CrossRef] [PubMed]
- Terrats, L.; Claustre, H.; Cornec, M.; Mangin, A.; Neukermans, G. Detection of Coccolithophore Blooms With BioGeoChemical-Argo Floats. Geophys. Res. Lett. 2020, 47, e2020GL090559. [Google Scholar] [CrossRef]
- Xing, X.; Briggs, N.; Boss, E.; Claustre, H. Improved Correction for Non-Photochemical Quenching of in Situ Chlorophyll Fluorescence Based on a Synchronous Irradiance Profile. Opt. Express 2018, 26, 24734. [Google Scholar] [CrossRef] [PubMed]
- Schmechtig, C.; Claustre, H.; Poteau, A.; D’Ortenzio, F.; Schallenberg, C.; Trull, T.; Xing, X. BGC-Argo Quality Control Manual for the Chlorophyll-A Concentration; Ifremer. 2023. Available online: https://archimer.ifremer.fr/doc/00243/35385/ (accessed on 11 September 2024). [CrossRef]
- Cullen, J.J. Subsurface Chlorophyll Maximum Layers: Enduring Enigma or Mystery Solved? Annu. Rev. Mar. Sci. 2015, 7, 19.1–19.33. [Google Scholar] [CrossRef]
- Estrada, M.; Marrasé, C.; Latasa, M.; Berdalet, E.; Delgado, M.; Riera, T. Variability of Deep Chlorophyll Maximum Characteristics in the Northwestern Mediterranean. Mar. Ecol. Prog. Ser. 1993, 92, 289–300. [Google Scholar] [CrossRef]
- Marañón, E.; Van Wambeke, F.; Uitz, J.; Boss, E.; Pérez-Lorenzo, M.; Dinasquet, J.; Haëntjens, N.; Dimier, C.; Taillandier, V. Deep Maxima of Phytoplankton Biomass, Primary Production and Bacterial Production in the Mediterranean Sea during Late Spring. Biogeosciences 2021, 18, 1749–1767. [Google Scholar] [CrossRef]
- Cornec, M.; Claustre, H.; Mignot, A.; Guidi, L.; Lacour, L.; Poteau, A.; D’Ortenzio, F.; Gentili, B.; Schmechtig, C. Deep Chlorophyll Maxima in the Global Ocean: Occurrences, Drivers and Characteristics. Glob. Biogeochem. Cycles 2021, 35, e2020GB006759. [Google Scholar] [CrossRef]
- Geider, R.; MacIntyre, H.; Kana, T. Dynamic Model of Phytoplankton Growth and Acclimation: Responses of the Balanced Growth Rate and the Chlorophyll a: Carbon Ratio to Light, Nutrient-Limitation and Temperature. Mar. Ecol. Prog. Ser. 1997, 148, 187–200. [Google Scholar] [CrossRef]
- Kiefer, D.A.; Olson, R.J.; Holm-Hansen, O. Another Look at the Nitrite and Chlorophyll Maxima in the Central North Pacific. Deep. Sea Res. Oceanogr. Abstr. 1976, 23, 1199–1208. [Google Scholar] [CrossRef]
- Steele, J.H. A Study of Production in the Gulf of Mexico. J. Mar. Res. 1964, 22, 211–222. [Google Scholar]
- Bouman, H.A.; Jackson, T.; Sathyendranath, S.; Platt, T. Vertical Structure in Chlorophyll Profiles: Influence on Primary Production in the Arctic Ocean. Philos. Trans. R. Soc. A 2020, 378, 20190351. [Google Scholar] [CrossRef]
- Platt, T.; Sathyendranath, S.; Caverhill, C.M.; Lewis, M.R. Ocean Primary Production and Available Light: Further Algorithms for Remote Sensing. Deep Sea Res. Part I Oceanogr. Res. Pap. 1988, 35, 855–879. [Google Scholar] [CrossRef]
- Platt, T.; Sathyendranath, S. Oceanic Primary Production: Estimation by Remote Sensing at Local and Regional Scales. Science 1988, 241, 1613–1620. [Google Scholar] [CrossRef]
- Mignot, A.; Claustre, H.; D’Ortenzio, F.; Xing, X.; Poteau, A.; Ras, J. From the Shape of the Vertical Profile of In Vivo Fluorescence to Chlorophyll-a Concentration. Biogeosciences 2011, 8, 2391–2406. [Google Scholar] [CrossRef]
- Brewin, R.J.W.; Dall’Olmo, G.; Gittings, J.; Sun, X.; Lange, P.K.; Raitsos, D.E.; Bouman, H.A.; Hoteit, I.; Aiken, J.; Sathyendranath, S. A Conceptual Approach to Partitioning a Vertical Profile of Phytoplankton Biomass into Contributions from Two Communities. JGR Ocean. 2022, 127, e2021JC018195. [Google Scholar] [CrossRef] [PubMed]
- Benway, H.M.; Lorenzoni, L.; White, A.E.; Fiedler, B.; Levine, N.M.; Nicholson, D.P.; DeGrandpre, M.D.; Sosik, H.M.; Church, M.J.; O’Brien, T.D.; et al. Ocean Time Series Observations of Changing Marine Ecosystems: An Era of Integration, Synthesis, and Societal Applications. Front. Mar. Sci. 2019, 6, 393. [Google Scholar] [CrossRef]
