Estimating the Colored Dissolved Organic Matter in the Negro River, Amazon Basin, with In Situ Remote Sensing Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. On-Site Data Collection
2.3. Model Development and Analysis
3. Results
3.1. Optical and Chemical Properties of Negro River and Tributaries Waters
3.2. Empirical Models to Estimate aCDOM
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Richey, J.E.; Krusche, A.V.; Johnson, M.S.; da Cunha, H.B.; Ballester, M.V. The Role of Rivers in the Regional Carbon Balance. In Amazonia and Global Change; Keller, M., Bustamante, M., Gash, J., Silva Dias, P., Eds.; American Geophysical Union: Washington, DC, USA, 2009; Volume 186, pp. 489–504. [Google Scholar]
- Sutfin, N.A.; Wohl, E.E.; Dwire, K.A. Banking Carbon: A Review of Organic Carbon Storage and Physical Factors Influencing Retention in Floodplains and Riparian Ecosystems. Earth Surf. Process. Landf. 2016, 41, 38–60. [Google Scholar] [CrossRef]
- Leenheer, J.A.; Croué, J.-P. Peer Reviewed: Characterizing Aquatic Dissolved Organic Matter. Environ. Sci. Technol. 2003, 37, 18A–26A. [Google Scholar] [CrossRef] [PubMed]
- Coble, P.G. Marine Optical Biogeochemistry: The Chemistry of Ocean Color. Chem. Rev. 2007, 107, 402–418. [Google Scholar] [CrossRef] [PubMed]
- Kirk, J.T.O. Light and Photosiynthesis in Aquatic Ecossystems; Cambridge University Press: Cambridge, UK, 2011; ISBN 978-0-521-15175-7. [Google Scholar]
- Cole, J.J.; Prairie, Y.T.; Caraco, N.F.; McDowell, W.H.; Tranvik, L.J.; Striegl, R.G.; Duarte, C.M.; Kortelainen, P.; Downing, J.A.; Middelburg, J.J.; et al. Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget. Ecosystems 2007, 10, 172–185. [Google Scholar] [CrossRef]
- Richey, J.E.; Hedges, J.I.; Devol, A.H.; Quay, P.D.; Victoria, R.; Martinelli, L.; Forsberg, B.R. Biogeochemistry of Carbon in the Amazon River. Limnol. Oceanogr. 1990, 35, 352–371. [Google Scholar] [CrossRef]
- Moreira-Turcq, P.; Seyler, P.; Guyot, J.L.; Etcheber, H. Exportation of Organic Carbon from the Amazon River and Its Main Tributaries. Hydrol. Process. 2003, 17, 1329–1344. [Google Scholar] [CrossRef]
- Kutser, T.; Pierson, D.C.; Kallio, K.Y.; Reinart, A.; Sobek, S. Mapping Lake CDOM by Satellite Remote Sensing. Remote Sens. Environ. 2005, 95, 535–540. [Google Scholar] [CrossRef]
- Ficek, D.; Zapadka, T.; Dera, J. Remote Sensing Reflectance of Pomeranian Lakes and the Baltic. Oceanologia 2011, 53, 959–970. [Google Scholar] [CrossRef]
- Brezonik, P.L.; Olmanson, L.G.; Finlay, J.C.; Bauer, M.E. Factors Affecting the Measurement of CDOM by Remote Sensing of Optically Complex Inland Waters. Remote Sens. Environ. 2015, 157, 199–215. [Google Scholar] [CrossRef]
- da Silva, M.P.; Sander de Carvalho, L.A.; Novo, E.; Jorge, D.S.F.; Barbosa, C.C.F. Use of Optical Absorption Indices to Assess Seasonal Variability of Dissolved Organic Matter in Amazon Floodplain Lakes. Biogeosciences 2020, 17, 5355–5364. [Google Scholar] [CrossRef]
- Kutser, T.; Koponen, S.; Kallio, K.Y.; Fincke, T.; Paavel, B. Bio-Optical Modeling of Colored Dissolved Organic Matter. In Bio-Optical Modeling and Remote Sensing of Inland Waters; Elsevier: Amsterdam, The Netherlands, 2017; pp. 101–128. [Google Scholar]
