NST-YOLO11: ViT Merged Model with Neuron Attention for Arbitrary-Oriented Ship Detection in SAR Images
Abstract
:1. Introduction
- 1.
- Illustrated the existing challenges on the arbitrary-oriented ship detection in SAR images by analyzing different deep learning methods and common mechanisms employed in the field;
- 2.
- Proposed a CNN model, NST-YOLO11, integrating Neural Swin Transformer (Neural Swin-T) and Cross-Stage connection Spatial Pyramid Pooling-Fast (CS-SPPF) based on YOLO11;
- 3.
- Summarized the performance of the proposed model for arbitrary-oriented ship detection in SAR images on RSDD-SAR and SSDD in recent years and achieved state-of-the-art detection results on these two datasets. SOTA results were also achieved in the subsets of RSDD-SAR divided by nearshore and offshore scenes.
2. Related Work
2.1. Deep Learning-Based Bounding-Box SAR Ship Detection Models
2.2. SAR Ship Detection Models Using Attention Mechanism
2.3. Arbitrary-Oriented and Anchor-Free SAR Ship Detection Models
3. Methodology
3.1. Overall Structure of NST-YOLO11
3.2. Swin Transformer Module with Neural Attention (Neural Swin-T)
3.3. Cross-Stage Connection Spatial Pyramid Pooling-Fast Module (CS-SPPF)
3.4. Decoupled Detection Head Based on Anchor-Free Oriented Bounding Box (DOBB Head)
3.5. Merged Loss Function Focused on Classification and Regression
3.6. Optimizer
4. Experiments and Results
4.1. Datasets
4.2. Implementation Details
4.2.1. Design and Selection of Hyperparameters
4.2.2. Evaluation Metrics
4.2.3. Experimental Environment and Framework
4.3. Comparisons with State-of-the-Art on SSDD+
4.4. Comparison with State-of-the-Art in the Nearshore/Offshore Scenarios on RSDD-SAR
4.5. Ablation Experiments
- Incorporation of the SPPF module with cross-stage connections.
- Addition of the Swin-T module following the backbone network.
- Integration of attention mechanisms, informed by neuron suppression in the spatial domain, into the Swin-T module.
4.6. Transfer Experiment with SSDD+ Trained Model on RSDD-SAR
5. Visualization and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Chen, J.; Cheng, P.; Yu, Z.; Yu, L.; Chi, C. A Survey on Deep-Learning-Based Real-Time SAR Ship Detection. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2023, 16, 3218–3247. [Google Scholar] [CrossRef]
- Wang, D.; Song, Y.; Huang, J.; An, D.; Chen, L. SAR Target Classification Based on Multiscale Attention Super-Class Network. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2022, 15, 9004–9019. [Google Scholar] [CrossRef]
- Chen, J.; An, D.; Ge, B.; Zhou, Z. Detection, Parameters Estimation, and Imaging of Moving Targets Based on Extended Post-Doppler STAP in Multichannel WasSAR-GMTI. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5223515. [Google Scholar] [CrossRef]
- Li, K.; Wang, D.; An, D. Impact of SAR Image Quantization Method on Target Recognition With Neural Networks. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2025, 18, 308–320. [Google Scholar] [CrossRef]
- Zhang, H.; An, D.; Li, J.; Chen, L.; Feng, D.; Song, Y.; Zhou, Z. The Dual-Band SAR Image Fusion-Based Foliage-Penetrating Target Detection Method. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5226513. [Google Scholar] [CrossRef]
- Ge, B.; An, D.; Liu, J.; Chen, L.; Feng, D.; Song, Y.; Zhou, Z. Three-Dimensional Parameter Estimation of Moving Target for Multichannel Airborne Wide-Angle Staring SAR. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5201115. [Google Scholar] [CrossRef]
- Chen, J.; Xiong, R.; Yu, H.; Xu, G.; Xing, M. Nonparametric Full-Aperture Autofocus Imaging for Microwave Photonic SAR. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5214815. [Google Scholar] [CrossRef]
