Assessment of Post-Fire Impacts on Vegetation Regeneration and Hydrological Processes in a Mediterranean Peri-Urban Catchment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Description
2.2. Burn Severity Mapping and Post-Fire Vegetation Recovery
2.3. Pre- and Post-Fire Vegetation Indices
2.4. Hydrological Model
2.4.1. Model Conceptual Framework
2.4.2. Post-Fire Scenario
3. Results
3.1. Post-Fire Assessment of Vegetation Recovery
3.1.1. Burn Severity
3.1.2. Pre- and Post-Fire Vegetation Dynamics
3.1.3. Burn Severity and Vegetation Response
3.2. Post-Fire Assessment of Hydrological Response
3.2.1. Model Performance
3.2.2. Hydrological Response
4. Discussion
4.1. Post-Fire Impacts on the Vegetation Response
4.2. Post-Fire Impacts on the Hydrological Response
5. Conclusions
- During the first post-fire year, vegetation showed slight recovery in highly burned areas. The mean and within the burned area were still lower than those within the control plots. The analysis of the vegetation indices and burn severity showed the different responses of each burn severity class regarding post-fire vegetation dynamics. The most significant increases in the and were observed in high- and moderate-burn-severity areas. The high-burn-severity areas were associated with densely vegetated areas, emphasizing the influence of pre-fire vegetation attributes on burn severity.
- The SWAT model was calibrated only for pre-fire conditions, as discharge data were unavailable after the fire. Despite limitations due to the absence of data, the SWAT model proved to be an essential tool for investigating the effect of fire on the hydrological components. In the post-fire conditions, an increase in surface runoff, water yield, and percolation was observed, as well as a decrease in actual evapotranspiration. The simulated hydrograph displayed higher peak discharges, particularly during the wet period.
- The changes in post-fire land use and soil attributes were identified as the primary drivers of the catchment’s water balance. However, identifying the mechanisms controlling surface runoff remains challenging, as other factors could also be involved.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chuvieco, E.; Aguado, I.; Salas, J.; García, M.; Yebra, M.; Oliva, P. Satellite Remote Sensing Contributions to Wildland Fire Science and Management. Curr. For. Rep. 2020, 6, 81–96. [Google Scholar] [CrossRef]
- Yang, J.; Pan, S.; Dangal, S.; Zhang, B.; Wang, S.; Tian, H. Continental-scale quantification of post-fire vegetation greenness recovery in temperate and boreal North America. Remote Sens. Environ. 2017, 199, 277–290. [Google Scholar] [CrossRef]
- Pereira, M.G.; Fernandes, L.S.; Carvalho, S.; Santos, R.B.; Caramelo, L.; Alencoão, A. Modelling the impacts of wildfires on runoff at the river basin ecological scale in a changing Mediterranean environment. Environ. Earth Sci. 2016, 75, 392. [Google Scholar] [CrossRef]
- Basso, M.; Vieira, D.C.S.; Ramos, T.B.; Mateus, M. Assessing the adequacy of SWAT model to simulate postfire effects on the watershed hydrological regime and water quality. Land Degrad. Dev. 2020, 31, 619–631. [Google Scholar] [CrossRef]
- Moody, J.A.; Shakesby, R.A.; Robichaud, P.R.; Cannon, S.H.; Martin, D.A. Current research issues related to post-wildfire runoff and erosion processes. Earth-Sci. Rev. 2013, 122, 10–37. [Google Scholar] [CrossRef]
- Ebel, B.A.; Moody, J.A.; Martin, D.A. Post-fire temporal trends in soil-physical and -hydraulic properties and simulated runoff generation: Insights from different burn severities in the 2013 Black Forest Fire, CO, USA. Sci. Total Environ. 2022, 802, 149847. [Google Scholar] [CrossRef] [PubMed]