- Bio-Optical Modelling and Remote Sensing of Inland Waters; Mishra, D.R.; Ogashawara, I.; Gitelson, A.A. (Eds.) Elsevier: Amsterdam, The Netherlands, 2017; ISBN 978-0-12-804644-9. [Google Scholar]
- Binding, C.E.; Bowers, D.G. Measuring the Salinity of the Clyde Sea from Remotely Sensed Ocean Colour. Estuar. Coast. Shelf Sci. 2003, 57, 605–611. [Google Scholar] [CrossRef]
- Zhu, W.; Yu, Q.; Tian, Y.Q.; Becker, B.L.; Zheng, T.; Carrick, H.J. An Assessment of Remote Sensing Algorithms for Colored Dissolved Organic Matter in Complex Freshwater Environments. Remote Sens. Environ. 2014, 140, 766–778. [Google Scholar] [CrossRef]
- Sahay, A.; Ali, S.M.; Raman, M.; Gupta, A.; Motwani, G.; Thakker, R.; Tirkey, A.; Solanki, H.A.; Shanmugam, P. Empirically Derived Coloured Dissolved Organic Matter Absorption Coefficient Using In-Situ and Sentinel 3/OLCI in Coastal Waters of India. Int. J. Remote Sens. 2022, 43, 1430–1450. [Google Scholar] [CrossRef]
- Alcântara, E.; Bernardo, N.; Watanabe, F.; Rodrigues, T.; Rotta, L.; Carmo, A.; Shimabukuro, M.; Gonçalves, S.; Imai, N. Estimating the CDOM Absorption Coefficient in Tropical Inland Waters Using OLI/Landsat-8 Images. Remote Sens. Lett. 2016, 7, 661–670. [Google Scholar] [CrossRef]
- Kutser, T.; Casal Pascual, G.; Barbosa, C.; Paavel, B.; Ferreira, R.; Carvalho, L.; Toming, K. Mapping Inland Water Carbon Content with Landsat 8 Data. Int. J. Remote Sens. 2016, 37, 2950–2961. [Google Scholar] [CrossRef]
- Alcântara, E.; Bernardo, N.; Rodrigues, T.; Watanabe, F. Modeling the Spatio-Temporal Dissolved Organic Carbon Concentration in Barra Bonita Reservoir Using OLI/Landsat-8 Images. Model. Earth Syst. Environ. 2017, 3, 11. [Google Scholar] [CrossRef]
- Santiago, M.I.; Frey, K.E. Assessment of Empirical and Semi-Analytical Algorithms Using MODIS-Aqua for Representing In-Situ Chromophoric Dissolved Organic Matter (CDOM) in the Bering, Chukchi, and Western Beaufort Seas of the Pacific Arctic Region. Remote Sens. 2021, 13, 3673. [Google Scholar] [CrossRef]
- Ogashawara, I.; Mishra, D.R.; Nascimento, R.F.F.; Alcântara, E.H.; Kampel, M.; Stech, J.L. Re-Parameterization of a Quasi-Analytical Algorithm for Colored Dissolved Organic Matter Dominant Inland Waters. Int. J. Appl. Earth Obs. Geoinf. 2016, 53, 128–145. [Google Scholar] [CrossRef]
- Lima Filho, M.C.D.O.; Tavares, M.H.; Fragoso, C.R.; Lins, R.C.; Vich, D.V. Semi-Empirical Models for Remote Estimating Colored Dissolved Organic Matter (CDOM) in a Productive Tropical Estuary. Environ. Monit. Assess. 2023, 195, 846. [Google Scholar] [CrossRef] [PubMed]
- Korosov, A.; Pozdnyakov, D.; Folkestad, A.; Pettersson, L.; Sørensen, K.; Shuchman, R. Semi-Empirical Algorithm for the Retrieval of Ecology-Relevant Water Constituents in Various Aquatic Environments. Algorithms 2009, 2, 470–497. [Google Scholar] [CrossRef]
- Zhang, R.; Deng, R.; Liu, Y.; Liang, Y.; Xiong, L.; Cao, B.; Zhang, W. Developing New Colored Dissolved Organic Matter Retrieval Algorithms Based on Sparse Learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3478–3492. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, Y.; Zhang, Y.; Shi, K.; Zhou, Y.; Li, N. Machine Learning Algorithms for Chromophoric Dissolved Organic Matter (CDOM) Estimation Based on Landsat 8 Images. Remote Sens. 2021, 13, 3560. [Google Scholar] [CrossRef]
