Mapping Quaking Aspen Using Seasonal Sentinel-1 and Sentinel-2 Composite Imagery across the Southern Rockies, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Reference Data
2.2.1. Quaking Aspen Reference Data
2.2.2. Background Reference Data
2.3. Satellite Imagery
2.3.1. Sentinel-1
2.3.2. Sentinel-2
2.3.3. Additional Spectral and Textural Features
2.3.4. Seasonal Sentinel-2 Composites
2.3.5. Topographic Data
2.4. Image Classification
2.4.1. Model Selection and Accuracy Assessment
2.4.2. Feature Importance
2.5. Agreement with Existing Products
2.6. Case Study: Landscape Patch Dynamics
3. Results
3.1. Annual Spectral Response of Quaking Aspen Forests
3.2. Model Selection and Accuracy Assessment
Feature Importance
3.3. Quaking Aspen Forest Map
3.4. Agreement with Existing Products
Landscape and Patch Dynamics
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Phenology of Quaking Aspen across the Southern Rockies
Appendix B. Accuracy Assessment and Optimal Threshold for Classification
References
- Rogers, P.C.; Pinno, B.D.; Šebesta, J.; Albrectsen, B.R.; Li, G.; Ivanova, N.; Kusbach, A.; Kuuluvainen, T.; Landhäusser, S.M.; Liu, H.; et al. A Global View of Aspen: Conservation Science for Widespread Keystone Systems. Glob. Ecol. Conserv. 2020, 21, e00828. [Google Scholar] [CrossRef]
- Debyle, N.V.; Winokur, R.P. Aspen: Ecology and Management in the Western United States. General Technical Report RM-119, USDA Forest Service. 1985. Available online: https://www.academia.edu/34572963/Aspen_ecology_and_management_in_the_western_United_States (accessed on 31 March 2024).
- Bartos, D.L. Landscape dynamics of aspen and conifer forests. In Sustaining Aspen in Western Landscapes: Symposium Proceedings; Shepperd, W.D., Binkley, D., Bartos, D.L., Stohlgren, T.J., Eskew, L.G., Eds.; Proceedings RMRS-P-18; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2001. [Google Scholar]
- Rogers, P.C.; Landhäusser, S.M.; Pinno, B.D.; Ryel, R.J. A Functional Framework for Improved Management of Western North American Aspen (Populus Tremuloides Michx.). For. Sci. 2014, 60, 345–359. [Google Scholar] [CrossRef]
- Landhäusser, S.M.; Deshaies, D.; Lieffers, V.J. Disturbance Facilitates Rapid Range Expansion of Aspen into Higher Elevations of the Rocky Mountains under a Warming Climate. J. Biogeogr. 2010, 37, 68–76. [Google Scholar] [CrossRef]
- Gill, N.S.; Sangermano, F.; Buma, B.; Kulakowski, D. Populus Tremuloides Seedling Establishment: An Underexplored Vector for Forest Type Conversion after Multiple Disturbances. For. Ecol. Manag. 2017, 404, 156–164. [Google Scholar] [CrossRef]
- Long, J.N.; Mock, K. Changing Perspectives on Regeneration Ecology and Genetic Diversity in Western Quaking Aspen: Implications for Silviculture. Can. J. For. Res. 2012, 42, 2011–2021. [Google Scholar] [CrossRef]
- Andrus, R.A.; Hart, S.J.; Tutland, N.; Veblen, T.T. Future Dominance by Quaking Aspen Expected Following Short-Interval, Compounded Disturbance Interaction. Ecosphere 2021, 12, e03345. [Google Scholar] [CrossRef]
- Nigro, K.M.; Rocca, M.E.; Battaglia, M.A.; Coop, J.D.; Redmond, M.D. Wildfire Catalyzes Upward Range Expansion of Trembling Aspen in Southern Rocky Mountain Beetle-Killed Forests. J. Biogeogr. 2022, 49, 201–214. [Google Scholar] [CrossRef]
- Worrall, J.J.; Rehfeldt, G.E.; Hamann, A.; Hogg, E.H.; Marchetti, S.B.; Michaelian, M.; Gray, L.K. Recent Declines of Populus Tremuloides in North America Linked to Climate. For. Ecol. Manag. 2013, 299, 35–51. [Google Scholar] [CrossRef]
- Rosenblum, A. Altered Fire Regimes and the Persistence of Quaking Aspen in the Rocky Mountains: A Literature Review. Open J. For. 2015, 5, 563–567. [Google Scholar] [CrossRef]
- Krasnow, K.D.; Stephens, S.L. Evolving Paradigms of Aspen Ecology and Management: Impacts of Stand Condition and Fire Severity on Vegetation Dynamics. Ecosphere 2015, 6, 1–16. [Google Scholar] [CrossRef]
- Shinneman, D.J.; McIlroy, S.K. Climate and Disturbance Influence Self-Sustaining Stand Dynamics of Aspen (Populus Tremuloides) near Its Range Margin. Ecol. Appl. 2019, 29, e01948. [Google Scholar] [CrossRef] [PubMed]
- Picotte, J.J.; Dockter, D.; Long, J.; Tolk, B.; Davidson, A.; Peterson, B. LANDFIRE Remap Prototype Mapping Effort: Developing a New Framework for Mapping Vegetation Classification, Change, and Structure. Fire 2019, 2, 35. [Google Scholar] [CrossRef]
- Shepperd, W.D.; Smith, F.W.; Pelz, K.A. Group Clearfell Harvest Can Promote Regeneration of Aspen Forests Affected by Sudden Aspen Decline in Western Colorado. For. Sci. 2015, 61, 932–937. [Google Scholar] [CrossRef]
- Landhäusser, S.M.; Pinno, B.D.; Mock, K.E. Tamm Review: Seedling-Based Ecology, Management, and Restoration in Aspen (Populus Tremuloides). For. Ecol. Manag. 2019, 432, 231–245. [Google Scholar] [CrossRef]
- Ellenwood, J.R.; Krist, F.J.; Romero, S.A. National Individual Tree Species Atlas; FHTET-15–01; USDA Forest Service, Forest Health Technology Enterprise Team: Fort Collins, CO, USA, 2015. Available online: https://www.fs.usda.gov/foresthealth/applied-sciences/mapping-reporting/indiv-tree-parameter-maps.shtml (accessed on 31 March 2024).