- Ebel, B.A.; Romero, O.C.; Martin, D.A. Thresholds and relations for soil-hydraulic and soil-physical properties as a function of burn severity 4 years after the 2011 Las Conchas Fire, New Mexico, USA. Hydrol. Process. 2018, 32, 2263–2278. [Google Scholar] [CrossRef]
- Shakesby, R.A. Post-wildfire soil erosion in the Mediterranean: Review and future research directions. Earth-Sci. Rev. 2011, 105, 71–100. [Google Scholar] [CrossRef]
- Soulis, K.X.; Londra, P.A.; Kargas, G. Characterizing surface soil layer saturated hydraulic conductivity in a Mediterranean natural watershed. Hydrol. Sci. J. 2020, 65, 2616–2629. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Y.; Vaze, J.; Lane, P.; Xu, S. Impact des feux de brousse et de la variabilité climatique sur les débits des bassins versants boisés du Sud-Est Australien. Hydrol. Sci. J. 2015, 60, 1340–1360. [Google Scholar] [CrossRef]
- Poon, P.K.; Kinoshita, A.M. Spatial and temporal evapotranspiration trends after wildfire in semi-arid landscapes. J. Hydrol. 2018, 559, 71–83. [Google Scholar] [CrossRef]
- Vieira, D.C.S.; Malvar, M.C.; Martins, M.A.S.; Serpa, D.; Keizer, J.J. Key factors controlling the post-fire hydrological and erosive response at micro-plot scale in a recently burned Mediterranean forest. Geomorphology 2018, 319, 161–173. [Google Scholar] [CrossRef]
- Fernandez-Manso, A.; Quintano, C.; Roberts, D.A. Burn severity influence on post-fire vegetation cover resilience from Landsat MESMA fraction images time series in Mediterranean forest ecosystems. Remote Sens. Environ. 2016, 184, 112–123. [Google Scholar] [CrossRef]
- Ireland, G.; Petropoulos, G.P. Exploring the relationships between post-fire vegetation regeneration dynamics, topography and burn severity: A case study from the Montane Cordillera Ecozones of Western Canada. Appl. Geogr. 2015, 56, 232–248. [Google Scholar] [CrossRef]
- Keeley, J.E. Fire intensity, fire severity and burn severity: A brief review and suggested usage. Int. J. Wildl. Fire 2009, 18, 116. [Google Scholar] [CrossRef]
- Almalki, R.; Khaki, M.; Saco, P.M.; Rodriguez, J.F. Monitoring and Mapping Vegetation Cover Changes in Arid and Semi-Arid Areas Using Remote Sensing Technology: A Review. Remote Sens. 2022, 14, 5143. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Scheel, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. In The 3rd Earth Resource Technology Satellite (ERTS) Symposium; NASA: Washington, DC, USA, 1974. [Google Scholar]
- Lacouture, D.L.; Broadbent, E.N.; Crandall, R.M. Detecting Vegetation Recovery after Fire in A Fire-Frequented Habitat Using Normalized Difference Vegetation Index (NDVI). Forests 2020, 11, 749. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–308. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Veraverbeke, S.; Gitas, I.; Katagis, T.; Polychronaki, A.; Somers, B.; Goossens, R. Assessing post-fire vegetation recovery using red–near infrared vegetation indices: Accounting for background and vegetation variability. ISPRS J. Photogramm. Remote Sens. 2012, 68, 28–39. [Google Scholar] [CrossRef]
- Fabijańczyk, P.; Zawadzki, J. Spatial correlations of NDVI and MSAVI2 indices of green and forested areas of urban agglomeration, case study Warsaw, Poland. Remote Sens. Appl. Soc. Environ. 2022, 26, 100721. [Google Scholar] [CrossRef]
- Schmidt, H.; Karnieli, A. Sensitivity of vegetation indices to substrate brightness in hyper-arid environment: The Makhtesh Ramon Crater (Israel) case study. Int. J. Remote Sens. 2001, 22, 3503–3520. [Google Scholar] [CrossRef]
- Key, C.H.; Benson, N.C. Landscape Assessment (LA) sampling and analysis methods. In USDA Forest Service–General Technical Report RMRS-GTR; USDA Forest Service: Fort Collins, CO, USA, 2006. [Google Scholar]