- Kim, J.; Jang, W.; Hwi Kim, J.; Lee, J.; Hwa Cho, K.; Lee, Y.-G.; Chon, K.; Park, S.; Pyo, J.; Park, Y.; et al. Application of Airborne Hyperspectral Imagery to Retrieve Spatiotemporal CDOM Distribution Using Machine Learning in a Reservoir. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103053. [Google Scholar] [CrossRef]
- Xu, J.; Fang, C.; Gao, D.; Zhang, H.; Gao, C.; Xu, Z.; Wang, Y. Optical Models for Remote Sensing of Chromophoric Dissolved Organic Matter (CDOM) Absorption in Poyang Lake. ISPRS J. Photogramm. Remote Sens. 2018, 142, 124–136. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, W.; Tian, Y.Q.; Yu, Q.; Zheng, Y.; Huang, L. Remote Estimation of Colored Dissolved Organic Matter and Chlorophyll-a in Lake Huron Using Sentinel-2 Measurements. J. Appl. Remote Sens. 2017, 11, 1. [Google Scholar] [CrossRef]
- Ciancia, E.; Campanelli, A.; Colonna, R.; Palombo, A.; Pascucci, S.; Pignatti, S.; Pergola, N. Improving Colored Dissolved Organic Matter (CDOM) Retrievals by Sentinel2-MSI Data through a Total Suspended Matter (TSM)-Driven Classification: The Case of Pertusillo Lake (Southern Italy). Remote Sens. 2023, 15, 5718. [Google Scholar] [CrossRef]
- Shang, Y.; Liu, G.; Wen, Z.; Jacinthe, P.-A.; Song, K.; Zhang, B.; Lyu, L.; Li, S.; Wang, X.; Yu, X. Remote Estimates of CDOM Using Sentinel-2 Remote Sensing Data in Reservoirs with Different Trophic States across China. J. Environ. Manag. 2021, 286, 112275. [Google Scholar] [CrossRef] [PubMed]
- Pitarch, J.; Vanhellemont, Q. The QAA-RGB: A Universal Three-Band Absorption and Backscattering Retrieval Algorithm for High Resolution Satellite Sensors. Development and Implementation in ACOLITE. Remote Sens. Environ. 2021, 265, 112667. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, F.; Sokoletsky, L.; Sun, X. Validation and Calibration of QAA Algorithm for CDOM Absorption Retrieval in the Changjiang (Yangtze) Estuarine and Coastal Waters. Remote Sens. 2017, 9, 1192. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, J.; Yang, X.; Zhang, Y.; Zhang, L.; Ren, H.; Wu, B.; Ye, L. A Review of the Application of Machine Learning in Water Quality Evaluation. Eco-Environ. Health 2022, 1, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Slonecker, E.T.; Jones, D.K.; Pellerin, B.A. The New Landsat 8 Potential for Remote Sensing of Colored Dissolved Organic Matter (CDOM). Mar. Pollut. Bull. 2015, 107, 518–527. [Google Scholar] [CrossRef]
- Martinez, J.-M.; Espinoza-Villar, R.; Armijos, E.; Silva Moreira, L. The Optical Properties of River and Floodplain Waters in the Amazon River Basin: Implications for Satellite-Based Measurements of Suspended Particulate Matter. J. Geophys. Res. Earth Surf. 2015, 120, 1274–1287. [Google Scholar] [CrossRef]
- Barbosa, C.; Novo, E.; Ferreira, R.; Carvalho, L.; Cairo, C.; Lopes, F.; Stech, J.; Alcantara, E. Brazilian Inland Water Bio-Optical Dataset to Support Carbon Budget Studies in Reservoirs as Well as Anthropogenic Impacts in Amazon Floodplain Lakes: Preliminary Results. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-7/W3, 1439–1446. [Google Scholar] [CrossRef]
