Analysis of the Low-Frequency Debris Flow Disaster Induced by a Local Rainstorm on 12 July 2022, in Pingwu County, China
Abstract
:1. Introduction
2. Study Area and Methods
2.1. Study Area
2.2. Field Investigation
2.3. Remote Sensing Interpretation
2.4. Rainfall Record Analysis
2.5. Calculation of Dynamic Debris Flow Parameters
3. Results
3.1. Characteristics of the Catastrophic Heishui Debris Flow
3.1.1. Branch Gully-Initiated Debris Flow
3.1.2. Debris Flow Movement Process
3.1.3. Disaster Characteristics
3.2. The Causes of the Heishui Debris Flow
3.2.1. Local Rainstorm-Triggered Debris Flow
3.2.2. Boulder Blockage Amplified the Debris Flow Discharge
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Iverson, R.M. The physics of debris flows. Rev. Geophys. 1997, 35, 245–296. [Google Scholar] [CrossRef]
- Jakob, M.; Hungr, O.; Jakob, D.M. Debris-Flow Hazards and Related Phenomena; Springer: Berlin/Heidelberg, Germany, 2005; Volume 739. [Google Scholar]
- Steijn, V.H. Debris-flow magnitude—Frequency relationships for mountainous regions of Central and Northwest Europe. Geomorphology 1996, 15, 259–273. [Google Scholar] [CrossRef]
- Ministry of Land and Resources of the People’s Republic of China. Specification of Geological Investigation for Debris Flow Stabilization in China (T/CAGHP 006-2018); Ministry of Land and Resources of the People’s Republic of China: Beijing, China, 2018. (In Chinese)
- Zhao, Y.; Meng, X.; Qi, T.; Qing, F.; Xiong, M.; Li, Y.; Guo, P.; Chen, G. AI-based identification of low-frequency debris flow catchments in the Bailong River basin, China. Geomorphology 2020, 359, 107125. [Google Scholar] [CrossRef]
- Hu, G.; Huang, H.; Tian, S.; Rahman, M.; Shen, H.; Yang, Z. Method on early identification of low-frequency debris flow gullies along the highways in the Chuanxi Plateau. Remote Sens. 2023, 15, 1183. [Google Scholar] [CrossRef]
- Cui, P. Disaster characteristics by debris flow in 2004, China and hazard rediction countermeatures. J. Mt. Sci. 2005, 23, 437–441. [Google Scholar]
- Angillieri, M.Y.E. Debris flow susceptibility mapping using frequency ratio and seed cells, in a portion of a mountain international route, Dry Central Andes of Argentina. Catena 2020, 189, 104504. [Google Scholar] [CrossRef]
- Tian, S.; Hu, G.; Chen, N.; Rahman, M.; Han, Z.; Somos-Valenzuela, M.; Habumugisha, J.M. Extreme climate and tectonic controls on the generation of a large-scale, low-frequency debris flow. Catena 2022, 212, 106086. [Google Scholar] [CrossRef]
- Pérez, F.L. Matrix granulometry of catastrophic debris flows (December 1999) in central coastal Venezuela. Catena 2001, 45, 163–183. [Google Scholar] [CrossRef]
- Cui, P.; Zhou, G.G.; Zhu, X.; Zhang, J. Scale amplification of natural debris flows caused by cascading landslide dam failures. Geomorphology 2013, 182, 173–189. [Google Scholar] [CrossRef]
- Zhong, Z.; Chen, N.; Hu, G.; Han, Z.; Ni, H. Aggravation of debris flow disaster by extreme climate and engineering: A case study of the Tongzilin Gully, Southwestern Sichuan Province, China. Nat. Hazards 2021, 109, 237–253. [Google Scholar] [CrossRef]
- Jackson, L.; Kostaschuk, R.; MacDonald, G. Identification of debris flow hazard on alluvial fans in the Canadian Rocky Mountains. Geol. Soc. Am. Rev. Eng. 1987, 7, 115–124. [Google Scholar]
- Wilford, D.; Sakals, M.; Innes, J.; Sidle, R.C.; Bergerud, W. Recognition of debris flow, debris flood and flood hazard through watershed morphometrics. Landslides 2004, 1, 61–66. [Google Scholar] [CrossRef]