- Bright, B.C.; Hudak, A.T.; Kennedy, R.E.; Braaten, J.D.; Khalyani, A.H. Examining post-fire vegetation recovery with Landsat time series analysis in three western North American forest types. Fire Ecol. 2019, 15, 8. [Google Scholar] [CrossRef]
- Chen, X.; Vogelmann, J.E.; Rollins, M.; Ohlen, D.; Key, C.H.; Yang, L.; Huang, C.; Shi, H. Detecting post-fire burn severity and vegetation recovery using multitemporal remote sensing spectral indices and field-collected composite burn index data in a ponderosa pine forest. Int. J. Remote Sens. 2011, 32, 7905–7927. [Google Scholar] [CrossRef]
- Escuin, S.; Navarro, R.; Fernández, P. Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM images. Int. J. Remote Sens. 2008, 29, 1053–1073. [Google Scholar] [CrossRef]
- Veraverbeke, S.; Lhermitte, S.; Verstraeten, W.W.; Goossens, R. A time-integrated MODIS burn severity assessment using the multi-temporal differenced normalized burn ratio (dNBRMT). Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 52–58. [Google Scholar] [CrossRef]
- Papathanasiou, C.; Makropoulos, C.; Mimikou, M. Hydrological modelling for flood forecasting: Calibrating the post-fire initial conditions. J. Hydrol. 2015, 529, 1838–1850. [Google Scholar] [CrossRef]
- Carreño-Conde, F.; Sipols, A.E.; de Blas, C.S.; Mostaza-Colado, D. A Forecast Model Applied to Monitor Crops Dynamics Using Vegetation Indices (NDVI). Appl. Sci. 2021, 11, 1859. [Google Scholar] [CrossRef]
- Xu, B.; Lin, B. Assessing CO2 emissions in China’s iron and steel industry: A dynamic vector autoregression model. Appl. Energy 2016, 161, 375–386. [Google Scholar] [CrossRef]
- Ramli, I.; Rusdiana, S.; Basri, H.; Munawar, A.A. VAzelia Predicted Rainfall and Discharge Using Vector Autoregressive Models in Water Resources Management in the High Hill Takengon. IOP Conf. Ser. Earth Environ. Sci. 2019, 273, 012009. [Google Scholar] [CrossRef]
- Pan, X.; Jarrett, J.E. Why and how to use vector autoregressive models for quality control: The guideline and procedures. Qual. Quant. 2012, 46, 935–948. [Google Scholar] [CrossRef]
- Lee, R.J.; Chow, T.E. Post-wildfire assessment of vegetation regeneration in Bastrop, Texas, using Landsat imagery. GIScience Remote Sens. 2015, 52, 609–626. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Bombino, G.; Carrà, B.G.; D’Agostino, D.; Denisi, P.; Labate, A.; Plaza-Alvarez, P.A.; Zema, D.A. Modeling the Soil Response to Rainstorms after Wildfire and Prescribed Fire in Mediterranean Forests. Climate 2020, 8, 150. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Plaza-Alvarez, P.A.; Xu, X.; Carra, B.G.; Zema, D.A. Exploring the factors influencing the hydrological response of soil after low and high-severity fires with post-fire mulching in Mediterranean forests. Int. Soil Water Conserv. Res. 2023, 11, 169–182. [Google Scholar] [CrossRef]
- Keizer, J.J.; Silva, F.C.; Vieira, D.C.S.; González-Pelayo, O.; Campos, I.; Vieira, A.M.D.; Valente, S.; Prats, S.A. The effectiveness of two contrasting mulch application rates to reduce post-fire erosion in a Portuguese eucalypt plantation. CATENA 2018, 169, 21–30. [Google Scholar] [CrossRef]
- Lentile, L.B.; Holden, Z.A.; Smith, A.M.S.; Falkowski, M.J.; Hudak, A.T.; Morgan, P.; Lewis, S.A.; Gessler, P.E.; Benson, N.C. Remote sensing techniques to assess active fire characteristics and post-fire effects. Int. J. Wildl. Fire 2006, 15, 319. [Google Scholar] [CrossRef]
- Delgado-Aguilar, M.J.; Hinojosa, L.; Schmitt, C.B. Combining remote sensing techniques and participatory mapping to understand the relations between forest degradation and ecosystems services in a tropical rainforest. Appl. Geogr. 2019, 104, 65–74. [Google Scholar] [CrossRef]
- Fernández, C.; Vega, J.A.; Vieira, D.C.S. Assessing soil erosion after fire and rehabilitation treatments in NW Spain: Performance of rusle and revised Morgan-Morgan-Finney models. Land Degrad. Dev. 2010, 21, 58–67. [Google Scholar] [CrossRef]