- de Matos Valerio, A.; Kampel, M.; Vantrepotte, V.; Ward, N.D.; Sawakuchi, H.O.; Less, D.F.D.S.; Neu, V.; Cunha, A.; Richey, J. Using CDOM Optical Properties for Estimating DOC Concentrations and pCO2 in the Lower Amazon River. Opt. Express 2018, 26, A657. [Google Scholar] [CrossRef] [PubMed]
- Melack, J.M.; Novo, E.M.L.M.; Forsberg, B.R.; Piedade, M.T.F.; Maurice, L. Floodplain Ecosystem Processes. In Amazonia and Global Change; Wiley: Hoboken, NJ, USA, 2009; pp. 525–541. [Google Scholar]
- Scofield, V.; Melack, J.M.; Barbosa, P.M.; Amaral, J.H.F.; Forsberg, B.R.; Farjalla, V.F. Carbon Dioxide Outgassing from Amazonian Aquatic Ecosystems in the Negro River Basin. Biogeochemistry 2016, 129, 77–91. [Google Scholar] [CrossRef]
- Marinho, R.R.; Filizola Junior, N.P.; Cremon, É.H. Analysis of Suspended Sediment in the Anavilhanas Archipelago, Rio Negro, Amazon Basin. Water 2020, 12, 1073. [Google Scholar] [CrossRef]
- Marinho, R.R.; Harmel, T.; Martinez, J.-M.; Filizola Junior, N.P. Spatiotemporal Dynamics of Suspended Sediments in the Negro River, Amazon Basin, from In Situ and Sentinel-2 Remote Sensing Data. ISPRS Int. J. Geo-Inf. 2021, 10, 86. [Google Scholar] [CrossRef]
- Fassoni-Andrade, A.C.; Fleischmann, A.S.; Papa, F.; de Paiva, R.C.D.; Wongchuig, S.; Melack, J.M.; Moreira, A.A.; Paris, A.; Ruhoff, A.; Barbosa, C.; et al. Amazon Hydrology from Space: Scientific Advances and Future Challenges. Rev. Geophys. 2021, 59, e2020RG000728. [Google Scholar] [CrossRef]
- RSIS Ramsar Information Sheet. Rio Negro, Brazil. Available online: https://rsis.ramsar.org/ris/2335 (accessed on 29 December 2022).
- Junk, W.J.; Wittmann, F.; Schöngart, J.; Piedade, M.T.F. A Classification of the Major Habitats of Amazonian Black-Water River Floodplains and a Comparison with Their White-Water Counterparts. Wetl. Ecol. Manag. 2015, 23, 677–693. [Google Scholar] [CrossRef]
- Filizola, N.; Guyot, J.L. Suspended Sediment Yields in the Amazon Basin: An Assessment Using the Brazilian National Data Set. Hydrol. Process. 2009, 23, 3207–3215. [Google Scholar] [CrossRef]
- Latrubesse, E.M.; Franzinelli, E. The Late Quaternary Evolution of the Negro River, Amazon, Brazil: Implications for Island and Floodplain Formation in Large Anabranching Tropical Systems. Geomorphology 2005, 70, 372–397. [Google Scholar] [CrossRef]
- Melack, J.M.; Hess, L.L. Remote Sensing of the Distribution and Extent of Wetlands in the Amazon Basin. In Amazonian Floodplain Forests; Ecological Studies; Springer: Berlin/Heidelberg, Germany, 2010; Volume 210, pp. 43–59. [Google Scholar]
- Getirana, A.C.V.; Espinoza, J.C.V.; Ronchail, J.; Rotunno Filho, O.C. Assessment of Different Precipitation Datasets and Their Impacts on the Water Balance of the Negro River Basin. J. Hydrol. 2011, 404, 304–322. [Google Scholar] [CrossRef]
- Leenheer, J.A. Origin and Nature of Humic Substances in the Waters of the Amazon River Basin. Acta Amaz. 1980, 10, 513–526. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- ISO 8245; Water Quality—Guidelines for the Determination of Total Organic Carbon (TOC) and Dissolved Organic Carbon (DOC). ISO: Geneva, Switzerland, 1999.
- HYBAM. Observation Service SO HYBAM. Available online: http://www.ore-hybam.org (accessed on 29 June 2021).