- Kang, Z.C.; Li, Z.F.; Ma, A.N.; Luo, J.T. Research on Debris Flow in China; Science Press: Beijing, China, 2004. (In Chinese) [Google Scholar]
- Institute of Mountain Hazards and Environment, China. Debris Flow and Environment in Tibet; Sichuan University Publishing House: Chengdu, China, 1999. (In Chinese) [Google Scholar]
- Zhu, Y.; Yu, B.; Qi, X.; Wang, T.; Chen, Y.J. Topographical Factors in the Formation of Gully Type Debris Flows in the Upper Reaches of Minjiang River. J. Jilin Univ. Earth Sci. Ed. 2014, 44, 268–277. [Google Scholar]
- Chen, N.S.; Li, T.C.; Gao, Y.C. A great disastrous debris flow on 11 July 2003 in Shuikazi valley, Danba County, western Sichuan, China. Landslides 2005, 2, 71–74. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, Y.; Tian, S.-f.; Chen, N.-s.; Mahfuzr, R.; Javed, I. Effects of loose deposits on debris flow processes in the Aizi Valley, southwest China. J. Mt. Sci. 2020, 17, 156–172. [Google Scholar] [CrossRef]
- Hu, T.; Huang, R.-q. A catastrophic debris flow in the Wenchuan Earthquake area, July 2013: Characteristics, formation, and risk reduction. J. Mt. Sci. 2017, 14, 15–30. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, C.; Li, N.; Xiong, J.; Chen, M.; Li, M.; Tang, C. Investigation of the 2019 Wenchuan County debris flow disaster suggests nonuniform spatial and temporal post-seismic debris flow evolution patterns. Landslides 2022, 19, 1935–1956. [Google Scholar] [CrossRef]
- An, H.; Ouyang, C.; Wang, F.; Xu, Q.; Wang, D.; Yang, W.; Fan, T. Comprehensive analysis and numerical simulation of a large debris flow in the Meilong catchment, China. Eng. Geol. 2022, 298, 106546. [Google Scholar] [CrossRef]
- Wieczorek, G.F.; Glade, T. Climatic Factors Influencing Occurrence of Debris Flows; Springer: Berlin/Heidelberg, Germany, 2005; pp. 325–362. [Google Scholar]
- Bel, C.; Liébault, F.; Navratil, O.; Eckert, N.; Bellot, H.; Fontaine, F.; Laigle, D. Rainfall control of debris-flow triggering in the Réal Torrent, Southern French Prealps. Geomorphology 2017, 291, 17–32. [Google Scholar] [CrossRef]
- Fang, K.; Tang, H.; Li, C.; Su, X.; An, P.; Sun, S. Centrifuge modelling of landslides and landslide hazard mitigation: A review. Geosci. Front. 2023, 14, 101493. [Google Scholar] [CrossRef]
- Guo, X.-J.; Cui, P.; Li, Y. Debris flow warning threshold based on antecedent rainfall: A case study in Jiangjia Ravine, Yunnan, China. J. Mt. Sci. 2013, 10, 305–314. [Google Scholar] [CrossRef]
- Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol. Atmos. Phys. 2007, 98, 239–267. [Google Scholar] [CrossRef]
- Coe, J.A.; Kinner, D.A.; Godt, J.W. Initiation conditions for debris flows generated by runoff at Chalk Cliffs, central Colorado. Geomorphology 2008, 96, 270–297. [Google Scholar] [CrossRef]
- Baum, R.L.; Godt, J.W. Early warning of rainfall-induced shallow landslides and debris flows in the USA. Landslides 2010, 7, 259–272. [Google Scholar] [CrossRef]
- Guo, X.; Cui, P.; Li, Y.; Ma, L.; Ge, Y.; Mahoney, W.B. Intensity–duration threshold of rainfall-triggered debris flows in the Wenchuan earthquake affected area, China. Geomorphology 2016, 253, 208–216. [Google Scholar] [CrossRef]
- Nikolopoulos, E.I.; Crema, S.; Marchi, L.; Marra, F.; Guzzetti, F.; Borga, M. Impact of uncertainty in rainfall estimation on the identification of rainfall thresholds for debris flow occurrence. Geomorphology 2014, 221, 286–297. [Google Scholar] [CrossRef]
