Evaluation of GPM IMERG-FR Product for Computing Rainfall Erosivity for Mainland China
Abstract
:1. Introduction
2. Data and Method
2.1. Study Area
2.2. Data Collection
2.3. Rainfall Erosivity Estimations
2.4. Bias-Correction Method
2.5. Statistical Analysis
3. Results
3.1. Evaluation of Rainfall Erosivity Derived from GPM Precipitation Products
3.1.1. General Accuracy over Mainland China
3.1.2. Differences between Water Erosion and Non-Water Erosion Regions
3.1.3. Regional Differences among Five Water Erosion Sub-Zones
3.2. Evaluation of the Bias-Correction Method
4. Discussion
4.1. Comparison with Rainfall Erosivity Derived from Interpolation
4.2. Regional Differences
4.3. Comparison with Previous Studies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhen, L. The national census for soil erosion and dynamic analysis in China. Int. Soil Water Conserv. Res. 2013, 1, 12–18. [Google Scholar] [CrossRef]
- Ekern, P.C. Rainfall intensity as a measure of storm erosivity. Soil Sci. Soc. Am. J. 1954, 18, 212–216. [Google Scholar] [CrossRef]
- Wischmeier, W.H. A Rainfall Erosion Index for a Universal Soil-Loss Equation 1. Soil Sci. Soc. Am. J. 1959, 23, 246–249. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall-Erosion Losses from Cropland East of the Rocky Mountains: Guide for Selection of Practices for Soil and Water Conservation (No. 282); Agricultural Research Service, US Department of Agriculture: Washington, DC, USA, 1965.
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.K.; Yoder, D.C. Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). In Agriculture Handbook; Agricultural Research Service, US Department of Agriculture: Washington, DC, USA, 1997. [Google Scholar]
- USDA-Agricultural Research Service. Science Documentation Revised Universal Soil Loss Equation Version 2; USDA-ARS: Washington, DC, USA, 2013.
- Yin, S.; Xie, Y.; Nearing, M.; Wang, C. Estimation of rainfall erosivity using 5- to 60-min fixed-interval rainfall data from China. CATENA 2007, 70, 306–312. [Google Scholar] [CrossRef]
- Yin, S.; Xie, Y.; Liu, B.; Nearing, M.A. Rainfall erosivity estimation based on rainfall data collected over a range of temporal resolutions. Hydrol. Earth Syst. Sci. 2015, 19, 4113–4126. [Google Scholar] [CrossRef]
- Kidd, C.; Huffman, G. Global precipitation measurement. Meteorol. Appl. 2011, 18, 334–353. [Google Scholar] [CrossRef]
- Yin, S.; Nearing, M.A.; Borrelli, P.; Xue, X. Rainfall erosivity: An overview of methodologies and applications. Vadose Zone J. 2017, 16, 1–16. [Google Scholar] [CrossRef]
- Xie, Y.; Yin, S.-Q.; Liu, B.-Y.; Nearing, M.A.; Zhao, Y. Models for estimating daily rainfall erosivity in China. J. Hydrol. 2016, 535, 547–558. [Google Scholar] [CrossRef]
- Xie, P.; Chen, M.; Yang, S.; Yatagai, A.; Hayasaka, T.; Fukushima, Y.; Liu, C. A Gauge-based analysis of daily precipitation over East Asia. J. Hydrometeorol. 2007, 8, 607–626. [Google Scholar] [CrossRef]