- Chen, J.; Li, M.; Yu, H.; Xing, M. Full-Aperture Processing of Airborne Microwave Photonic SAR Raw Data. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5218812. [Google Scholar] [CrossRef]
- Renga, A.; Graziano, M.D.; D’Errico, M.; Moccia, A.; Cecchini, A. SAR-based sea traffic monitoring: A reliable approach for Maritime Surveillance. In Proceedings of the SAR Image Analysis, Modeling, and Techniques XI, Prague, Czech Republic, 19–22 September 2011. [Google Scholar]
- Graziano, M.D. Preliminary Results of Ship Detection Technique by Wake Pattern Recognition in SAR Images. Remote Sens. 2020, 12, 2869. [Google Scholar] [CrossRef]
- Suchandt, S.; Runge, H.; Kotenkov, A.; Breit, H.; Steinbrecher, U. Extraction of traffic flows and surface current information using Terrasar-X Along-track interferometry data. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009; Volume 2, pp. II-17–II-20. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, X.; Gao, G.; Lang, H.; Liu, G.; Cao, C.; Song, Y.; Guan, Y.; Dai, Y. Development and Application of Ship Detection and Classification Datasets: A review. IEEE Geosci. Remote Sens. Mag. 2024, 12, 12–45. [Google Scholar] [CrossRef]
- Novak, L.M.; Owirka, G.J.; Netishen, C.M. Performance of a High-Resolution Polarimetric SAR Automatic Target Recognition System. Linc. Lab. J. 1993, 6, 11–24. [Google Scholar]
- Potter, L.C.; Moses, R.L. Attributed scattering centers for SAR ATR. IEEE Trans. Image. Process. 1997, 6, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Gao, G. Statistical Modeling of SAR Images: A Survey. Sensors 2010, 10, 775–795. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.C.; Luo, Y.; Wang, D.; Liang, J.; Zhang, Q. Saliency-Based SAR Target Detection via Convolutional Sparse Feature Enhancement and Bayesian Inference. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5202015. [Google Scholar] [CrossRef]
- Lei, Y.; Leng, X.; Sun, Z.; Ji, K. Construction and Recognition Performance Analysis of Wide-swath SAR Maritime Large Moving Ships Dataset. J. Radars. 2022, 11, 347–362. [Google Scholar]
- Huang, Y.; Wang, D.; Huang, W.; An, D. A ViT Merged Oriented-Detector with Neuron Attention for Ship Detection in SAR Images. In Proceedings of the 2024 IEEE 7th International Conference on Electronic Information and Communication Technology (ICEICT), Xi’an, China, 30 July–2 August 2024; pp. 85–90. [Google Scholar] [CrossRef]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Congan, X.; Hang, S.; Jianwei, L.; Yu, L.; Libo, Y.; Long, G.; Wenjun, Y.; Taoyang, W. RSDD-SAR: Rotated Ship Detection Dataset in SAR Images. J. Radars 2022, 11, 581. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, X.; Li, J.; Xu, X.; Wang, B.; Zhan, X.; Xu, Y.; Ke, X.; Zeng, T.; Su, H.; et al. SAR Ship Detection Dataset (SSDD): Official Release and Comprehensive Data Analysis. Remote Sens. 2021, 13, 3690. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conf. Comput. Vis. Pattern Recognit, (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications. arXiv 2022, arXiv:2209.02976. [Google Scholar]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv 2022, arXiv:2207.02696. [Google Scholar]
- Reis, D.; Kupec, J.; Hong, J.; Daoudi, A. Real-Time Flying Object Detection with YOLOv8. arXiv 2023, arXiv:2305.09972. [Google Scholar]
- Tian, Z.; Shen, C.; Chen, H.; He, T. FCOS: A Simple and Strong Anchor-Free Object Detector. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 1922–1933. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Computer Vision–ECCV 2016: Proceedings of the 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9905, pp. 21–37. [Google Scholar] [CrossRef]
- Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-End Object Detection with Transformers. arXiv 2020, arXiv:2005.12872.,. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. arXiv 2017, arXiv:1706.03762. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar] [CrossRef]
- Dai, J.; Li, Y.; He, K.; Sun, J. R-FCN: Object Detection via Region-based Fully Convolutional Networks. In Proceedings of the Advances in Neural Information Processing Systems (NIPS 2016), Barcelona, Spain, 5–10 December 2016; Volume 29. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 386–397. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.Y.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 936–944. [Google Scholar] [CrossRef]
- Zhang, P.; Xu, H.; Tian, T.; Gao, P.; Li, L.; Zhao, T.; Zhang, N.; Tian, J. SEFEPNet: Scale Expansion and Feature Enhancement Pyramid Network for SAR Aircraft Detection With Small Sample Dataset. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2022, 15, 3365–3375. [Google Scholar] [CrossRef]
- Liu, S.; Chen, P.; Zhang, Y. A Multiscale Feature Pyramid SAR Ship Detection Network With Robust Background Interference. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2023, 16, 9904–9915. [Google Scholar] [CrossRef]
- Wang, Z.; Hou, G.; Xin, Z.; Liao, G.; Huang, P.; Tai, Y. Detection of SAR Image Multiscale Ship Targets in Complex Inshore Scenes Based on Improved YOLOv5. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2024, 17, 5804–5823. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, S.; Zhan, R.; Wang, W.; Zhang, J. LMSD-YOLO: A Lightweight YOLO Algorithm for Multi-Scale SAR Ship Detection. Remote Sens. 2022, 14, 4801. [Google Scholar] [CrossRef]
- Chen, L.; Luo, R.; Xing, J.; Li, Z.; Yuan, Z.; Cai, X. Geospatial Transformer Is What You Need for Aircraft Detection in SAR Imagery. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5225715. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, Y.; Hu, R.; Yu, Y. A Lightweight SAR Ship Detector Using End-to-End Image Preprocessing Network and Channel Feature Guided Spatial Pyramid Pooling. IEEE Geosci. Remote Sens. Lett. 2024, 21, 4003605. [Google Scholar] [CrossRef]
- Wen, X.; Zhang, S.; Wang, J.; Yao, T.; Tang, Y. A CFAR-Enhanced Ship Detector for SAR Images Based on YOLOv5s. Remote Sens. 2024, 16, 733. [Google Scholar] [CrossRef]
- Tan, X.; Leng, X.; Luo, R.; Sun, Z.; Ji, K.; Kuang, G. YOLO-RC: SAR Ship Detection Guided by Characteristics of Range-Compressed Domain. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2024, 17, 18834–18851. [Google Scholar] [CrossRef]
- Wang, S.; Cai, Z.; Yuan, J. Automatic SAR Ship Detection Based on Multifeature Fusion Network in Spatial and Frequency Domains. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4102111. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; Volume 11211, pp. 3–19. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, P.; Wang, H.; Jin, Y. NPA2Net: A Nested Path Aggregation Attention Network for Oriented SAR Ship Detection. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2024, 17, 9772–9789. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, S.; Ren, H.; Hu, J.; Zou, L.; Wang, X. Multi-Level Feature-Refinement Anchor-Free Framework with Consistent Label-Assignment Mechanism for Ship Detection in SAR Imagery. Remote Sens. 2024, 16, 975. [Google Scholar] [CrossRef]
- Sun, Z.; Leng, X.; Lei, Y.; Xiong, B.; Ji, K.; Kuang, G. BiFA-YOLO: A Novel YOLO-Based Method for Arbitrary-Oriented Ship Detection in High-Resolution SAR Images. Remote Sens. 2021, 13, 4209. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, Q.; Yu, W.; Lv, J. A Single-Stage Arbitrary-Oriented Detector Based on Multiscale Feature Fusion and Calibration for SAR Ship Detection. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2022, 15, 8179–8198. [Google Scholar] [CrossRef]