- Guo, X.; Cui, P.; Chen, X.; Li, Y.; Zhang, J.; Sun, Y. Spatial uncertainty of rainfall and its impact on hydrological hazard forecasting in a small semiarid mountainous watershed. J. Hydrol. 2021, 595, 126049. [Google Scholar]
- Shen, Y.M.; Chen, T.L.; Xiao, G.J.; Fu, Q.Y.; Qing, Z.Z.; Li, L.P. Rainstorm and Flood Calculation Manual of Medium and Small Basins in Sichuan Province, China; Sichuan Provincial Water Resources Department: Beijing, China, 1984. (In Chinese)
- Sichuan Province Hydrology and Water Resources Survey Compilation, China. Parameter Atlas of Rainstorm in Sichuan Province, China; Sichuan Province Hydrology and Water Resources Survey: Chengdu, China, 2010. (In Chinese)
- Manning, R. Fundamentals of Fluid Mechanics. Trans. Inst. Civ. Eng. Irel. 1891, 20, 161–207. [Google Scholar]
- Rice, C.; Kadavy, K.; Robinson, K. Roughness of loose rock riprap on steep slopes. J. Hydraul. Eng. 1998, 124, 179–185. [Google Scholar] [CrossRef]
- Munson, B.R.; Young, D.F.; Okiishi, T.H. Fundamentals of fluid mechanics. Oceanogr. Lit. Rev. 1995, 10, 831. [Google Scholar]
- Xu, M.D.; Feng, Q.H. Roughness of debris flows. In Proceeding of the First Conference of Chinese Research of Debris Flows, Chengdu China, April 1980; pp. 51–52. (In Chinese). [Google Scholar]
- Chien, N.; Wan, Z.H. Mechanics of Sediment Transport; ASCE Press: Reston, VA, USA, 1999. [Google Scholar]
- Chen, N.S.; Cui, P.; Liu, Z.G.; Wei, F.Q. Calculation of the debris flow concentration based on clay content. Sci. China E Technol. Sci. 2003, 46, 163–174. [Google Scholar] [CrossRef]
- Takahashi, T. Debris Flow Mechanics, Prediction and Countermeasures; Taylor & Francis: New York, NY, USA, 2007. [Google Scholar]
- Liu, L.; Xu, Z.X. Regionalization of precipitation and the spatiotemporal distribution of extreme precipitation in southwestern China. Nat. Hazards 2016, 80, 1195–1211. [Google Scholar] [CrossRef]
- Buytaert, W.; Celleri, R.; Willems, P.; De Bievre, B.; Wyseure, G. Spatial and temporal rainfall variability in mountainous areas: A case study from the south Ecuadorian Andes. J. Hydrol. 2006, 329, 413–421. [Google Scholar] [CrossRef]
- Korup, O. Geomorphic hazard assessment of landslide dams in South Westland, New Zealand: Fundamental problems and approaches. Geomorphology 2005, 66, 167–188. [Google Scholar] [CrossRef]
- Costa, J.E.; Schuster, R.L. The formation and failure of natural dams. Geol. Soc. Am. Bull. 1988, 100, 1054–1068. [Google Scholar] [CrossRef]
- Wei, F.; Gao, K.; Hu, K.; Li, Y.; Gardner, J.S. Relationships between debris flows and earth surface factors in Southwest China. Environ. Geol. 2008, 55, 619–627. [Google Scholar] [CrossRef]
- Schmocker, L.; Weitbrecht, V. Driftwood: Risk analysis and engineering measures. J. Hydraul. Eng. 2013, 139, 683–695. [Google Scholar] [CrossRef]
- Chen, J.; Liu, W.; Zhao, W.; Jiang, T.; Zhu, Z.; Chen, X. Magnitude amplification of flash floods caused by large woody in Keze gully in Jiuzhaigou National Park, China. Geomat. Nat. Hazards Risk 2021, 12, 2277–2299. [Google Scholar] [CrossRef]
- Piton, G.; Horiguchi, T.; Marchal, L.; Lambert, S. Open check dams and large wood: Head losses and release conditions. Nat. Hazards Earth Syst. Sci. 2020, 20, 3293–3314. [Google Scholar] [CrossRef]
- Stolle, A.; Langer, M.; Blöthe, J.H.; Korup, O. On predicting debris flows in arid mountain belts. Glob. Planet. Change 2015, 126, 1–13. [Google Scholar] [CrossRef]