- Shen, Y.; Feng, M.; Zhang, H.; Gao, F. Interpolation methods of China daily precipitation data. J. Appl. Meteorol. Sci. 2010, 21, 279–286. [Google Scholar]
- Schamm, K.; Ziese, M.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Schneider, U.; Schröder, M.; Stender, P. Global gridded precipitation over land: A description of the new GPCC first guess daily product. Earth Syst. Sci. Data 2014, 6, 49–60. [Google Scholar] [CrossRef]
- Wu, J.; Gao, X.J. A gridded daily observation dataset over China region and comparison with the other datasets. Chin. J. Geophys. 2013, 56, 1102–1111. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Xie, P.; Joyce, R.; Yoo, S.; Yarosh, S.H.; Sun, Y.; Lin, F. NOAA Climate Data Record (CDR) of CPC Morphing Technique (CMORPH) High Resolution Global Precipitation Estimates, Version 1; NOAA National Centers for Environmental Information: Asheville, NC, USA, 2021. [CrossRef]
- Ou, T.; Chen, D.; Linderholm, H.W.; Jeong, J.-H. Evaluation of global climate models in simulating extreme precipitation in China. Tellus A Dyn. Meteorol. Oceanogr. 2013, 65, 19799. [Google Scholar] [CrossRef]
- Wang, M.; Yin, S.; Yue, T.; Yu, B.; Wang, W. Rainfall erosivity estimation using gridded daily precipitation datasets. Hydrol. Earth Syst. Sci. Discuss. 2020, 1–30. [Google Scholar] [CrossRef]
- Wang, W.; Yin, S.; He, Z.; Chen, D.; Wang, H.; Klik, A. Projections of rainfall erosivity in climate change scenarios for mainland China. CATENA 2023, 232, 107391. [Google Scholar] [CrossRef]
- Bezak, N.; Borrelli, P.; Panagos, P. Exploring the possible role of satellite-based rainfall data in estimating inter- and intra-annual global rainfall erosivity. Hydrol. Earth Syst. Sci. 2022, 26, 1907–1924. [Google Scholar] [CrossRef]
- Wang, Y.; Miao, C.; Zhao, X.; Zhang, Q.; Su, J. Evaluation of the GPM IMERG product at the hourly timescale over China. Atmos. Res. 2023, 285, 106656. [Google Scholar] [CrossRef]
- Vrieling, A.; Sterk, G.; de Jong, S.M. Satellite-based estimation of rainfall erosivity for Africa. J. Hydrol. 2010, 395, 235–241. [Google Scholar] [CrossRef]
- Musie, M.; Sen, S.; Srivastava, P. Comparison and evaluation of gridded precipitation datasets for streamflow simulation in data scarce watersheds of Ethiopia. J. Hydrol. 2019, 579, 124168. [Google Scholar] [CrossRef]
- Nikolopoulos, E.I.; Anagnostou, E.N.; Borga, M. Using high-resolution satellite rainfall products to simulate a major flash flood event in northern Italy. J. Hydrometeorol. 2013, 14, 171–185. [Google Scholar] [CrossRef]
- Das, S.; Jain, M.K.; Gupta, V. A step towards mapping rainfall erosivity for India using high-resolution GPM satellite rainfall products. CATENA 2022, 212, 106067. [Google Scholar] [CrossRef]
- Das, S.; Jain, M.K.; Gupta, V.; Saha, A. Understating the Uncertainty in Global Rainfall Erosivity Estimated Using Multiple Satellite Precipitation Datasets. In Proceedings of the AGU Fall Meeting Abstracts, Chicago, IL, USA, 12–16 December 2022; p. H42H-1390. [Google Scholar]