- Bricaud, A.; Morel, A.; Prieur, L. Absorption by Dissolved Organic Matter of the Sea (Yellow Substance) in the UV and Visible Domains. Limnol. Oceanogr. 1981, 26, 43–53. [Google Scholar] [CrossRef]
- Mobley, C.D. Estimation of the Remote-Sensing Reflectance from above-Surface Measurements. Appl. Opt. 1999, 38, 7442. [Google Scholar] [CrossRef] [PubMed]
- Chami, M.; Lafrance, B.; Fougnie, B.; Chowdhary, J.; Harmel, T.; Waquet, F. OSOAA: A Vector Radiative Transfer Model of Coupled Atmosphere-Ocean System for a Rough Sea Surface Application to the Estimates of the Directional Variations of the Water Leaving Reflectance to Better Process Multi-Angular Satellite Sensors Data over The Ocean. Opt. Express 2015, 23, 27829. [Google Scholar] [CrossRef] [PubMed]
- Morcrette, J.-J.; Boucher, O.; Jones, L.; Salmond, D.; Bechtold, P.; Beljaars, A.; Benedetti, A.; Bonet, A.; Kaiser, J.W.; Razinger, M.; et al. Aerosol Analysis and Forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: Forward Modeling. J. Geophys. Res. 2009, 114, D06206. [Google Scholar] [CrossRef]
- Watanabe, F.; Alcântara, E.; Curtarelli, M.; Kampel, M.; Stech, J. Landsat-Based Remote Sensing of the Colored Dissolved Organic Matter Absorption Coefficient in a Tropical Oligotrophic Reservoir. Remote Sens. Appl. Soc. Environ. 2018, 9, 82–90. [Google Scholar] [CrossRef]
- Helms, J.R.; Stubbins, A.; Ritchie, J.D.; Minor, E.C.; Kieber, D.J.; Mopper, K. Absorption Spectral Slopes and Slope Ratios as Indicators of Molecular Weight, Source, and Photobleaching of Chromophoric Dissolved Organic Matter. Limonology Oceanogr. 2008, 53, 955–969. [Google Scholar] [CrossRef]
- Laraque, A.; Guyot, J.L.; Filizola, N. Mixing Processes in the Amazon River at the Confluences of the Negro and Solimões Rivers, Encontro Das Águas, Manaus, Brazil. Hydrol. Process. 2009, 23, 3131–3140. [Google Scholar] [CrossRef]
- Mostofa, K.M.G.; Liu, C.; Mottaleb, M.A.; Wan, G.; Ogawa, H.; Vione, D.; Yoshioka, T.; Wu, F. Dissolved Organic Matter in Natural Waters. In Photobiogeochemistry of Organic Matter; Environmental Science and Engineering; Mostofa, K.M.G., Yoshioka, T., Mottaleb, A., Vione, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1–137. ISBN 978-3-642-32222-8. [Google Scholar]
- de Oliveira, L.C.; Sargentini, É., Jr.; Rosa, A.H.; Rocha, J.C.; Simões, M.L.; Martin-Neto, L.; da Silva, W.T.L.; Serudo, R.L. The Influence of Seasonalness on the Structural Characteristics of Aquatic Humic Substances Extracted from Negro River (Amazon State) Waters: Interactions with Hg(II). J. Braz. Chem. Soc. 2007, 18, 860–868. [Google Scholar] [CrossRef]
- Chauvel, A.; Walker, I.; Lucas, Y. Sedimentation and Pedogenesis in a Central Amazonian Black Water Basin. Biogeochemistry 1996, 33, 77–95. [Google Scholar] [CrossRef]
- Sargentini Junior, É.; Rocha, J.C.; Rosa, A.H.; Zara, L.F.; dos Santos, A.d. Substâncias húmicas aquáticas: Fracionamento molecular e caracterização de rearranjos internos após complexação com íons metálicos. Quím. Nova 2001, 24, 339–344. [Google Scholar] [CrossRef]
