Diapiric Structures in the Tinto River Estuary (SW Spain) Caused by Artificial Load of an Industrial Stockpile
Abstract
:1. Introduction
1.1. Location, Dynamics and Anthropic Framework
1.2. Current Condition and Hypothesis
2. Materials and Methods
3. Results
3.1. Seismic Facies
3.2. Sedimentary Facies
3.3. Geometric Relationships
3.4. Dynamics and Evolution
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perillo, G.M.E. Definitions and Geomorphologic Classifications of Estuaries. In Geomorphology and Sedimentology of Estuaries; Developments in Sedimentology; Perillo, G.M.E., Ed.; Elsevier: Amsterdam, The Netherlands, 1995; Volume 53, pp. 17–47. [Google Scholar]
- Pritchard, D.W. What is an estuary? Physical viewpoint. In Estuaries; Lauff, G.H., Ed.; American Association for the Advancement of Science Publications: Washington, DC, USA, 1967; Volume 83, pp. 3–5. [Google Scholar]
- Dalrymple, R.W.; Zaitlin, B.A.; Boyd, R. Estuarine Facies Models: Conceptual Basis and Stratigraphic Implications. J. Sediment. Petrol. 1992, 62, 1130–1146. [Google Scholar] [CrossRef]
- Carro, B.; Borrego, J.; Morales, J.A. Estuaries of the Huelva Coast: Odiel and Tinto estuaries (SW Spain). In The Spanish Coastal Systems; Morales, J.A., Ed.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 543–564. [Google Scholar]
- Camacho, M.A.; García-Navarro, E.; Morales, J.A. Study on the consolidation state of sediments in the Huelva Estuary (SW Spain). Bull. Eng. Geol. Environ. 2011, 70, 699–707. [Google Scholar] [CrossRef]
- EPTISA. Reconstructive Project for Fertiberia. Annex 1: Geological and Geotechnical Description of the Site. Public Report. Madrid, Spain. 2014. Available online: https://www.juntadeandalucia.es/medioambiente/portal/landing-page-%C3%ADndice/-/asset_publisher/zX2ouZa4r1Rf/content/documentaci-c3-b3n-relacionada-con-las-balsas-de-fosfoyesos/20151 (accessed on 14 November 2023). (In Spanish).
- Carro, B.M.; Reyes, A.; Morales, J.A.; Borrego, J. Application of the comparison of multibeam echo-sound records to the study of stability of a toxic waste stockpile located on the margin of a tidal system: Tinto Estuary, Huelva, SW Spain. Remote Sens. 2021, 13, 4364. [Google Scholar] [CrossRef]
- González, F. InSAR-based mapping of ground deformation caused by industrial waste disposals: The case study of the Huelva phosphogypsum stack, SW Spain. Bull. Eng. Geol. Environ. 2022, 81, 304. [Google Scholar] [CrossRef]
- Lanesky, D.E.; Logan, B.W.; Brown, R.G.; Hine, A.C. A new approach to portable vibracoring underwater and on land. J. Sediment. Petrol. 1979, 39, 655–657. [Google Scholar] [CrossRef]
- Mitchum, R.M. Glossary of terms used in seismic stratigraphy. AAPG Mem. 1977, 26, 205–212. [Google Scholar]
- Brown, K.M. The nature and hydrogeologic significance of mud diapirs and diatremes for accretionary systems. J. Geophys. Res. 1990, 95, 8969–8982. [Google Scholar] [CrossRef]
- Kopf, A. Significance of mud volcanism. Rev. Geophys. 2002, 40, 1–51. [Google Scholar] [CrossRef]
- Judd, A.; Hovland, M. Seabed Fluid Flow: The Impact on Geology, Biology, and the Marine Environment; Cambridge University Press: Cambridge, UK, 2007; 408p. [Google Scholar]
- Palomino, D.; Vazquez, J.T.; Ercilla, G.; Alonso, B.; Lopez-Gonzalez, N.; Díaz del Río, V. Interaction between seabed morphology and watermasses around the seamounts on the Motril marginal Plateau (Alboran Sea, Western Mediterranean). Geo-Mar. Lett. 2011, 31, 465–479. [Google Scholar] [CrossRef]
- TRAGSATEC. Service for the Recovery of Phosphogypsum Stockpiles in the Marshes of Huelva. Diagnostic Phase and Regeneration Proposal. Public Report. Madrid, Spain. 2009. Available online: https://www.juntadeandalucia.es/medioambiente/portal/landing-page-%C3%ADndice/-/asset_publisher/zX2ouZa4r1Rf/content/documentaci-c3-b3n-relacionada-con-las-balsas-de-fosfoyesos/20151 (accessed on 14 November 2023). (In Spanish).