- Vrieling, A.; Hoedjes, J.C.; van der Velde, M. Towards large-scale monitoring of soil erosion in Africa: Accounting for the dynamics of rainfall erosivity. Glob. Planet. Chang. 2014, 115, 33–43. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, M.; Wang, Z.; Gao, P.; Lai, C. Applicability of two satellite-based precipitation products for assessing rainfall erosivity in China. Sci. Total Environ. 2021, 757, 143975. [Google Scholar] [CrossRef]
- Xing, Z.; Duan, W.; Liu, M.; Wang, H.; Li, G.; Wang, J.; Fu, Q. Comparison of the four gridded precipitation products for estimating regional rainfall erosivity in China’s Mainland. Trans. Chin. Soc. Agric. Eng. 2023, 39, 100–109, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Li, X.; Li, Z.; Lin, Y. Suitability of TRMM products with different temporal resolution (3-hourly, daily, and monthly) for rainfall erosivity estimation. Remote Sens. 2020, 12, 3924. [Google Scholar] [CrossRef]
- Li, Q.; Wei, J.; Yin, J.; Qiao, Z.; Peng, W.; Peng, H. Multiscale comparative evaluation of the GPM and TRMM precipitation products against ground precipitation observations over Chinese Tibetan Plateau. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 14, 2295–2313. [Google Scholar] [CrossRef]
- Xie, P.; Joyce, R.; Wu, S.; Yoo, S.-H.; Yarosh, Y.; Sun, F.; Lin, R. Reprocessed, bias-corrected CMORPH global high-resolution precipitation estimates from 1998. J. Hydrometeorol. 2017, 18, 1617–1641. [Google Scholar] [CrossRef]
- Kim, J.; Han, H.; Kim, B.; Chen, H.; Lee, J.-H. Use of a high-resolution-satellite-based precipitation product in mapping continental-scale rainfall erosivity: A case study of the United States. CATENA 2020, 193, 104602. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Ding, X.; Sun, W.; Mu, X. Improvement of satellite-based rainfall product CHIRPS in estimating rainfall erosivity on the Loess Plateau. Land Degrad. Dev. 2023, 34, 4517–4528. [Google Scholar] [CrossRef]
- Vergni, L.; Parisi, A.; Todisco, F. Evaluation of the GPM IMERG half-hourly final precipitation product in the quantification of rainfall erosivity in central Italy. In Proceedings of the 2022 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Perugia, Italy, 3–5 November 2022; pp. 282–286. [Google Scholar]
- de Brito, C.S.; da Silva, R.M.; Santos, C.A.G.; Neto, R.M.B.; Coelho, V.H.R. Long-term basin-scale comparison of two high-resolution satellite-based remote sensing datasets for assessing rainfall and erosivity in a basin in the Brazilian semiarid region. Theor. Appl. Clim. 2022, 147, 1049–1064. [Google Scholar] [CrossRef]
- Fenta, A.A.; Tsunekawa, A.; Haregeweyn, N.; Yasuda, H.; Tsubo, M.; Borrelli, P.; Kawai, T.; Belay, A.S.; Ebabu, K.; Berihun, M.L.; et al. Improving satellite-based global rainfall erosivity estimates through merging with gauge data. J. Hydrol. 2023, 620, 129555. [Google Scholar] [CrossRef]
- Lenderink, G.; van Meijgaard, E. Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci. 2008, 1, 511–514. [Google Scholar] [CrossRef]