- Goulding, M.; Leal Carvalho, M.; Ferreira, E. Río Negro, Rich Life in Poor Water: Amazonian Diversity and Foodchain Ecology as Seen through Fish Communities; SPB Academic Publishing: The Hague, The Netherlands, 1989. [Google Scholar]
- Quesada, C.A.; Lloyd, J.; Anderson, L.O.; Fyllas, N.M.; Schwarz, M.; Czimczik, C.I. Soils of Amazonia with Particular Reference to the RAINFOR Sites. Biogeosciences 2011, 8, 1415–1440. [Google Scholar] [CrossRef]
- Johannsson, O.E.; Smith, D.S.; Sadauskas-Henrique, H.; Cimprich, G.; Wood, C.M.; Val, A.L. Photo-Oxidation Processes, Properties of DOC, Reactive Oxygen Species (ROS), and Their Potential Impacts on Native Biota and Carbon Cycling in the Rio Negro (Amazonia, Brazil). Hydrobiologia 2017, 789, 7–29. [Google Scholar] [CrossRef]
- Leenherr, J.A.; Santos, H. Considerações Sobre Os Processos de Sediementação Na Água Preta Ácida Do Rio Negro (Amazônia Central). Acta Amaz. 1980, 10, 343–355. [Google Scholar] [CrossRef]
- Nima, C.; Frette, Ø.; Hamre, B.; Stamnes, J.J.; Chen, Y.-C.; Sørensen, K.; Norli, M.; Lu, D.; Xing, Q.; Muyimbwa, D.; et al. CDOM Absorption Properties of Natural Water Bodies along Extreme Environmental Gradients. Water 2019, 11, 1988. [Google Scholar] [CrossRef]
- Babin, M. Variations in the Light Absorption Coefficients of Phytoplankton, Nonalgal Particles, and Dissolved Organic Matter in Coastal Waters around Europe. J. Geophys. Res. 2003, 108, 3211. [Google Scholar] [CrossRef]
- Ficke, A.D.; Myrick, C.A.; Hansen, L.J. Potential Impacts of Global Climate Change on Freshwater Fisheries. Rev. Fish Biol. Fish. 2007, 17, 581–613. [Google Scholar] [CrossRef]
- Martins, V.S.; Barbosa, C.C.F.; Carvalho, L.A.S.; Jorge, D.S.F.; Lobo, F.D.L.; Novo, E.M.L.M. Assessment of Atmospheric Correction Methods for Sentinel-2 MSI Images Applied to Amazon Floodplain Lakes. Remote Sens. 2017, 9, 322. [Google Scholar] [CrossRef]
- Lehmann, M.K.; Gurlin, D.; Pahlevan, N.; Alikas, K.; Conroy, T.; Anstee, J.; Balasubramanian, S.V.; Barbosa, C.C.F.; Binding, C.; Bracher, A.; et al. GLORIA—A Globally Representative Hyperspectral in Situ Dataset for Optical Sensing of Water Quality. Sci. Data 2023, 10, 100. [Google Scholar] [CrossRef] [PubMed]
- Jorge, D.S.F.; Loisel, H.; Jamet, C.; Dessailly, D.; Demaria, J.; Bricaud, A.; Maritorena, S.; Zhang, X.; Antoine, D.; Kutser, T.; et al. A Three-Step Semi Analytical Algorithm (3SAA) for Estimating Inherent Optical Properties over Oceanic, Coastal, and Inland Waters from Remote Sensing Reflectance. Remote Sens. Environ. 2021, 263, 112537. [Google Scholar] [CrossRef]
Section | River Name | DOC (mg∙L−1) | POC (mg∙L−1) | TSS (mg∙L−1) | aCDOM at 440 (m−1) |
---|---|---|---|---|---|
RN1 to RN13 | Negro | 10.03 | 0.33 | 4.67 | 8.97 |
IÇA | Içana | 15.45 | 0.46 | 3.21 | 13.36 |
UAU | Uaupés | 9.47 | 0.40 | 9.64 | 4.16 |
CUR | Curicuriari | 18.40 | 0.16 | 2.55 | 18.80 |
MAE | Marié | 20.10 | 0.30 | 4.60 | 15.18 |
CAU | Cauaburi | 8.17 | 0.47 | 14.58 | 8.69 |
MAR | Marauiá | * | 0.50 | 15.14 | 3.16 |
TEA | Tea | 14.76 | 0.47 | 3.12 | 10.17 |
UNE | Uneixi | 12.70 | 0.37 | 2.90 | 8.50 |
DEM | Demini | 6.23 | 0.55 | 10.27 | 6.30 |
BCO | Branco | 4.94 | 0.70 | 12.03 | 1.84 |
JAU | Jaú | * | 0.67 | * | 7.08 |