- Havel, A.; Tasdighi, A.; Arabi, M. Assessing the hydrologic response to wildfires in mountainous regions. Hydrol. Earth Syst. Sci. 2018, 22, 2527–2550. [Google Scholar] [CrossRef]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.K.; Yoder, D.C. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); United States Departments of Agriculture USDA: Washington, DC, USA, 1997; p. 49. [Google Scholar]
- Morgan, R.P.C. A simple approach to soil loss prediction: A revised Morgan-Morgan-Finney model. Catena 2001, 44, 305–322. [Google Scholar] [CrossRef]
- Kirkby, M.J.; Jones, R.J.A.; Irvine, B.; Gobin, A.; Govers, G.; Cerdan, O.; Van Rompaey, A.J.J.; Le Bissonnais, Y.; Daroussin, J.; King, D.; et al. Pan-European Soil Erosion Risk Assessment: The PESERA Map; European Commission: Brussel, Belgium, 2004. [Google Scholar]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Vieira, D.C.S.; Malvar, M.C.; Fernández, C.; Serpa, D.; Keizer, J.J. Annual runoff and erosion in a recently burn Mediterranean forest—The effects of plowing and time-since-fire. Geomorphology 2016, 270, 172–183. [Google Scholar] [CrossRef]
- Rulli, M.C.; Offeddu, L.; Santini, M. Modeling post-fire water erosion mitigation strategies. Hydrol. Earth Syst. Sci. 2013, 17, 2323–2337. [Google Scholar] [CrossRef]
- Fernández, C.; Vega, J.A. Evaluation of RUSLE and PESERA models for predicting soil erosion losses in the first year after wildfire in NW Spain. Geoderma 2016, 273, 64–72. [Google Scholar] [CrossRef]
- Nunes, J.P.; Quintanilla, P.N.; Santos, J.M.; Serpa, D.; Carvalho-Santos, C.; Rocha, J.; Keizer, J.J.; Keesstra, S.D. Afforestation, Subsequent Forest Fires and Provision of Hydrological Services: A Model-Based Analysis for a Mediterranean Mountainous Catchment. Land Degrad. Dev. 2018, 29, 776–788. [Google Scholar] [CrossRef]
- Soulis, K.X.; Generali, K.A.; Papadaki, C.; Theodoropoulos, C.; Psomiadis, E. Hydrological Response of Natural Mediterranean Watersheds to Forest Fires. Hydrology 2021, 8, 15. [Google Scholar] [CrossRef]
- Papavasileiou, G.; Giannaros, T.M. The Catastrophic 2021 Wildfires in Greece: An Outbreak of Pyroconvective Events. In Proceedings of the Third International Conference on Fire Behavior and Risk ICFBR, Sardinia, Italy, 3–6 May 2022; p. 7. [Google Scholar]
- Karali, A.; Varotsos, K.V.; Giannakopoulos, C.; Nastos, P.P.; Hatzaki, M. Seasonal fire danger forecasts for supporting fire prevention management in an eastern Mediterranean environment: The case of Attica, Greece. Nat. Hazards Earth Syst. Sci. 2023, 23, 429–445. [Google Scholar] [CrossRef]
- Giannaros, T.M.; Papavasileiou, G.; Lagouvardos, K.; Kotroni, V.; Dafis, S.; Karagiannidis, A.; Dragozi, E. Meteorological Analysis of the 2021 Extreme Wildfires in Greece: Lessons Learned and Implications for Early Warning of the Potential for Pyroconvection. Atmosphere 2022, 13, 475. [Google Scholar] [CrossRef]
- Falaras, T.; Tselka, I.; Papadopoulos, I.; Nikolidaki, M.; Karavias, A.; Bafi, D.; Petani, A.; Krassakis, P.; Parcharidis, I. Operational Mapping and Post-Disaster Hazard Assessment by the Development of a Multiparametric Web App Using Geospatial Technologies and Data: Attica Region 2021 Wildfires (Greece). Appl. Sci. 2022, 12, 7256. [Google Scholar] [CrossRef]
- Mamassis, N.; Koukouvinos, A.; Baki, S. Development of a Geographical Information System and an Internet application for the supervision of Kephisos Protected Areas Department of Water Resources and Environmental Engineering. Master’s Thesis, National Technical University of Athens, Athens, Greece, 2008. Available online: http://www.itia.ntua.gr/el/project_reports/151/ (accessed on 20 December 2020).