- Wan, H.; Chen, J.; Huang, Z.; Xia, R.; Wu, B.; Sun, L.; Yao, B.; Liu, X.; Xing, M. AFSar: An Anchor-Free SAR Target Detection Algorithm Based on Multiscale Enhancement Representation Learning. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5219514. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October 2021; pp. 9992–10002. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, R.Y.; Li, L.; Xie, X. SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks. In Proceedings of the 38th International Conference on Machine Learning (ICML), Online, 18–24 July 2021; Volume 139, pp. 11863–11874. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [Google Scholar] [CrossRef] [PubMed]
- Loshchilov, I.; Hutter, F. Decoupled Weight Decay Regularization. arXiv 2019, arXiv:1711.05101. [Google Scholar]
- Wan, H.; Chen, J.; Huang, Z.; Du, W.; Xu, F.; Wang, F.; Wu, B. Orientation Detector for Ship Targets in SAR Images Based on Semantic Flow Feature Alignment and Gaussian Label Matching. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5218616. [Google Scholar] [CrossRef]
- Xu, C.; Su, H.; Gao, L.; Wu, J.; Yan, W. Rotated SAR Ship Detection based on Gaussian Wasserstein Distance Loss. Mob. Netw. Appl. 2023, 28, 1842–1851. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, X.; Liu, C.; Shi, J.; Wei, S.; Ahmad, I.; Zhan, X.; Zhou, Y.; Pan, D.; Li, J.; et al. Balance learning for ship detection from synthetic aperture radar remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 2021, 182, 190–207. [Google Scholar] [CrossRef]
- Liu, H.; Wang, L.; Zhao, C.; Wang, N.; Chen, J. Rotating Target Detection of SAR Image Based on Multi-scale Attentino Module for Inshore Ships. In IGARSS 2023—Proceedings of the 2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 7034–7037. [Google Scholar] [CrossRef]
- Yang, R.; Pan, Z.; Jia, X.; Zhang, L.; Deng, Y. A Novel CNN-Based Detector for Ship Detection Based on Rotatable Bounding Box in SAR Images. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2021, 14, 1938–1958. [Google Scholar] [CrossRef]
- Pan, Z.; Yang, R.; Zhang, Z. MSR2N: Multi-Stage Rotational Region Based Network for Arbitrary-Oriented Ship Detection in SAR Images. Sensors 2020, 20, 2340. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; An, W.; Li, S.; Wei, G.; Zou, B. An Improved FCOS Method for Ship Detection in SAR Images. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2022, 15, 8910–8927. [Google Scholar] [CrossRef]
- Han, J.; Ding, J.; Li, J.; Xia, G.S. Align Deep Features for Oriented Object Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5602511. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; Zhao, W.; Wang, X.; Li, G.; He, Y. Frequency-Adaptive Learning for SAR Ship Detection in Clutter Scenes. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5215514. [Google Scholar] [CrossRef]
- Chen, B.; Yu, C.; Zhao, S.; Song, H. An Anchor-Free Method Based on Transformers and Adaptive Features for Arbitrarily Oriented Ship Detection in SAR Images. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2024, 17, 2012–2028. [Google Scholar] [CrossRef]
- Liu, J.; Liu, L.; Xiao, J. Ellipse Polar Encoding for Oriented SAR Ship Detection. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2024, 17, 3502–3515. [Google Scholar] [CrossRef]
- Chattopadhay, A.; Sarkar, A.; Howlader, P.; Balasubramanian, V.N. Grad-CAM++: Generalized Gradient-Based Visual Explanations for Deep Convolutional Networks. In Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018; IEEE: New York, NY, USA, 2018; pp. 839–847. [Google Scholar] [CrossRef]
RSDD-SAR | SSDD+ | |
