Improved Surface Currents from Altimeter-Derived and Sea Surface Temperature Observations: Application to the North Atlantic Ocean
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sea Surface Temperature
2.2. Background Geostrophic Currents
2.3. In Situ Measurements
2.4. Ocean Currents Reconstruction Methodology
- SST, SST are, respectively, the zonal and meridional SST spatial gradients, computed with a smooth noise-robust differentiator ([41], http://www.holoborodko.com/pavel/numerical-methods/ (accessed on 13 April 2022)) in order to reduce noise and/or interpolation artifacts in the L4 satellite SSTs.
- E = SST-F is the difference between the SST temporal derivative and the SST forcing term “F”. The forcing term, following [41], can be approximated as the low-pass filtered SST temporal derivatives. A specific tuning for the present study is detailed in Section 2.5).
- represents the uncertainty associated with the background zonal/meridional geostrophic currents (computed as described in Section 2.5).
- h is the error on the determination of the forcing term, detailed in Section 2.5.
2.5. Additional Inputs for the Ocean Current Reconstruction Methodology: Errors in the Geostrophic Currents and the SST Forcing Term
2.5.1. Error on the Geostrophic Currents
2.5.2. Error in the Forcing Term
3. Results
- The Copernicus Marine altimeter-derived geostrophic currents (depicted by the white arrows);
- The 2D surface currents derived from the OPT product (represented by black arrows);
- The trajectory of a drogued drifter, flowing northward along a north–south oceanic surface thermal gradient (green dashed line).
Comparisons with Respect to Previous Studies
4. Discussion and Conclusions
- Global scale improvements are highly challenging to achieve. This is due to intrinsic issues in the high-latitude SST data, whose quality is severely impacted by cloud cover, preventing an accurate SST retrieval in the InfraRed band and generating degradation when SST data are merged with the altimeter-derived currents.
- The use of the OSTIA SSTs minimized the occurrences of degradations in the synergistic currents (i.e., merging altimeter and SST data) at high latitude, also exhibiting satisfying performances at low and mid-latitudes.
- The accurate representation of dynamical features in SST fields, namely the SST gradients associated with the currents advection, is pivotal for a successful implementation of the synergistic ocean currents reconstruction.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AOML | Atlantic Oceanographic and Meteorological Laboratory |
C3S | Copernicus Climate Change Service |
CMS | Copernicus Marine Service |
ENVISAT | Environmental Satellite |
ESA | European Space Agency |
EUMETSAT | European Organisation for the Exploitation of Meteorological Satellites |
CCI | Climate Change Initiative |
HadIOD | Hadley Centre Integrated Ocean Database |
NOAA | National Oceanic and Atmospheric Administration |
OSI-SAF | Ocean and Sea Ice - Satellite Application Facility |
SVP | Surface Velocity Program |
T/P | Topex/Poseidon |
REMSS | Remote Sensing Systems |
SMOS | Soil Moisture and Ocean Salinity |
SSS | Sea Surface Salinity |
Appendix A. Empirical Calibration of the Correction Factors
Appendix B. Comparing the Reprocessed and Near Real Time OSTIA SSTs
- SST_GLO_SST_L4_NRT_OBSERVATIONS_010_001