- Zerefos, C.; Repapis, C.; Giannakopoulos, C.; Kapsomenakis, J.; Papanikolaou, D.; Papanikolaou, M.; Poulos, S.; Vrekoussis, M.; Philandras, C.; Tselioudis, G. The Climate of the Eastern Mediterranean and Greece: Past, Present and Future. In the Environmental, Economic and Social Impacts of Climate Changing Greece; Bank of Greece: Athens, Greece, 2011; pp. 50–58. [Google Scholar]
- Lagouvardos, K.; Kotroni, V.; Bezes, A.; Koletsis, I.; Kopania, T.; Lykoudis, S.; Mazarakis, N.; Papagiannaki, K.; Vougioukas, S. The automatic weather stations NOANN network of the National Observatory of Athens: Operation and database. Geosci. Data J. 2017, 4, 4–16. [Google Scholar] [CrossRef]
- FAO; IIASA; ISRIC; ISSCAS. Harmonized World Soil Database Version 1.2; Food & Agriculture Organization of the UN: Rome, Italy; International Institute for Applied Systems Analysis: Laxenburg, Austria, 2012; ISBN 9781626239777. [Google Scholar]
- Corine Land Cover (CLC). Land Use Data. Available online: https://land.copernicus.eu/ (accessed on 15 December 2020).
- Evelpidou, N.; Tzouxanioti, M.; Gavalas, T.; Spyrou, E.; Saitis, G.; Petropoulos, A.; Karkani, A. Assessment of Fire Effects on Surface Runoff Erosion Susceptibility: The Case of the Summer 2021 Forest Fires in Greece. Land 2021, 11, 21. [Google Scholar] [CrossRef]
- U.S. Geological Survey (USGS). Shuttle Radar Topography Mission (SRTM) Global, DEM Data, Open Topography. Available online: https://earthexplorer.usgs.gov/ (accessed on 5 December 2020).
- Mamassis, N.; Mazi, K.; Dimitriou, E.; Kalogeras, D.; Malamos, N.; Lykoudis, S.; Koukouvinos, A.; Tsirogiannis, I.; Papageorgaki, I.; Papadopoulos, A.; et al. OpenHi.net: A Synergistically Built, National-Scale Infrastructure for Monitoring the Surface Waters of Greece. Water 2021, 13, 2779. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Chander, G.; Markham, B.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- García, M.J.L.; Caselles, V. Mapping burns and natural reforestation using thematic mapper data. Geocarto Int. 1991, 6, 31–37. [Google Scholar] [CrossRef]
- Miller, J.D.; Thode, A.E. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sens. Environ. 2007, 109, 66–80. [Google Scholar] [CrossRef]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.M.; Tucker, C.J.; Stenseth, N.C. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef]
- Sims, C.A. Interpreting the macroeconomic time series facts. Eur. Econ. Rev. 1992, 36, 975–1000. [Google Scholar] [CrossRef]
- Gao, J.; Peng, B.; Yan, Y. Estimation, Inference, and Empirical Analysis for Time-Varying VAR Models. J. Bus. Econ. Stat. 2024, 42, 310–321. [Google Scholar] [CrossRef]
- Athanasopoulos, G.; Poskitt, D.S.; Vahid, F. Two canonical VARMA forms: Scalar component models vis-à-vis the Echelon form. Econom. Rev. 2012, 31, 60–83. [Google Scholar] [CrossRef]
- Hacker, R.S.; Hatemi-J, A. Optimal lag-length choice in stable and unstable VAR models under situations of homoscedasticity and ARCH. J. Appl. Stat. 2008, 35, 601–615. [Google Scholar] [CrossRef]
- Moritz, S.; Bartz-Beielstein, T. imputeTS: Time series missing value imputation in R. R J. 2017, 9, 207–218. [Google Scholar] [CrossRef]
- Dickey, D.A.; Fuller, W.A. Distribution of the Estimators for Autoregressive Time Series With a Unit Root. J. Am. Stat. Assoc. 1979, 74, 427. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment Part I: Model Development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation: Version 2009; Texas Water Resources Institute Technical Report 406; Texas A&M University System: College Station, TX, USA, 2011. [Google Scholar]
- Tan, M.L.; Gassman, P.W.; Yang, X.; Haywood, J. A review of SWAT applications, performance and future needs for simulation of hydro-climatic extremes. Adv. Water Resour. 2020, 143, 103662. [Google Scholar] [CrossRef]
- Gassman, P.W.; Sadeghi, A.M.; Srinivasan, R. Applications of the SWAT Model Special Section: Overview and Insights. J. Environ. Qual. 2014, 43, 1–8. [Google Scholar] [CrossRef]
- Dile, Y.T.; Daggupati, P.; George, C.; Srinivasan, R.; Arnold, J. Introducing a new open source GIS user interface for the SWAT model. Environ. Model. Softw. 2016, 85, 129–138. [Google Scholar] [CrossRef]
- Soil Conservation Service. National Engineering Handbook, Section 4, Hydrology; Department of Agriculture: Washington, DC, USA, 1972.