- Flores-Hurtado, E. Recent Tectonics on the Southwestern Iberian Margin. Ph.D. Thesis, University of Huelva, Huelva, Spain, 1993. (In Spanish). [Google Scholar]
- Rodríguez-Ramírez, A.; Flores-Hurtado, E.; Contreras, C.; Villarías-Robles, J.J.R.; Jiménez-Moreno, G.; Pérez-Asensio, J.M.; Lopez-Sáez, J.A.; Celestino-Pérez, S.; Cerrillo-Cuenca, E.; Leon, A. The role of neo-tectonics in the sedimentary infilling and geomorphological evolution of the Guadalquivir estuary (Gulf of Cadiz, SW Spain) during the Holocene. Geomorphology 2014, 219, 126–140. [Google Scholar] [CrossRef]
- Allen, A.S. Geologic settings of subsidence. In Reviews in Engineering Geology II; Varnes, D.J., Kiersch, G., Eds.; Geological Society of America: Boulder, CO, USA, 1969; pp. 305–342. [Google Scholar]
- Sun, Q.; Wu, S.; Hovland, M.; Luo, P.; Lu, Y.; Qu, T. The morphologies and genesis of mega-pockmarks near the Xisha Uplift, South China Sea. Mar. Pet. Geol. 2011, 28, 1146–1156. [Google Scholar] [CrossRef]
- Reed, D.L.; Silver, E.A.; Tagudin, J.E.; Shipley, T.H.; Vrolijk, P. Relations between mud volcanoes, thrust deformation, slope sedimentation, and gas hydrate, offshore north Panama. Mar. Pet. Geol. 1990, 7, 44–54. [Google Scholar] [CrossRef]
- Cronin, B.T.; Ivanov, M.K.; Limonov, A.F.; Egorov, A.; Akhmanov, G.G.; Akhmetjanov, A.M.; Kozlova, E. Shipboard Scientific Party TTR-5, New discoveries of mud volcanoes on the Eastern Mediterranean Ridge. J. Geol. Soc. Lond. 1997, 154, 173–182. [Google Scholar] [CrossRef]
- Corthay, J.E., II. Delineation of a massive seafloor hydrocarbon seep, overpressured aquifer sands, and shallow gas reservoir, Louisiana continental slope. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 4–7 May 1998; Volume 1, pp. 37–56. [Google Scholar]
- García-Gil, S.; García-García, A.; Vilas, F. Identificación sísmico-acústica de las diferentes formas de aparición de gas en la Ría de Vigo (NO de España). Rev. Soc. Geol. Esp. 1999, 12, 301–307. [Google Scholar]
- Delisle, G.; von Rad, U.; Andruleit, H.; von Daniels, C.H.; Tabrez, A.R.; Inam, A. Active mud volcanoes on- and offshore eastern Makran, Pakistan. Int. J. Earth Sci. 2001, 91, 93–110. [Google Scholar] [CrossRef]
- Medialdea, T.; Somoza, L.; Pinheiro, M.; Fernandez, M.C.; Vazquez, J.T.; León, R.; Ivanov, M.K.; Magalhaes, V.; Diaz, V.; Vegas, R. Tectonics and mud volcano development in the Gulf of Cádiz. Mar. Geol. 2009, 261, 48–63. [Google Scholar] [CrossRef]
- Wu, T.; Deng, X.; Yao, H.; Liu, B.; Ma, J.; Haider, S.W.; Yu, Z.; Wang, L.; Yu, M.; Lu, J.; et al. Distribution and development of submarine mud volcanoes on the Makran Continental Margin, offshore Pakistan. J. Asian Earth Sci. 2021, 207, 104653. [Google Scholar] [CrossRef]
- Milkov, A.V. Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Mar. Geol. 2000, 167, 29–42. [Google Scholar] [CrossRef]
- Leon, R.; Somoza, L.; Medialdea, T.; Gonzalez, F.; Díaz del Río, V.; Fernandez-Puga, M.C.; Maestro, A.; Mata, M.P. Sea-floor features related to hydrocarbon seeps in deep water carbonate-mud mounds of the Gulf of Cadiz: From mudflows to carbonate precipitates. Geo-Mar. Lett. 2007, 27, 237–247. [Google Scholar] [CrossRef]
- Leon, R.; Somoza, L.; Medialdea, T.; Vazquez, J.T.; Gonzalez, F.J.; Lopez-Gonzalez, N.; Casas, D.; Mata, M.P.; Fernandez-Puga, M.C.; Gimenez-Moreno, C.J.; et al. New discoveries of mud volcanoes on the Moroccan Atlantic continental margin (Gulf of Cadiz): Morpho-structural characterization. Geo-Mar. Lett. 2012, 32, 473–488. [Google Scholar] [CrossRef]