- SST_GLO_SST_L4_REP_OBSERVATIONS_010_011
References
- Merino, M.; Monreal-Gómez, M. Ocean currents and their impact on marine life. In Marine Ecology; EOLSS Publications: Oxford, UK, 2009; pp. 47–52. [Google Scholar]
- Zaccone, R.; Ottaviani, E.; Figari, M.; Altosole, M. Ship voyage optimization for safe and energy-efficient navigation: A dynamic programming approach. Ocean Eng. 2018, 153, 215–224. [Google Scholar] [CrossRef]
- Onink, V.; Wichmann, D.; Delandmeter, P.; Van Sebille, E. The role of Ekman currents, geostrophy, and Stokes drift in the accumulation of floating microplastic. J. Geophys. Res. Ocean. 2019, 124, 1474–1490. [Google Scholar] [CrossRef] [PubMed]
- Comby, C.; Petrenko, A.; Estournel, C.; Marsaleix, P.; Ulses, C.; Bosse, A.; Doglioli, A.; Barrillon, S. Near Inertial Oscillations and Vertical Velocities Modulating Phytoplankton After a Storm in the Mediterranean Sea. J. Water Resour. Ocean Sci. 2023, 12, 31–37. [Google Scholar] [CrossRef]
- Bashmachnikov, I.; Neves, F.; Calheiros, T.; Carton, X. Properties and pathways of Mediterranean water eddies in the Atlantic. Prog. Oceanogr. 2015, 137, 149–172. [Google Scholar] [CrossRef]
- Barbosa Aguiar, A.C.; Peliz, Á.; Carton, X. A census of Meddies in a long-term high-resolution simulation. Prog. Oceanogr. 2013, 116, 80–94. [Google Scholar] [CrossRef]
- Chenillat, F.; Franks, P.J.; Combes, V. Biogeochemical properties of eddies in the California Current System. Geophys. Res. Lett. 2016, 43, 5812–5820. [Google Scholar] [CrossRef]
- Siokou-Frangou, I.; Christaki, U.; Mazzocchi, M.G.; Montresor, M.; Ribera d’Alcalá, M.; Vaqué, D.; Zingone, A. Plankton in the open Mediterranean Sea: A review. Biogeosciences 2010, 7, 1543–1586. [Google Scholar] [CrossRef]
- Carlson, D.F.; Clarke, A.J. Seasonal along-isobath geostrophic flows on the west Florida shelf with application to Karenia brevis red tide blooms in Florida’s Big Bend. Cont. Shelf Res. 2009, 29, 445–455. [Google Scholar]
- Buongiorno Nardelli, B. Vortex waves and vertical motion in a mesoscale cyclonic eddy. J. Geophys. Res. Ocean. 2013, 118, 5609–5624. [Google Scholar] [CrossRef]
- Stephens, J.C.; Marshall, D.P. Dynamics of the Mediterranean salinity tongue. J. Phys. Oceanogr. 1999, 29, 1425–1441. [Google Scholar] [CrossRef]
- Grech, A.; Wolter, J.; Coles, R.; McKenzie, L.; Rasheed, M.; Thomas, C.; Waycott, M.; Hanert, E. Spatial patterns of seagrass dispersal and settlement. Divers. Distrib. 2016, 22, 1150–1162. [Google Scholar] [CrossRef]
- Jian, Z.; Yu, J.; Wang, Y.; Dang, H.; Dai, M.; Li, C.; Ji, X.; Wang, X.; Chen, Y. Equatorial Pacific Sea-Air CO2 Exchange Modulated by Upper Ocean Circulation During the Last Deglaciation. Geophys. Res. Lett. 2023, 50, e2023GL105169. [Google Scholar] [CrossRef]
- Ribotti, A.; Bussani, A.; Menna, M.; Satta, A.; Sorgente, R.; Cucco, A.; Gerin, R. A Mediterranean drifter dataset. Earth Syst. Sci. Data 2023, 15, 4651–4659. [Google Scholar] [CrossRef]
- Menna, M.; Poulain, P.M.; Bussani, A.; Gerin, R. Detecting the drogue presence of SVP drifters from wind slippage in the Mediterranean Sea. Measurement 2018, 125, 447–453. [Google Scholar] [CrossRef]
- Laurindo, L.C.; Mariano, A.J.; Lumpkin, R. An improved near-surface velocity climatology for the global ocean from drifter observations. Deep Sea Res. Part I Oceanogr. Res. Pap. 2017, 124, 73–92. [Google Scholar] [CrossRef]