- Huang, R.; Li, W.L. Analysis of the geo-hazards triggered by the 12 May 2008 Wenchuan Earthquake, China. Bull. Eng. Geol. Environ. 2009, 68, 363–371. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, C.; Ma, S.; Xu, X.; Wang, S.; Zhang, H. Inventory and spatial distribution of landslides triggered by the 8th August 2017 MW 6.5 Jiuzhaigou earthquake, China. J. Earth Sci. 2019, 30, 206–217. [Google Scholar] [CrossRef]
- Zhou, W.; Tang, C.; Van Asch, T.W.; Chang, M. A rapid method to identify the potential of debris flow development induced by rainfall in the catchments of the Wenchuan earthquake area. Landslides 2016, 13, 1243–1259. [Google Scholar] [CrossRef]
- Underwood, S.J.; Schultz, M.D.; Berti, M.; Gregoretti, C.; Simoni, A.; Mote, T.L.; Saylor, A.M. Atmospheric circulation patterns, cloud-to-ground lightning, and locally intense convective rainfall associated with debris flow initiation in the Dolomite Alps of northeastern Italy. Nat. Hazards Earth Syst. Sci. 2016, 16, 509–528. [Google Scholar] [CrossRef]
- Fang, K.; Dong, A.; Tang, H.; An, P.; Wang, Q.; Jia, S.; Zhang, B. Development of an easy-assembly and low-cost multismartphone photogrammetric monitoring system for rock slope hazards. Int. J. Rock Mech. Min. Sci. 2024, 174, 105655. [Google Scholar] [CrossRef]
- Jakob, M.; Owen, T.; Simpson, T. A regional real-time debris-flow warning system for the District of North Vancouver, Canada. Landslides 2012, 9, 165–178. [Google Scholar] [CrossRef]
- Hu, G.; Liu, M.; Chen, N.; Zhang, X.; Wu, K.; Raj Khanal, B.; Han, D. Real-time evacuation and failure mechanism of a giant soil landslide on 19 July 2018 in Yanyuan County, Sichuan Province, China. Landslides 2019, 16, 1177–1187. [Google Scholar] [CrossRef]
Data Type | Time | Resolution (m) | Image Type | Source |
---|---|---|---|---|
Remote sensing images | 2022/6/23 | 10 | Sentinel-2A | https://scihub.copernicus.eu/dhus/#/home (accessed on 10 September 2022) |
2022/7/23 | Sentinel-2A | |||
2022/5/5 | 0.63 | JL-1A | https://www.jl1mall.com (accessed on 12 August 2022) | |
2022/7/20 | JL-1A | |||
Aerial images | 2022/8/2 | 0.1 | UAV | Field measurement |
DEM | 2022/8/2 | 0.1 | UAV | |
ALOS DEM | 2011/2/25 | 12.5m | ALOS | https://search.asf.alaska.edu/ (accessed on 14 August 2022) |
Frequency | K1p | H’1 (mm) | H1p (mm) | K6p | H’6 (mm) | H6p (mm) |
---|---|---|---|---|---|---|
1% | 2.87 | 25 | 71.80 | 2.91 | 45.00 | 131.00 |
2% | 2.51 | 25 | 62.80 | 2.55 | 45.00 | 114.80 |
5% | 2.05 | 25 | 51.30 | 2.07 | 45.00 | 93.20 |
10% | 1.70 | 25 | 42.50 | 1.71 | 45.00 | 77.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Deng, M.; Chen, N.; Tian, S.; Wang, T. Analysis of the Low-Frequency Debris Flow Disaster Induced by a Local Rainstorm on 12 July 2022, in Pingwu County, China. Remote Sens. 2024, 16, 1547. https://doi.org/10.3390/rs16091547
Liu M, Deng M, Chen N, Tian S, Wang T. Analysis of the Low-Frequency Debris Flow Disaster Induced by a Local Rainstorm on 12 July 2022, in Pingwu County, China. Remote Sensing. 2024; 16(9):1547. https://doi.org/10.3390/rs16091547
Chicago/Turabian StyleLiu, Mei, Mingfeng Deng, Ningsheng Chen, Shufeng Tian, and Tao Wang. 2024. "Analysis of the Low-Frequency Debris Flow Disaster Induced by a Local Rainstorm on 12 July 2022, in Pingwu County, China" Remote Sensing 16, no. 9: 1547. https://doi.org/10.3390/rs16091547
APA StyleLiu, M., Deng, M., Chen, N., Tian, S., & Wang, T. (2024). Analysis of the Low-Frequency Debris Flow Disaster Induced by a Local Rainstorm on 12 July 2022, in Pingwu County, China. Remote Sensing, 16(9), 1547. https://doi.org/10.3390/rs16091547