- Riley, K.L.; Grenfell, I.C.; Shaw, J.D.; Finney, M.A. TreeMap 2016 Dataset Generates CONUS-Wide Maps of Forest Characteristics Including Live Basal Area, Aboveground Carbon, and Number of Trees per Acre. J. For. 2022, 120, 607–632. [Google Scholar] [CrossRef]
- Landfire. Landfire (LF) 2016 Remap EVT Agreement Assessment. Available online: https://landfire.gov/remapevt_assessment.php (accessed on 31 March 2024).
- Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C. Land Cover Classification in an Era of Big and Open Data: Optimizing Localized Implementation and Training Data Selection to Improve Mapping Outcomes. Remote Sens. Environ. 2022, 268, 112780. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Phiri, D.; Simwanda, M.; Salekin, S.; Nyirenda, V.R.; Murayama, Y.; Ranagalage, M. Sentinel-2 Data for Land Cover/Use Mapping: A Review. Remote Sens. 2020, 12, 2291. [Google Scholar] [CrossRef]
- Bayle, A.; Carlson, B.Z.; Thierion, V.; Isenmann, M.; Choler, P. Improved Mapping of Mountain Shrublands Using the Sentinel-2 Red-Edge Band. Remote Sens. 2019, 11, 2807. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W.; Gitelson, A. Using the Red-Edge Bands on Sentinel-2 for Retrieving Canopy Chlorophyll and Nitrogen Content. In Proceedings of the European Space Agency, Frascati, Italy, 23–27 April 2012. (Special Publication) 2012; Volume ESA SP 707. [Google Scholar]
- Lin, S.; Li, J.; Liu, Q.; Li, L.; Zhao, J.; Yu, W. Evaluating the Effectiveness of Using Vegetation Indices Based on Red-Edge Reflectance from Sentinel-2 to Estimate Gross Primary Productivity. Remote Sens. 2019, 11, 1303. [Google Scholar] [CrossRef]
- Wong, C.Y.S.; D’Odorico, P.; Bhathena, Y.; Arain, M.A.; Ensminger, I. Carotenoid Based Vegetation Indices for Accurate Monitoring of the Phenology of Photosynthesis at the Leaf-Scale in Deciduous and Evergreen Trees. Remote Sens. Environ. 2019, 233, 111407. [Google Scholar] [CrossRef]
- Kollert, A.; Bremer, M.; Löw, M.; Rutzinger, M. Exploring the Potential of Land Surface Phenology and Seasonal Cloud Free Composites of One Year of Sentinel-2 Imagery for Tree Species Mapping in a Mountainous Region. Int. J. Appl. Earth Obs. Geoinf. 2021, 94, 102208. [Google Scholar] [CrossRef]
- Immitzer, M.; Neuwirth, M.; Böck, S.; Brenner, H.; Vuolo, F.; Atzberger, C. Optimal Input Features for Tree Species Classification in Central Europe Based on Multi-Temporal Sentinel-2 Data. Remote Sens. 2019, 11, 2599. [Google Scholar] [CrossRef]
- Li, H.; Shi, Q.; Wan, Y.; Shi, H.; Imin, B. Using Sentinel-2 Images to Map the Populus Euphratica Distribution Based on the Spectral Difference Acquired at the Key Phenological Stage. Forests 2021, 12, 147. [Google Scholar] [CrossRef]
- Macintyre, P.; van Niekerk, A.; Mucina, L. Efficacy of Multi-Season Sentinel-2 Imagery for Compositional Vegetation Classification. Int. J. Appl. Earth Obs. Geoinf. 2020, 85, 101980. [Google Scholar] [CrossRef]
- Persson, M.; Lindberg, E.; Reese, H. Tree Species Classification with Multi-Temporal Sentinel-2 Data. Remote Sens. 2018, 10, 1794. [Google Scholar] [CrossRef]
- Barber, B.C. Review Article. Theory of Digital Imaging from Orbital Synthetic-Aperture Radar. Int. J. Remote Sens. 1985, 6, 1009–1057. [Google Scholar] [CrossRef]
- Udali, A.; Lingua, E.; Persson, H.J. Assessing Forest Type and Tree Species Classification Using Sentinel-1 C-Band SAR Data in Southern Sweden. Remote Sens. 2021, 13, 3237. [Google Scholar] [CrossRef]
- Numbisi, F.N.; Numbisi, F.N.; Coillie, F.V.; Wulf, R.D. Multi-date sentinel1 sar image textures discriminate perennial agroforests in a tropical forest-savannah transition landscape. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII–1, 339–346. [Google Scholar] [CrossRef]