- Lenderink, G.; van Meijgaard, E. Linking increases in hourly precipitation extremes to atmospheric temperature and moisture changes. Environ. Res. Lett. 2010, 5, 025208. [Google Scholar] [CrossRef]
- Yuan, Z.; Yang, Z.; Yan, D.; Yin, J. Historical changes and future projection of extreme precipitation in China. Theor. Appl. Clim. 2017, 127, 393–407. [Google Scholar] [CrossRef]
- Miao, C.; Sun, Q.; Borthwick, A.G.L.; Duan, Q. Linkage between hourly precipitation events and atmospheric temperature changes over China during the warm season. Sci. Rep. 2016, 6, 22543. [Google Scholar] [CrossRef]
- Brown, V.M.; Keim, B.D.; Black, A.W. Trend analysis of multiple extreme hourly precipitation time series in the southeastern United States. J. Appl. Meteorol. Clim. 2020, 59, 427–442. [Google Scholar] [CrossRef]
- Wang, W.; Yin, S.; Gao, G.; Papalexiou, S.; Wang, Z. Increasing trends in rainfall erosivity in the Yellow River basin from 1971 to 2020. J. Hydrol. 2022, 610, 127851. [Google Scholar] [CrossRef]
- Nearing, A.M. Potential changes in rainfall erosivity in the US with climate change during the 21st century. J. Soil Water Conserv. 2001, 56, 29–232. [Google Scholar]
- Huff, F.A. Time distribution of rainfall in heavy storms. Water Resour. Res. 1967, 3, 1007–1019. [Google Scholar] [CrossRef]
- Yin, S.; Xue, X.; Yue, T.; Xie, Y.; Gao, G. Spatiotemporal distribution and return period of rainfall erosivity in China. Trans. Chin. Soc. Agric. Eng. 2019, 35, 105–113, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Rodriguez, J.D.; Perez, A.; Lozano, J.A. Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 32, 569–575. [Google Scholar] [CrossRef]
- Yue, T.; Yin, S.; Xie, Y.; Yu, B.; Liu, B. Rainfall erosivity mapping over mainland China based on high-density hourly rainfall records. Earth Syst. Sci. Data 2022, 14, 665–682. [Google Scholar] [CrossRef]
- Angulo-Martínez, M.; López-Vicente, M.; Vicente-Serrano, S.M.; Beguería, S. Mapping rainfall erosivity at a regional scale: A comparison of interpolation methods in the Ebro Basin (NE Spain). Hydrol. Earth Syst. Sci. 2009, 13, 1907–1920. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Meusburger, K.; Yu, B.; Klik, A.; Lim, K.J.; Yang, J.E.; Ni, J.; Miao, C.; Chattopadhyay, N.; et al. Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Sci. Rep. 2017, 7, 4175. [Google Scholar] [CrossRef]
- Qin, W.; Guo, Q.; Zuo, C.; Shan, Z.; Ma, L.; Sun, G. Spatial distribution and temporal trends of rainfall erosivity in China’s mainland for 1951–2010. CATENA 2016, 147, 177–186. [Google Scholar] [CrossRef]
- Ballabio, C.; Borrelli, P.; Spinoni, J.; Meusburger, K.; Michaelides, S.; Beguería, S.; Klik, A.; Petan, S.; Janeček, M.; Olsen, P.; et al. Mapping monthly rainfall erosivity in Europe. Sci. Total Environ. 2017, 579, 1298–1315. [Google Scholar] [CrossRef] [PubMed]
- Oliver, M.A.; Webster, R. A tutorial guide to geostatistics: Computing and modelling variograms and kriging. CATENA 2014, 113, 56–69. [Google Scholar] [CrossRef]