- Poulain, P.M.; Menna, M.; Mauri, E. Surface geostrophic circulation of the Mediterranean Sea derived from drifter and satellite altimeter data. J. Phys. Oceanogr. 2012, 42, 973–990. [Google Scholar] [CrossRef]
- Teague, C.C.; Vesecky, J.F.; Hallock, Z.R. A comparison of multifrequency HF radar and ADCP measurements of near-surface currents during COPE-3. IEEE J. Ocean. Eng. 2001, 26, 399–405. [Google Scholar] [CrossRef]
- Beardsley, R.; Boicourt, W.; Huff, L.; McCullough, J.; Scott, J. CMICE: A near-surface current meter intercomparison experiment. Deep Sea Res. Part A Oceanogr. Res. Pap. 1981, 28, 1577–1603. [Google Scholar] [CrossRef]
- Capodici, F.; Cosoli, S.; Ciraolo, G.; Nasello, C.; Maltese, A.; Poulain, P.M.; Drago, A.; Azzopardi, J.; Gauci, A. Validation of HF radar sea surface currents in the Malta-Sicily Channel. Remote Sens. Environ. 2019, 225, 65–76. [Google Scholar] [CrossRef]
- Drago, A.; Ciraolo, G.; Capodici, F.; Cosoli, S.; Gacic, M.; Poulain, P.; Tarasova, R.; Azzopardi, J.; Gauci, A.; Maltese, A.; et al. CALYPSO? An operational network of HF radars for the Malta-Sicily Channel. In Proceedings of the 7th International Conference on EuroGOOS, Lisbon, Portugal, 28–30 October 2014; Eurogoos Publication: Brussels, Belgium, 2015; Volume 30, pp. 28–30. [Google Scholar]
- Chapron, B.; Collard, F.; Ardhuin, F. Direct measurements of ocean surface velocity from space: Interpretation and validation. J. Geophys. Res. Ocean. 2005, 110. [Google Scholar] [CrossRef]
- Madec, G.; Bourdallé-Badie, R.; Bouttier, P.A.; Bricaud, C.; Bruciaferri, D.; Calvert, D.; Chanut, J.; Clementi, E.; Coward, A.; Delrosso, D.; et al. NEMO Ocean Engine. 2017. Available online: https://www.nemo-ocean.eu/doc/ (accessed on 19 May 2023).
- Jean-Michel, L.; Eric, G.; Romain, B.B.; Gilles, G.; Angélique, M.; Marie, D.; Clément, B.; Mathieu, H.; Olivier, L.G.; Charly, R.; et al. The Copernicus global 1/12 oceanic and sea ice GLORYS12 reanalysis. Front. Earth Sci. 2021, 9, 698876. [Google Scholar] [CrossRef]
- Pascual, A.; Faugère, Y.; Larnicol, G.; Le Traon, P.Y. Improved description of the ocean mesoscale variability by combining four satellite altimeters. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Fu, L.L.; Chelton, D.B.; Zlotnicki, V. Satellite altimetry: Observing ocean variability from space. Oceanography 1988, 1, 4–58. [Google Scholar] [CrossRef]
- Pujol, M.I.; Dibarboure, G.; Le Traon, P.Y.; Klein, P. Using high-resolution altimetry to observe mesoscale signals. J. Atmos. Ocean. Technol. 2012, 29, 1409–1416. [Google Scholar] [CrossRef]
- Qazi, W.A.; Emery, W.J.; Fox-Kemper, B. Computing ocean surface currents over the coastal California current system using 30-min-lag sequential SAR images. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7559–7580. [Google Scholar] [CrossRef]
- Bowen, M.M.; Emery, W.J.; Wilkin, J.L.; Tildesley, P.C.; Barton, I.J.; Knewtson, R. Extracting multiyear surface currents from sequential thermal imagery using the maximum cross-correlation technique. J. Atmos. Ocean. Technol. 2002, 19, 1665–1676. [Google Scholar] [CrossRef]
- Abdalla, S.; Kolahchi, A.A.; Ablain, M.; Adusumilli, S.; Bhowmick, S.A.; Alou-Font, E.; Amarouche, L.; Andersen, O.B.; Antich, H.; Aouf, L.; et al. Altimetry for the future: Building on 25 years of progress. Adv. Space Res. 2021, 68, 319–363. [Google Scholar] [CrossRef]