LAK | Apacú Lake | 7.32 | 0.35 | 8.48 | 4.94 |
TAR | Tarumã | * | * | 12.41 | 5.68 |
RS1 | Amazon | 3.05 | 1.52 | 50.80 | 2.15 |
Water Type | Section | S360–400 | S360–500 | S400–460 | S380–700 |
---|---|---|---|---|---|
Black | RN | 0.016 | 0.015 | 0.016 | 0.015 |
IÇA | 0.016 | 0.015 | 0.016 | 0.012 | |
UAU | 0.015 | 0.015 | 0.017 | 0.016 | |
CUR | 0.016 | 0.015 | 0.016 | 0.013 | |
MAE | 0.016 | 0.015 | 0.016 | 0.011 | |
CAU | 0.015 | 0.015 | 0.016 | 0.022 | |
TEA | 0.016 | 0.015 | 0.016 | 0.010 | |
UNE | 0.016 | 0.014 | 0.015 | 0.009 | |
JAU | 0.016 | 0.015 | 0.017 | 0.012 | |
LAK | 0.015 | 0.015 | 0.016 | 0.011 | |
TAR | 0.015 | 0.014 | 0.015 | 0.011 | |
Clear | MAR | 0.015 | 0.017 | 0.018 | 0.038 |
DEM | 0.015 | 0.014 | 0.015 | 0.012 | |
BCO | 0.017 | 0.016 | 0.015 | 0.012 | |
White | RS1 | 0.017 | 0.018 | 0.021 | 0.011 |
Author | Model | R2 | RMSE | MAPE (%) | |||
---|---|---|---|---|---|---|---|
hw | lw | hw | lw | hw | lw | ||
Ficek et al. [10] | aCDOM = 3.65 [Rrs(570)/Rrs(655)]−1.993 | 0.61 | 0.63 | 5.45 | 6.25 | 134 | 54 |
Brezonik et al. [11] | ln(aCDOM) = 1.872 − 0.830 ln(MSI-2/MSI-6) | 0.52 | 0.67 | 4.02 | 6.67 | 97 | 69 |
Da Silva et al. [12] | aCDOM = 4.39 (MSI−2/MSI−3) + 0.59 (MSI−6/MSI−5) − 6.67 | 0.56 | 0.08 | 5.69 | 7.40 | 73 | 73 |
Country | River | aCDOM at 440 nm Mean (m−1) | aCDOM at 440 nm Range (m−1) | Source |
---|---|---|---|---|
Brazil | Negro and tributaries | 8.97 | 4.94–20.10 | This study |
Amazon | 2.15 | 1.03–6.71 | ||
USA | Altamaha | 4.71 | 1.04–15.28 | GLORIA [73] |
Ashepoo | 14.59 | 6.52–21.08 | ||
Duplin | 0.74 | 0.26–1.50 | ||
Edisto | 8.45 | 2.22–12.98 | ||
Ogeechee | 1.88 | 0.62–3.92 | ||
Satilla | 2.68 | 1.31–4.08 | ||
St. Jones | 1.21 | 0.78–2.00 | ||
St. Marys | 5.91 | 0.70–14.88 | ||
Vietnam | Soai Rap | 0.54 | 0.78–3.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinho, R.R.; Martinez, J.-M.; de Oliveira, T.C.S.; Moreira, W.P.; de Carvalho, L.A.S.; Moreira-Turcq, P.; Harmel, T. Estimating the Colored Dissolved Organic Matter in the Negro River, Amazon Basin, with In Situ Remote Sensing Data. Remote Sens. 2024, 16, 613. https://doi.org/10.3390/rs16040613
Marinho RR, Martinez J-M, de Oliveira TCS, Moreira WP, de Carvalho LAS, Moreira-Turcq P, Harmel T. Estimating the Colored Dissolved Organic Matter in the Negro River, Amazon Basin, with In Situ Remote Sensing Data. Remote Sensing. 2024; 16(4):613. https://doi.org/10.3390/rs16040613
Chicago/Turabian StyleMarinho, Rogério Ribeiro, Jean-Michel Martinez, Tereza Cristina Souza de Oliveira, Wagner Picanço Moreira, Lino A. Sander de Carvalho, Patricia Moreira-Turcq, and Tristan Harmel. 2024. "Estimating the Colored Dissolved Organic Matter in the Negro River, Amazon Basin, with In Situ Remote Sensing Data" Remote Sensing 16, no. 4: 613. https://doi.org/10.3390/rs16040613
APA StyleMarinho, R. R., Martinez, J. -M., de Oliveira, T. C. S., Moreira, W. P., de Carvalho, L. A. S., Moreira-Turcq, P., & Harmel, T. (2024). Estimating the Colored Dissolved Organic Matter in the Negro River, Amazon Basin, with In Situ Remote Sensing Data. Remote Sensing, 16(4), 613. https://doi.org/10.3390/rs16040613