- Mein, R.G.; Larson, C.L. Modeling Infiltration during a Steady Rain. Water Resour. Res. 1973, 9, 384–394. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar] [CrossRef]
- Larsen, I.J.; MacDonald, L.H. Predicting postfire sediment yields at the hillslope scale: Testing RUSLE and Disturbed WEPP. Water Resour. Res. 2007, 43, 1–18. [Google Scholar] [CrossRef]
- Boucher, J.; Beaudoin, A.; Hébert, C.; Guindon, L.; Bauce, É. Assessing the potential of the differenced Normalized Burn Ratio (dNBR) for estimating burn severity in eastern Canadian boreal forests. Int. J. Wildl. Fire 2017, 26, 32. [Google Scholar] [CrossRef]
- Lütkepohl, H. Vector autoregressive models. In Handbook of Research Methods and Applications in Empirical Macroeconomics; Hashimzade, N., Thorntopn, M.A., Eds.; Edward Elgar Publishing: Cheltenham, UK, 2013; pp. 139–164. [Google Scholar] [CrossRef]
- Arianoutsou, M.; Christopoulou, A.; Kazanis, D.; Tountas, T.; Ganou, E.; Bazos, I. Effects of Fire on High Altitude Coniferous Forests of Greece. In Proceedings of the VI International Conference on Forest Fire Research, Coimbra, Portugal, 15–18 November 2010; pp. 1–13. [Google Scholar]
- Di Piazza, G.V.; Di Stefano, C.; Ferro, V. Modelling the effects of a bushfire on erosion in a Mediterranean basin/Modélisation des impacts d’un incendie sur l’érosion dans un bassin Méditerranéen. Hydrol. Sci. J. 2007, 52, 1253–1270. [Google Scholar] [CrossRef]
- Koltsida, E.; Mamassis, N.; Kallioras, A. Hydrological modeling using the Soil and Water Assessment Tool in urban and peri-urban environments: The case of Kifisos experimental subbasin (Athens, Greece). Hydrol. Earth Syst. Sci. 2023, 27, 917–931. [Google Scholar] [CrossRef]
- King, K.W.; Arnold, J.G.; Bingner, R.L. Comparison of Green-Ampt and curve number methods on Goodwin Creek Watershed using SWAT. Trans. Am. Soc. Agric. Eng. 1999, 42, 919–925. [Google Scholar] [CrossRef]
- Jeong, J.; Kannan, N.; Arnold, J.; Glick, R.; Gosselink, L.; Srinivasan, R. Development and Integration of Sub-hourly Rainfall-Runoff Modeling Capability Within a Watershed Model. Water Resour. Manag. 2010, 24, 4505–4527. [Google Scholar] [CrossRef]
- Kannan, N.; White, S.M.; Worrall, F.; Whelan, M.J. Sensitivity analysis and identification of the best evapotranspiration and runoff options for hydrological modelling in SWAT-2000. J. Hydrol. 2007, 332, 456–466. [Google Scholar] [CrossRef]
- Bauwe, A.; Kahle, P.; Lennartz, B. Hydrologic evaluation of the curve number and Green and Ampt infiltration methods by applying Hooghoudt and Kirkham tile drain equations using SWAT. J. Hydrol. 2016, 537, 311–321. [Google Scholar] [CrossRef]
- Shakesby, R.; Doerr, S. Wildfire as a hydrological and geomorphological agent. Earth-Sci. Rev. 2006, 74, 269–307. [Google Scholar] [CrossRef]
- Liu, S.; Leslie, L.M.; Speer, M.; Bunker, R.; Mo, X. The effects of bushfires on hydrological processes using a paired-catchment analysis. Meteorol. Atmos. Phys. 2004, 86, 31–44. [Google Scholar] [CrossRef]
- Scott, D.F.; Versfeld, D.B.; Lesgh, W. Erosion and Sediment Yield in Relation to Afforestation and Fire in the Mountains of the Western Cape Province, South Africa. S. Afr. Geogr. J. 1998, 80, 52–59. [Google Scholar] [CrossRef]