- Palomino, D.; Lopez-Gonzalez, N.; Vazquez, J.T.; Fernandez-Salas, L.M.; Rueda, J.L.; Sanchez-Leal, R.; Díaz del Río, V. Multidisciplinary study of mud volcanoes and diapirs and their relationship to seepages and bottom currents in the Gulf of Cadiz continental slope (northeastern sector). Mar. Geol. 2016, 378, 196–212. [Google Scholar] [CrossRef]
- Gamberi, F.; Rovere, M. Mud diapirs, mud volcanoes and fluid flow in the rear of the Calabrian Arc Orogenic Wedge (southeastern Tyrrhenian sea). Basin Res. 2010, 22, 452–464. [Google Scholar] [CrossRef]
- Lo Iacono, C.; Gràcia, E.; Diez, S.; Bozzano, G.; Moreno, X.; Dañobeitia, J.; Alonso, B. Seafloor characterization and backscatter variability of the Almería Margin (Alboran Sea, SW Mediterranean) based on high-resolution acoustic data. Mar. Geol. 2008, 250, 1–18. [Google Scholar] [CrossRef]
- Muñoz, A.; Ballesteros, M.; Montoya, I.; Rivera, J.; Acosta, J.; Uchupi, E. Alborán Basin, southern Spain—Part I: Geomorphology. Mar. Pet. Geol. 2008, 25, 59–73. [Google Scholar] [CrossRef]
- Trusheim, F. Mechanism of salt migration in northern Germany. Am. Assoc. Pet. Geol. Bull. 1960, 44, 1519–1540. [Google Scholar]
- Giles, K.A.; Lawton, T.F. Halokinetic sequence stratigraphy adjacent to the El Papalote diapir, northeastern Mexico. Am. Assoc. Pet. Geol. Bull. 2002, 86, 823–840. [Google Scholar]
- Bahroudi, A.; Koyi, H. Effect of spatial distribution of Hormuz salt on deformation style in the Zagros fold and thrust belt: An analogue modelling approach. J. Geol. Soc. 2003, 160, 719–733. [Google Scholar] [CrossRef]
- Asl, M.E.; Faghih, A.; Mukherjee, S.; Soleimany, B. Style and timing of salt movement in the Persian Gulf basin, offshore Iran: Insights from halokinetic sequences adjacent to the Tonb-e-Bozorg salt diapir. J. Struct. Geol. 2019, 122, 116–132. [Google Scholar] [CrossRef]
- Cofrade, G.; Zavada, P.; Krýza, O.; Cantarero, I.; Gratacos, O.; Ferrer, O.; Adineh, S.; Ramirez-Perez, P.; Eduard, R.; Travé, A. The kinematics of a salt sheet recorded in an array of distorted intrasalt stringers (Les Avellanes Diapir—SouthCentral Pyrenees). J. Struct. Geol. 2023, 176, 104963. [Google Scholar] [CrossRef]
- Dooley, T.P.; Jackson, M.P.A.; Hudec, M.R. Breakout of squeezed stocks: Dispersal of roof fragments, source of extrusive salt and interaction with regional thrust faults. Basin Res. 2015, 27, 3–25. [Google Scholar] [CrossRef]
- Terzaghi, K. Foundation of buildings and dams, bearing capacity, settlement observations, regional subsidences. In Proceedings of the 3rd International Conference on Soil Mechanics and Foundation Engineering, Zurich, Switzerland, 16–27 August 1953; Volume 3, pp. 158–159. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales, J.A.; Carro, B.M.; Borrego, J.; Diosdado, A.J.; Aguilar, M.E.; González, M.A. Diapiric Structures in the Tinto River Estuary (SW Spain) Caused by Artificial Load of an Industrial Stockpile. Remote Sens. 2024, 16, 1465. https://doi.org/10.3390/rs16081465
Morales JA, Carro BM, Borrego J, Diosdado AJ, Aguilar ME, González MA. Diapiric Structures in the Tinto River Estuary (SW Spain) Caused by Artificial Load of an Industrial Stockpile. Remote Sensing. 2024; 16(8):1465. https://doi.org/10.3390/rs16081465
Chicago/Turabian StyleMorales, Juan A., Berta M. Carro, José Borrego, Antonio J. Diosdado, María Eugenia Aguilar, and Miguel A. González. 2024. "Diapiric Structures in the Tinto River Estuary (SW Spain) Caused by Artificial Load of an Industrial Stockpile" Remote Sensing 16, no. 8: 1465. https://doi.org/10.3390/rs16081465
APA StyleMorales, J. A., Carro, B. M., Borrego, J., Diosdado, A. J., Aguilar, M. E., & González, M. A. (2024). Diapiric Structures in the Tinto River Estuary (SW Spain) Caused by Artificial Load of an Industrial Stockpile. Remote Sensing, 16(8), 1465. https://doi.org/10.3390/rs16081465