- Taburet, G.; Sanchez-Roman, A.; Ballarotta, M.; Pujol, M.I.; Legeais, J.F.; Fournier, F.; Faugere, Y.; Dibarboure, G. DUACS DT2018: 25 years of reprocessed sea level altimetry products. Ocean Sci. 2019, 15, 1207–1224. [Google Scholar] [CrossRef]
- Vallis, G.K. Atmospheric and Oceanic Fluid Dynamics; Cambridge University Press: Cambridge, UK, 2006; p. 745. [Google Scholar]
- Ballarotta, M.; Ubelmann, C.; Pujol, M.I.; Taburet, G.; Fournier, F.; Legeais, J.F.; Faugère, Y.; Delepoulle, A.; Chelton, D.; Dibarboure, G.; et al. On the resolutions of ocean altimetry maps. Ocean Sci. 2019, 15, 1091–1109. [Google Scholar] [CrossRef]
- Fu, L.; Alsdorf, D.; Rodriguez, E.; Morrow, R.; Mognard, N.; Lambin, J.; Vaze, P.; Lafon, T. The SWOT (Surface Water and Ocean Topography) Mission: Spaceborne Radar Interferometry for Oceanographic and Hhydrological Applications. In Proceedings of the OCEANOBS, Venice, Italy, 21–25 September 2009. [Google Scholar]
- Morrow, R.; Fu, L.L.; Ardhuin, F.; Benkiran, M.; Chapron, B.; Cosme, E.; d’Ovidio, F.; Farrar, J.T.; Gille, S.T.; Lapeyre, G.; et al. Global observations of fine-scale ocean surface topography with the surface water and ocean topography (SWOT) mission. Front. Mar. Sci. 2019, 6, 232. [Google Scholar] [CrossRef]
- Morrow, R.; Fu, L.L.; Rio, M.H.; Ray, R.; Prandi, P.; Le Traon, P.Y.; Benveniste, J. Ocean circulation from space. Surv. Geophys. 2023, 44, 1243–1286. [Google Scholar] [CrossRef]
- Ubelmann, C.; Klein, P.; Fu, L.L. Dynamic interpolation of sea surface height and potential applications for future high-resolution altimetry mapping. J. Atmos. Ocean. Technol. 2015, 32, 177–184. [Google Scholar] [CrossRef]
- Mulet, S.; Etienne, H.; Ballarotta, M.; Faugere, Y.; Rio, M.; Dibarboure, G.; Picot, N. Synergy between surface drifters and altimetry to increase the accuracy of sea level anomaly and geostrophic current maps in the Gulf of Mexico. Adv. Space Res. 2020, 68, 420–431. [Google Scholar] [CrossRef]
- González-Haro, C.; Isern-Fontanet, J. Global ocean current reconstruction from altimetric and microwave SST measurements. J. Geophys. Res. Ocean. 2014, 119, 3378–3391. [Google Scholar] [CrossRef]
- Rio, M.H.; Santoleri, R.; Bourdalle-Badie, R.; Griffa, A.; Piterbarg, L.; Taburet, G. Improving the Altimeter-Derived Surface Currents Using High-Resolution Sea Surface Temperature Data: A Feasability Study Based on Model Outputs. J. Atmos. Ocean. Technol. 2016, 33, 2769–2784. [Google Scholar] [CrossRef]
- Rio, M.H.; Santoleri, R. Improved global surface currents from the merging of altimetry and Sea Surface Temperature data. Remote Sens. Environ. 2018, 216, 770–785. [Google Scholar] [CrossRef]
- Bingham, R.J.; Knudsen, P.; Andersen, O.B. Estimating the North Atlantic mean dynamic topography and geostrophic currents with GOCE. In Proceedings of the 4th International GOCE User Workshop, Munich, Germany, 31 March–1 April 2011; European Space Agency: Paris, France, 2011. [Google Scholar]
- Knudsen, P.; Andersen, O.; Maximenko, N. A new ocean mean dynamic topography model, derived from a combination of gravity, altimetry and drifter velocity data. Adv. Space Res. 2021, 68, 1090–1102. [Google Scholar] [CrossRef]
- Vargas-Alemañy, J.A.; Vigo, M.I.; García-García, D.; Zid, F. Updated geostrophic circulation and volume transport from satellite data in the Southern Ocean. Front. Earth Sci. 2023, 11, 1110138. [Google Scholar] [CrossRef]