- Rodrigues, E.L.; Jacobi, C.M.; Figueira, J.E.C. Wildfires and their impact on the water supply of a large neotropical metropolis: A simulation approach. Sci. Total Environ. 2019, 651, 1261–1271. [Google Scholar] [CrossRef]
- Wijesekara, G.N.; Gupta, A.; Valeo, C.; Hasbani, J.-G.; Qiao, Y.; Delaney, P.; Marceau, D.J. Assessing the impact of future land-use changes on hydrological processes in the Elbow River watershed in southern Alberta, Canada. J. Hydrol. 2012, 412–413, 220–232. [Google Scholar] [CrossRef]
- Wilder, B.A.; Kinoshita, A.M. Post-Fire Vegetation and Hydrologic Recovery in a Mediterranean Climate. In Proceedings of the AGU Fall Meeting, Virtual, 1–17 December 2020. [Google Scholar]
- Hernández-Duarte, A.; Saavedra, F.; González, E.; Miranda, A.; Francois, J.; Somos-Valenzuela, M.; Sibold, J. Effects of Drought and Fire Severity Interaction on Short-Term Post-Fire Recovery of the Mediterranean Forest of South America. Fire 2024, 7, 428. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef]
- Kamali, B.; Abbaspour, K.; Yang, H. Assessing the Uncertainty of Multiple Input Datasets in the Prediction of Water Resource Components. Water 2017, 9, 709. [Google Scholar] [CrossRef]
- Guzman, J.A.; Shirmohammadi, A.; Sadeghi, A.M.; Wang, X.; Chu, M.L.; Jha, M.K.; Parajuli, P.B.; Harmel, R.D.; Khare, Y.P.; Hernandez, J.E. Uncertainty considerations in calibration and validation of hydrologic and water quality models. Trans. ASABE 2015, 58, 1745–1762. [Google Scholar] [CrossRef]
- Google Earth Engine. Landsat Algorithms—Earth Engine. Available online: https://developers.google.com/earth-engine/guides/landsat (accessed on 12 December 2024).
Statistics | AGRL | FRSD | FRSE | FRST | RNGB | UCOM | AGRL | FRSD | FRSE | FRST | RNGB | UCOM |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Min. | 0.170 | 0.340 | 0.290 | 0.320 | 0.240 | 0.120 | 0.100 | 0.180 | 0.130 | 0.150 | 0.090 | 0.070 |
1st Quantile | 0.280 | 0.530 | 0.410 | 0.470 | 0.390 | 0.170 | 0.150 | 0.280 | 0.180 | 0.220 | 0.190 | 0.100 |
Median | 0.340 | 0.560 | 0.440 | 0.510 | 0.430 | 0.220 | 0.190 | 0.300 | 0.190 | 0.240 | 0.210 | 0.130 |
Mean | 0.345 | 0.564 | 0.457 | 0.517 | 0.427 | 0.224 | 0.193 | 0.307 | 0.204 | 0.249 | 0.213 | 0.128 |
3rd Quantile | 0.400 | 0.610 | 0.520 | 0.570 | 0.470 | 0.260 | 0.230 | 0.340 | 0.240 | 0.280 | 0.230 | 0.150 |
Max. | 0.550 | 0.680 | 0.600 | 0.650 | 0.560 | 0.380 | 0.310 | 0.430 | 0.300 | 0.360 | 0.320 | 0.220 |
Stdev | 0.081 | 0.057 | 0.063 | 0.061 | 0.055 | 0.060 | 0.044 | 0.043 | 0.034 | 0.038 | 0.030 | 0.034 |
Months | AGRL %difference | RNGB %difference | UCOM %difference | FRSD %difference | FRSE %difference | FRST %difference | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
16 August | 5.26 | −4.00 | 10.10 | 4.17 | −19.17 | −12.85 | −6.92 | −13.52 | 12.00 | 4.00 | 8.00 | 7.44 |
17 August | 2.63 | 0.00 | 3.73 | 4.35 | −17.64 | −9.54 | −11.49 | −14.89 | −1.62 | 13.04 | 5.15 | 7.52 |
18 August | 7.50 | 0.00 | 0.95 | −3.85 | −21.66 | −14.26 | −6.28 | −12.75 | −2.73 | 0.00 | 9.42 | 14.45 |
19 August | 12.82 | 8.33 | 4.80 | 8.33 | −20.38 | −15.28 | −5.55 | −11.12 | 0.17 | 16.67 | 5.94 | 10.78 |
20 August | 15.38 | 4.35 | 3.41 | 0.00 | −19.82 | −10.04 | −4.08 | −8.86 | 2.10 | 13.04 | 7.68 | 7.75 |