---|---|---|
Sensors | Gaofen-3, TerraSAR-X | RadarSat-2, TerraSAR-X, Sentinel-1 |
Resolution | 2–20 m | 1–15 m |
Image number | Train: 5000/Val: 2000 | Train: 928/Val: 232 |
Ship number | 10,263 | 2456 |
Polarization | HH, VV, VH, HV, DH, DV | HH, VV, VH, HV |
Scenes | Inshore and Offshore | |
Noise | No artificially added |
Datasets | Batch Size | Depth Scale | Width Scale | Epoch | Imgsz | Warmup Epoch | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RSDD-SAR | 32 | Equation (9) | 4 | 0.67 | 0.75 | 500 | 512 | 1 × 10 −3 | 1 | 1 × 10 −4 | 50 | 5.5 | 3.5 | 7.5 |
SSDD+ | 8 |
Method | Bounding Box | Framework | P (%) | R (%) | Params (M) | |
---|---|---|---|---|---|---|
MSR2N [60] | Oriented | Multi Stage | 86.52 | 92.05 | 90.11 | / |
YOLO-FA [63] | Oriented | One Stage | 95.20 | 95.01 | 96.80 | 46.14 |
R-FCOS [27] | Oriented | One Stage | 65.12 | 87.81 | 80.53 | 41.41 |
R-Faster R-CNN [33] | Oriented | Two Stage | 78.10 | 88.90 | 80.60 | 41.41 |
S2ANet [62] | Oriented | One Stage | 62.10 | 88.70 | 81.00 | 35.02 |
FADet [55] | Oriented | One Stage | 95.51 | 94.79 | 91.03 | 42.78 |
BL-Net [57] | Oriented | One Stage | 91.27 | 96.14 | 95.25 | 47.81 |
NPA2Net [46] | Oriented | One Stage | / | / | 73.7 | 16.83 |
SAD-Det [64] | Oriented | One Stage | / | / | 96.8 | 45.39 |
BiFA-YOLO [48] | Oriented | One Stage | 94.85 | 93.97 | 93.90 | 19.40 |
Proposed Method | Oriented | One Stage | 96.95 | 96.89 | 99.01 | 31.03 |
Method | Bounding Box | Framework | Entire AP50 (%) | Inshore AP50 (%) | Offshore AP50 (%) | Params (M) |
---|---|---|---|---|---|---|
FADet [55] | Oriented | One Stage | 90.78 | / | / | 42.78 |
FcaNet [58] | Oriented | One Stage | 88.28 | 63.18 | 90.55 | 47.24 |
R-RetinaNet [59] | Oriented | One Stage | 67.89 | 35.75 | 74.92 | 51.49 |
R-FCOS [27] | Oriented | One Stage | 87.31 | 56.17 | 93.79 | 60.45 |
R-Faster R-CNN [33] | Oriented | Two Stage | 84.1 | 50.99 | 91.47 | 60.45 |
SAD-Det [64] | Oriented | One Stage | 93.8 | 78.7 | 96.5 | 45.39 |
EPE [65] | Oriented | One Stage | 89.37 | 67.84 | 90.37 | 11.86 |
NPA2Net [46] | Oriented | One Stage | 92.1 | 75.7 | 98.6 | 16.83 |
Proposed Method | Oriented | One Stage | 97.53 | 87.43 | 98.96 | 31.03 |
Method | Swin | Neu. Att. | CS-SPPF | RSDD-SAR | SSDD+ | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
P | R | AP50 | AP50−95 | P | R | AP50 | AP50−95 | ||||
YOLO11 | 95.1 | 90.74 | 97.02 | 73.92 | 96.52 | 96.49 | 98.55 | 76.5 | |||
✓ | 94.63 | 91.93 | 97.21 | 74.4 | 95.02 | 97.93 | 98.85 | 76.13 | |||
✓ | 94.8 | 91.75 | 97.12 | 74.64 | 97.04 | 96.03 | 98.91 | 76.81 | |||
✓ | ✓ | 94.96 | 91.81 | 97.21 | 74.49 | 96.22 | 98.02 | 98.95 | 76.76 | ||
✓ | ✓ | 93.38 | 92.91 | 97.34 | 74.38 | 97.2 | 96.7 | 98.98 | 75.79 | ||
✓ | ✓ | ✓ | 94.13 | 92.45 | 97.53 | 75.44 | 96.96 | 96.89 | 99.02 | 76.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Wang, D.; Wu, B.; An, D. NST-YOLO11: ViT Merged Model with Neuron Attention for Arbitrary-Oriented Ship Detection in SAR Images. Remote Sens. 2024, 16, 4760. https://doi.org/10.3390/rs16244760
Huang Y, Wang D, Wu B, An D. NST-YOLO11: ViT Merged Model with Neuron Attention for Arbitrary-Oriented Ship Detection in SAR Images. Remote Sensing. 2024; 16(24):4760. https://doi.org/10.3390/rs16244760
Chicago/Turabian StyleHuang, Yiyang, Di Wang, Boxuan Wu, and Daoxiang An. 2024. "NST-YOLO11: ViT Merged Model with Neuron Attention for Arbitrary-Oriented Ship Detection in SAR Images" Remote Sensing 16, no. 24: 4760. https://doi.org/10.3390/rs16244760
APA StyleHuang, Y., Wang, D., Wu, B., & An, D. (2024). NST-YOLO11: ViT Merged Model with Neuron Attention for Arbitrary-Oriented Ship Detection in SAR Images. Remote Sensing, 16(24), 4760. https://doi.org/10.3390/rs16244760