- Platt, T.; Sathyendranath, S. Ecological Indicators for the Pelagic Zone of the Ocean from Remote Sensing. Remote Sens. Environ. 2008, 112, 3426–3436. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; O’Malley, R.T.; Boss, E.S.; Westberry, T.K.; Graff, J.R.; Halsey, K.H.; Milligan, A.J.; Siegel, D.A.; Brown, M.B. Revaluating Ocean Warming Impacts on Global Phytoplankton. Nat. Clim. Chang. 2016, 6, 323–330. [Google Scholar] [CrossRef]
- Raitsos, D.E.; Yi, X.; Platt, T.; Racault, M.; Brewin, R.J.W.; Pradhan, Y.; Papadopoulos, V.P.; Sathyendranath, S.; Hoteit, I. Monsoon Oscillations Regulate Fertility of the Red Sea. Geophys. Res. Lett. 2015, 42, 855–862. [Google Scholar] [CrossRef]
- Noh, K.M.; Lim, H.-G.; Kug, J.-S. Global Chlorophyll Responses to Marine Heatwaves in Satellite Ocean Color. Environ. Res. Lett. 2022, 17, 064034. [Google Scholar] [CrossRef]
- Tang, W.; Llort, J.; Weis, J.; Basart, S.; Li, Z.; Sathyendranath, S.; Jackson, T.; Perron, M.; Sanz Rodriguez, E.; Proemse, B.; et al. Widespread Phytoplankton Blooms Triggered by 2019-2020 Australian Wildfires. Nature 2021, 597, 370–375. [Google Scholar] [CrossRef]
- Cole, H.; Henson, S.; Martin, A.; Yool, A. Mind the Gap: The Impact of Missing Data on the Calculation of Phytoplankton Phenology Metrics. J. Geophys. Res. 2012, 117, C08030. [Google Scholar] [CrossRef]
- Racault, M.-F.; Sathyendranath, S.; Platt, T. Impact of Missing Data on the Estimation of Ecological Indicators from Satellite Ocean-Colour Time-Series. Remote Sens. Environ. 2014, 152, 15–28. [Google Scholar] [CrossRef]
- Latasa, M.; Cabello, A.M.; Morán, X.A.G.; Massana, R.; Scharek, R. Distribution of Phytoplankton Groups Within the Deep Chlorophyll Maximum: Distribution of Phytoplankton Groups in the DCM. Limnol. Oceanogr. 2017, 62, 665–685. [Google Scholar] [CrossRef]
- Platt, T.; Fuentes-Yaco, C.; Frank, T.H. Spring Algal Bloom and Larval Fish Survival. Nature 2003, 423, 398–399. [Google Scholar] [CrossRef] [PubMed]
- Argo. Argo Float Data and Metadata from Global Data Assembly Centre (Argo GDAC). SEANOE. 2024. Available online: https://www.seanoe.org/data/00311/42182/ (accessed on 11 September 2024). [CrossRef]
Dataset | Study | Area | r2 | Slope | RMSE (mg m−3) | MAPD (%) |
---|---|---|---|---|---|---|
HPLC | This study | EMS | 0.59 | 0.51 | 0.07 | 36 |
BGC-Argo | QUID | EMS | 0.83 | 0.81 | 0.03 | 23 |
HPLC | QUID | Global | 0.53 | 0.70 | 0.34 | 40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Livanou, E.; Sauzède, R.; Psarra, S.; Mandalakis, M.; Dall’Olmo, G.; Brewin, R.J.W.; Raitsos, D.E. Evaluating MULTIOBS Chlorophyll-a with Ground-Truth Observations in the Eastern Mediterranean Sea. Remote Sens. 2024, 16, 4705. https://doi.org/10.3390/rs16244705
Livanou E, Sauzède R, Psarra S, Mandalakis M, Dall’Olmo G, Brewin RJW, Raitsos DE. Evaluating MULTIOBS Chlorophyll-a with Ground-Truth Observations in the Eastern Mediterranean Sea. Remote Sensing. 2024; 16(24):4705. https://doi.org/10.3390/rs16244705
Chicago/Turabian StyleLivanou, Eleni, Raphaëlle Sauzède, Stella Psarra, Manolis Mandalakis, Giorgio Dall’Olmo, Robert J. W. Brewin, and Dionysios E. Raitsos. 2024. "Evaluating MULTIOBS Chlorophyll-a with Ground-Truth Observations in the Eastern Mediterranean Sea" Remote Sensing 16, no. 24: 4705. https://doi.org/10.3390/rs16244705
APA StyleLivanou, E., Sauzède, R., Psarra, S., Mandalakis, M., Dall’Olmo, G., Brewin, R. J. W., & Raitsos, D. E. (2024). Evaluating MULTIOBS Chlorophyll-a with Ground-Truth Observations in the Eastern Mediterranean Sea. Remote Sensing, 16(24), 4705. https://doi.org/10.3390/rs16244705