- Buongiorno Nardelli, B.; Cavaliere, D.; Charles, E.; Ciani, D. Super-resolving ocean dynamics from space with computer vision algorithms. Remote Sens. 2022, 14, 1159. [Google Scholar] [CrossRef]
- Martin, S.A.; Manucharyan, G.E.; Klein, P. Synthesizing sea surface temperature and satellite altimetry observations using deep learning improves the accuracy and resolution of gridded sea surface height anomalies. J. Adv. Model. Earth Syst. 2023, 15, e2022MS003589. [Google Scholar]
- Beauchamp, M.; Febvre, Q.; Georgenthum, H.; Fablet, R. 4DVarNet-SSH: End-to-end learning of variational interpolation schemes for nadir and wide-swath satellite altimetry. Geosci. Model Dev. Discuss. 2022, 16, 2119–2147. [Google Scholar] [CrossRef]
- Fablet, R.; Febvre, Q.; Chapron, B. Multimodal 4DVarNets for the reconstruction of sea surface dynamics from SST-SSH synergies. IEEE Trans. Geosci. Remote Sens. 2023. [Google Scholar] [CrossRef]
- Ciani, D.; Rio, M.H.; Buongiorno Nardelli, B.; Etienne, H.; Santoleri, R. Improving the altimeter-derived surface currents using sea surface temperature (SST) data: A sensitivity study to SST products. Remote Sens. 2020, 12, 1601. [Google Scholar] [CrossRef]
- Piterbarg, L.I. A simple method for computing velocities from tracer observations and a model output. Appl. Math. Model. 2009, 33, 3693–3704. [Google Scholar] [CrossRef]
- Mercatini, A.; Griffa, A.; Piterbarg, L.; Zambianchi, E.; Magaldi, M.G. Estimating surface velocities from satellite data and numerical models: Implementation and testing of a new simple method. Ocean Model. 2010, 33, 190–203. [Google Scholar] [CrossRef]
- Deser, C.; Blackmon, M.L. Surface climate variations over the North Atlantic Ocean during winter: 1900–1989. J. Clim. 1993, 6, 1743–1753. [Google Scholar] [CrossRef]
- Chang, Y.L.K.; Feunteun, E.; Miyazawa, Y.; Tsukamoto, K. New clues on the Atlantic eels spawning behavior and area: The Mid-Atlantic Ridge hypothesis. Sci. Rep. 2020, 10, 15981. [Google Scholar] [CrossRef]
- Munk, P.; Nardelli, B.B.; Mariani, P.; Bendtsen, J. Mesoscale-driven dispersion of early life stages of European eel. Front. Mar. Sci. 2023, 10, 1163125. [Google Scholar] [CrossRef]
- GHRSST Science Team. The Recommended GHRSST Data Specification (GDS) 2.0 Document Revision 4; GHRSST International Project Office: Department of Meteorology, University of Reading: Reading UK, 2011. [Google Scholar]
- Good, S.; Fiedler, E.; Mao, C.; Martin, M.J.; Maycock, A.; Reid, R.; Roberts-Jones, J.; Searle, T.; Waters, J.; While, J.; et al. The Current Configuration of the OSTIA System for Operational Production of Foundation Sea Surface Temperature and Ice Concentration Analyses. Remote Sens. 2020, 12, 720. [Google Scholar] [CrossRef]
- Fiedler, E.; Mao, C.; Good, S.; Waters, J.; Martin, M. Improvements to feature resolution in the OSTIA sea surface temperature analysis using the NEMOVAR assimilation scheme. Q. J. R. Meteorol. Soc. 2019, 145, 3609–3625. [Google Scholar] [CrossRef]
- Mulet, S.; Rio, M.H.; Etienne, H.; Artana, C.; Cancet, M.; Dibarboure, G.; Feng, H.; Husson, R.; Picot, N.; Provost, C.; et al. The new CNES-CLS18 global mean dynamic topography. Ocean Sci. 2021, 17, 789–808. [Google Scholar] [CrossRef]
- Lumpkin, R.; Grodsky, S.A.; Centurioni, L.; Rio, M.H.; Carton, J.A.; Lee, D. Removing spurious low-frequency variability in drifter velocities. J. Atmos. Ocean. Technol. 2013, 30, 353–360. [Google Scholar] [CrossRef]