- Lu, H.; Yu, B. Spatial and seasonal distribution of rainfall erosivity in Australia. Soil Res. 2002, 40, 887–901. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, Q.; Ma, L.; Ding, S.; Xu, S.; Wu, C.; Liu, P. Spatiotemporal variations in rainfall erosivity during the period of 1960–2011 in Guangdong Province, southern China. Theor. Appl. Clim. 2017, 128, 113–128. [Google Scholar] [CrossRef]
- Ma, X.; He, Y.; Xu, J.; van Noordwijk, M.; Lu, X. Spatial and temporal variation in rainfall erosivity in a Himalayan watershed. CATENA 2014, 121, 248–259. [Google Scholar] [CrossRef]
- Zhu, D.; Xiong, K.; Xiao, H. Multi-time scale variability of rainfall erosivity and erosivity density in the karst region of southern China, 1960–2017. CATENA 2021, 197, 104977. [Google Scholar] [CrossRef]
- Tang, X.; Miao, C.; Xi, Y.; Duan, Q.; Lei, X.; Li, H. Analysis of precipitation characteristics on the loess plateau between 1965 and 2014, based on high-density gauge observations. Atmos. Res. 2018, 213, 264–274. [Google Scholar] [CrossRef]
- Jiang, X.; Liu, Y.; Wu, Y.; Wang, G.; Zhang, X.; Meng, Q.; Gu, P.; Liu, T. Evaluation of the performance of multi-source precipitation data in southwest China. Water 2021, 13, 3200. [Google Scholar] [CrossRef]
Water Erosion Zones | Shortened Form | Total Stations | Area (104 km2) | Density (/104 km2) | Stations with Data Lengths (Year) | ||
---|---|---|---|---|---|---|---|
2~5 | 6~15 | 16~20 | |||||
Mainland China | 2310 | 944.9 | 2.44 | 34 | 502 | 1774 | |
Non-Water Erosion region | NWE | 252 | 467.1 | 0.54 | 14 | 150 | 88 |
Water Erosion region | WE | 2058 | 477.8 | 4.3 | 20 | 352 | 1686 |
Northeastern Black Soil Region | NEB | 219 | 108.7 | 2.0 | 0 | 11 | 208 |
Northern Rocky Soil Region | NR | 495 | 67.0 | 7.4 | 4 | 66 | 425 |
Southern Red Soil Region | SR | 643 | 121.8 | 5.3 | 2 | 97 | 544 |
Northwestern Loess Plateau Region | NWL | 245 | 60.0 | 4.1 | 14 | 62 | 169 |
Southwestern Rocky Soil Region | SWR | 456 | 120.3 | 3.8 | 0 | 116 | 340 |
Region | Nash-Sutcliffe Efficiency | Percent Bias (%) | Kling-Gupta Efficiency | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GPM-30-EI30 | GPM-Daily-DR | GPM-30-EI30 | GPM-Daily-DR | GPM-30-EI30 | GPM-Daily-DR | |||||||
Adjust1 a | Adjust2 b | Adjust1 | Adjust2 | Adjust1 | Adjust2 | Adjust1 | Adjust2 | Adjust1 | Adjust2 | Adjust1 | Adjust2 | |
R-factor | ||||||||||||
NEB | 0.73 | 0.74 | 0.56 | 0.68 | −7.33 | 0.39 | −12.21 | 0.11 | 0.81 | 0.83 | 0.69 | 0.77 |
NR | 0.52 | 0.73 | 0.34 | 0.74 | −10.59 | 0.36 | −23.82 | 0.23 | 0.65 | 0.77 | 0.55 | 0.79 |
SR | 0.79 | 0.80 | 0.81 | 0.83 | 2.75 | −0.34 | 3.08 | −0.72 | 0.78 | 0.87 | 0.78 | 0.9 |
NWL | 0.15 | 0.36 | 0.29 | 0.47 | 6.98 | 0.34 | −1.27 | 0.3 | 0.55 | 0.41 | 0.66 | 0.54 |
SWR | 0.61 | 0.61 | 0.68 | 0.67 | −4.5 | 0.17 | 2.16 | 0.05 | 0.69 | 0.69 | 0.72 | 0.74 |
WE | 0.87 | 0.88 | 0.88 | 0.90 | −1.39 | −0.06 | −2.52 | −0.33 | 0.93 | 0.92 | 0.93 | 0.93 |
10-yr storm EI | ||||||||||||
NEB | 0.41 | 0.41 | 0.34 | 0.41 | 4.81 | 0.13 | 11.51 | 0.1 | 0.49 | 0.52 | 0.56 | 0.51 |