21 August | −28.57 | −38.10 | −6.67 | −8.33 | −18.12 | −10.20 | −54.85 | −62.97 | −30.26 | −33.33 | −73.47 | −80.00 |
22 August | −9.81 | −14.65 | −0.44 | 2.37 | −23.27 | −15.76 | −36.39 | −43.33 | −20.13 | −21.41 | −32.14 | −30.98 |
Time-Step | Period | p-Factor | r-Factor | R2 | NSE | PBIAS (%) |
---|---|---|---|---|---|---|
Daily | Calibration | 0.74 | 1.41 | 0.84 | 0.79 | 6.4 |
Validation | 0.79 | 1.58 | 0.87 | 0.86 | 4.2 | |
Sub-Daily | Calibration | 0.72 | 1.33 | 0.53 | 0.49 | 16.9 |
Validation | 0.83 | 1.71 | 0.63 | 0.6 | 11.7 |
Process | Parameter | Description | Method | Daily | Sub-Daily |
---|---|---|---|---|---|
Range | Range | ||||
Surface runoff | CN2 | Curve number | r (relative) | (−0.04, 0.1) | (−0.002, 0.1) |
Groundwater | ALPHA_BF | Baseflow alpha factor | v (replace) | (0.05, 0.69) | (0.5, 1) |
GW_DELAY | Groundwater delay | a (absolute) | (10, 95) | (10, 80) | |
RCHRG_DP | Deep aquifer percolation fraction | v (replace) | (0, 0.5) | (0.11, 0.4) | |
REVAPMN | Threshold depth of water for “revap” to occur | v (replace) | (990, 1800) | (800, 1800) | |
GW_REVAP | Groundwater “revap” coefficient | v (replace) | (0.02, 0.2) | (0.06, 0.21) | |
GWQMN | Threshold depth of water for return flow to occur | v (replace) | (100, 500) | (150, 500) | |
Lateral flow | HRU_SLP | Average slope steepness | r (relative) | (−0.01, 3) | (0.2, 2.3) |
Channel | SLSUBBSN | Average slope length | r (relative) | (−0.1, 0.2) | (−0.6, 0.2) |
Soil | USLE_C | Crop vegetation factor | v (replace) | (0.01, 0.2) | (0.01, 0.2) |
CHTMX | Maximum canopy storage | r (relative) | (−0.6, 0.1) | (−0.6, 0.1) | |
USLE_K | Soil erodibility factor | v (replace) | (0.01, 0.2) | (0.01, 0.2) | |
SOL_BD | Moist bulk density of the soil layer | r (relative) | (−0.1, 0.3) | (−0.1, 0.3) | |
SOL_AWC | Soil available water storage capacity | r (relative) | (−0.03, 0.03) | (−0.03, 0.03) | |
SOL_K | Saturated hydraulic conductivity | r (relative) | (−0.2, 0.8) | (−0.2, 0.8) | |
SOL_CBN | Organic carbon content | r (relative) | (−0.02, 0.02) | (−0.02, 0.02) | |
ESCO | Soil evaporation compensation coefficient | v (replace) | (0.5, 0.95) | (0.5, 0.95) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koltsida, E.; Mamassis, N.; Baltas, E.; Andronis, V.; Kallioras, A. Assessment of Post-Fire Impacts on Vegetation Regeneration and Hydrological Processes in a Mediterranean Peri-Urban Catchment. Remote Sens. 2024, 16, 4745. https://doi.org/10.3390/rs16244745
Koltsida E, Mamassis N, Baltas E, Andronis V, Kallioras A. Assessment of Post-Fire Impacts on Vegetation Regeneration and Hydrological Processes in a Mediterranean Peri-Urban Catchment. Remote Sensing. 2024; 16(24):4745. https://doi.org/10.3390/rs16244745
Chicago/Turabian StyleKoltsida, Evgenia, Nikos Mamassis, Evangelos Baltas, Vassilis Andronis, and Andreas Kallioras. 2024. "Assessment of Post-Fire Impacts on Vegetation Regeneration and Hydrological Processes in a Mediterranean Peri-Urban Catchment" Remote Sensing 16, no. 24: 4745. https://doi.org/10.3390/rs16244745
APA StyleKoltsida, E., Mamassis, N., Baltas, E., Andronis, V., & Kallioras, A. (2024). Assessment of Post-Fire Impacts on Vegetation Regeneration and Hydrological Processes in a Mediterranean Peri-Urban Catchment. Remote Sensing, 16(24), 4745. https://doi.org/10.3390/rs16244745