- Ciani, D.; Rio, M.H.; Menna, M.; Santoleri, R. A Synergetic Approach for the Space-Based Sea Surface Currents Retrieval in the Mediterranean Sea. Remote Sens. 2019, 11, 1285. [Google Scholar] [CrossRef]
- Pujol, M.I.; Faugère, Y.; Taburet, G.; Dupuy, S.; Pelloquin, C.; Ablain, M.; Picot, N. DUACS DT2014: The new multi-mission altimeter data set reprocessed over 20 years. Ocean Sci. 2016, 12, 1067–1090. [Google Scholar] [CrossRef]
- Droghei, R.; Buongiorno Nardelli, B.; Santoleri, R. A new global sea surface salinity and density dataset from multivariate observations (1993–2016). Front. Mar. Sci. 2018, 5, 84. [Google Scholar] [CrossRef]
- Warren, M.; Quartly, G.; Shutler, J.; Miller, P.; Yoshikawa, Y. Estimation of ocean surface currents from maximum cross correlation applied to GOCI geostationary satellite remote sensing data over the Tsushima (Korea) Straits. J. Geophys. Res. Ocean. 2016, 121, 6993–7009. [Google Scholar] [CrossRef]
- Kleckner, R.; McCleave, J. Spatial and temporal distribution of American eel larvae in relation to North Atlantic Ocean current systems. Dana 1985, 4, 67–92. [Google Scholar]
- Larnicol, G.; Collard, F.; Gaultier, L.; Buongiorno Nardelli, B.; Ciani, D.; Ubelmann, C.; Autret, E.; Piolle, J.F.; Chapron, B.; Moiseev, A.; et al. World Ocean Circulation Project: Retrieve the Ocean Velocities at the Right Place at the Righ Time; European Space Agency: Paris, France, 2022. [Google Scholar]
- Asdar, S.; Ciani, D.; Buongiorno Nardelli, B. 3D reconstruction of horizontal and vertical quasi-geostrophic currents in the North Atlantic Ocean. Earth Syst. Sci. Data Discuss. 2023, 2023, 1–29. [Google Scholar]
- Chelton, D.; De Szoeke, R.; Schlax, M.; El Naggar, K.; Siwertz, N. Geographical Variability of the First Baroclinic Rossby Radius of Deformation. J. Phys. Oceanogr. 1998, 28, 433–459. [Google Scholar] [CrossRef]
DATA | Geostrophic Currents | Sea Surface Temperature | In-Situ Currents/SST |
---|---|---|---|
Spatial Resolution (N) | 0.25° | 0.05° | sparse |
Temporal Resolution (N) | daily | daily | six-hourly |
Source | Satellite (multi-imission) | Satellite (multi-mission) | Drifting Buoy |
Access | CMS portal | CMS portal | NOAA/AOML portal |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciani, D.; Asdar, S.; Buongiorno Nardelli, B. Improved Surface Currents from Altimeter-Derived and Sea Surface Temperature Observations: Application to the North Atlantic Ocean. Remote Sens. 2024, 16, 640. https://doi.org/10.3390/rs16040640
Ciani D, Asdar S, Buongiorno Nardelli B. Improved Surface Currents from Altimeter-Derived and Sea Surface Temperature Observations: Application to the North Atlantic Ocean. Remote Sensing. 2024; 16(4):640. https://doi.org/10.3390/rs16040640
Chicago/Turabian StyleCiani, Daniele, Sarah Asdar, and Bruno Buongiorno Nardelli. 2024. "Improved Surface Currents from Altimeter-Derived and Sea Surface Temperature Observations: Application to the North Atlantic Ocean" Remote Sensing 16, no. 4: 640. https://doi.org/10.3390/rs16040640
APA StyleCiani, D., Asdar, S., & Buongiorno Nardelli, B. (2024). Improved Surface Currents from Altimeter-Derived and Sea Surface Temperature Observations: Application to the North Atlantic Ocean. Remote Sensing, 16(4), 640. https://doi.org/10.3390/rs16040640