NR | 0.07 | 0.37 | 0.18 | 0.37 | −6.77 | 0.38 | −4.55 | 0.33 | 0.55 | 0.42 | 0.58 | 0.43 |
SR | 0.54 | 0.54 | 0.50 | 0.51 | −1.01 | −0.23 | −4.26 | 0.01 | 0.6 | 0.64 | 0.62 | 0.6 |
NWL | −0.21 | 0.12 | −0.30 | 0.19 | 19.26 | 0.15 | 26.11 | 0.14 | 0.21 | 0.07 | 0.3 | 0.2 |
SWR | 0.40 | 0.40 | 0.41 | 0.44 | 3.21 | 0.1 | 7.24 | 0.22 | 0.49 | 0.48 | 0.56 | 0.52 |
WE | 0.66 | 0.68 | 0.65 | 0.67 | −0.4 | 0.01 | 0.01 | 0.14 | 0.74 | 0.76 | 0.73 | 0.75 |
Region | GPM-30-EI30 | GPM-Daily-DR | ||||
---|---|---|---|---|---|---|
a | b | R2 | a | b | R2 | |
R-factor | ||||||
NEB | 4.6297 | 0.9150 | 0.76 | 1.8165 | 0.9161 | 0.69 |
NR | 53.3326 | 0.5809 | 0.73 | 6.5847 | 0.7892 | 0.74 |
SR | 1.4962 | 1.0409 | 0.80 | 0.0155 | 1.4869 | 0.83 |
NWL | 35.4372 | 0.5538 | 0.36 | 5.1520 | 0.7366 | 0.47 |
SWR | 4.5418 | 0.9155 | 0.62 | 0.0625 | 1.3356 | 0.68 |
WE | 3.9466 | 0.9278 | 0.87 | 0.1064 | 1.2746 | 0.88 |
10-yr storm EI | ||||||
NEB | 14.6082 | 0.7442 | 0.43 | 5.8516 | 0.7966 | 0.43 |
NR | 228.8218 | 0.3553 | 0.37 | 64.4091 | 0.5007 | 0.38 |
SR | 13.8378 | 0.7513 | 0.55 | 3.8977 | 0.8824 | 0.51 |
NWL | 100.2528 | 0.3824 | 0.13 | 22.6267 | 0.5629 | 0.20 |
SWR | 20.0841 | 0.6964 | 0.41 | 5.8582 | 0.8109 | 0.45 |
WE | 19.1163 | 0.7079 | 0.66 | 3.0119 | 0.9095 | 0.65 |
Region | R-Factor | 10-yr Storm EI | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Gauge-H-Intp | Gauge-DE-Intp | Gauge-H-Intp | Gauge-DE-Intp | |||||||||
NSE | PBIAS (%) | KGE | NSE | PBIAS (%) | KGE | NSE | PBIAS (%) | KGE | NSE | PBIAS (%) | KGE | |
NEB | 0.86 | 0.56 | 0.88 | 0.72 | 12.95 | 0.76 | 0.65 | 1.12 | 0.71 | 0.55 | −8.54 | 0.68 |
NR | 0.84 | 0.22 | 0.88 | 0.75 | −7.56 | 0.85 | 0.58 | 0.46 | 0.64 | 0.32 | −16.46 | 0.62 |
SR | 0.82 | −0.24 | 0.85 | 0.59 | −12.90 | 0.57 | 0.61 | −0.63 | 0.65 | 0.38 | −18.68 | 0.50 |
NWL | 0.71 | 1.34 | 0.79 | −0.51 | 43.07 | 0.47 | 0.51 | 0.88 | 0.59 | 0.47 | 0.78 | 0.53 |
SWR | 0.69 | 0.30 | 0.75 | 0.59 | −0.70 | 0.55 | 0.50 | 0.33 | 0.56 | 0.32 | −18.3 | 0.52 |
WE | 0.90 | 0.03 | 0.92 | 0.81 | −6.90 | 0.74 | 0.74 | −0.03 | 0.78 | 0.61 | −16.77 | 0.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Jiang, Y.; Yu, B.; Zhang, X.; Xie, Y.; Yin, B. Evaluation of GPM IMERG-FR Product for Computing Rainfall Erosivity for Mainland China. Remote Sens. 2024, 16, 1186. https://doi.org/10.3390/rs16071186
Wang W, Jiang Y, Yu B, Zhang X, Xie Y, Yin B. Evaluation of GPM IMERG-FR Product for Computing Rainfall Erosivity for Mainland China. Remote Sensing. 2024; 16(7):1186. https://doi.org/10.3390/rs16071186
Chicago/Turabian StyleWang, Wenting, Yuantian Jiang, Bofu Yu, Xiaoming Zhang, Yun Xie, and Bing Yin. 2024. "Evaluation of GPM IMERG-FR Product for Computing Rainfall Erosivity for Mainland China" Remote Sensing 16, no. 7: 1186. https://doi.org/10.3390/rs16071186
APA StyleWang, W., Jiang, Y., Yu, B., Zhang, X., Xie, Y., & Yin, B. (2024). Evaluation of GPM IMERG-FR Product for Computing Rainfall Erosivity for Mainland China. Remote Sensing, 16(7), 1186. https://doi.org/10.3390/rs16071186