- Dobrinić, D.; Gašparović, M.; Medak, D. Sentinel-1 and 2 Time-Series for Vegetation Mapping Using Random Forest Classification: A Case Study of Northern Croatia. Remote Sens. 2021, 13, 2321. [Google Scholar] [CrossRef]
- Lechner, M.; Dostálová, A.; Hollaus, M.; Atzberger, C.; Immitzer, M. Combination of Sentinel-1 and Sentinel-2 Data for Tree Species Classification in a Central European Biosphere Reserve. Remote Sens. 2022, 14, 2687. [Google Scholar] [CrossRef]
- Liu, Y.; Gong, W.; Hu, X.; Gong, J. Forest Type Identification with Random Forest Using Sentinel-1A, Sentinel-2A, Multi-Temporal Landsat-8 and DEM Data. Remote Sens. 2018, 10, 946. [Google Scholar] [CrossRef]
- Steinhausen, M.J.; Wagner, P.D.; Narasimhan, B.; Waske, B. Combining Sentinel-1 and Sentinel-2 Data for Improved Land Use and Land Cover Mapping of Monsoon Regions. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 595–604. [Google Scholar] [CrossRef]
- Dusseux, P.; Corpetti, T.; Hubert-Moy, L.; Corgne, S. Combined Use of Multi-Temporal Optical and Radar Satellite Images for Grassland Monitoring. Remote Sens. 2014, 6, 6163–6182. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef]
- Johnson, R.M. Help Build the Protected Areas Database of the United States (PAD-US); Fact Sheet: Reston, VA, USA, 2023. [Google Scholar]
- Peete, R.K. Forest and Meadows of the Rocky Mountains. In North American Terrestrial Vegetation; Cambridge University Press: New York, NY, USA, 1988; pp. 63–102. [Google Scholar]
- Shepperd, W. A Classification of Quaking Aspen in the Central Rocky Mountains Based on Growth and Stand Characteristics. West. J. Appl. For. 1990, 5, 69–75. [Google Scholar] [CrossRef]
- Deng, X.; Li, W.; Liu, X.; Guo, Q.; Newsam, S. One-Class Remote Sensing Classification: One-Class vs. Binary Classifiers. Int. J. Remote Sens. 2018, 39, 1890–1910. [Google Scholar] [CrossRef]
- Mullissa, A.; Vollrath, A.; Odongo-Braun, C.; Slagter, B.; Balling, J.; Gou, Y.; Gorelick, N.; Reiche, J. Sentinel-1 SAR Backscatter Analysis Ready Data Preparation in Google Earth Engine. Remote Sens. 2021, 13, 1954. [Google Scholar] [CrossRef]
- Farwell, L.S.; Gudex-Cross, D.; Anise, I.E.; Bosch, M.J.; Olah, A.M.; Radeloff, V.C.; Razenkova, E.; Rogova, N.; Silveira, E.M.O.; Smith, M.M.; et al. Satellite Image Texture Captures Vegetation Heterogeneity and Explains Patterns of Bird Richness. Remote Sens. Environ. 2021, 253, 112175. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between Leaf Chlorophyll Content and Spectral Reflectance and Algorithms for Non-Destructive Chlorophyll Assessment in Higher Plant Leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the Capabilities of Sentinel-2 for Quantitative Estimation of Biophysical Variables in Vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83–92. [Google Scholar] [CrossRef]
- Kobayashi, N.; Tani, H.; Wang, X.; Sonobe, R. Crop Classification Using Spectral Indices Derived from Sentinel-2A Imagery. J. Inf. Telecommun. 2020, 4, 67–90. [Google Scholar] [CrossRef]
- Evangelides, C.; Nobajas, A. Red-Edge Normalised Difference Vegetation Index (NDVI705) from Sentinel-2 Imagery to Assess Post-Fire Regeneration. Remote Sens. Appl. Soc. Environ. 2020, 17, 100283. [Google Scholar] [CrossRef]
- Jiang, W.; Ni, Y.; Pang, Z.; He, G.; Fu, J.; Lu, J.; Yang, K.; Long, T.; Lei, T. A new index for identifying water body from sentinel-2 satellite remote sensing imagery. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, V-3–2020, 33–38. [Google Scholar] [CrossRef]
- Pasquarella, V.J.; Brown, C.F.; Czerwinski, W.; Rucklidge, W.J. Comprehensive Quality Assessment of Optical Satellite Imagery Using Weakly Supervised Video Learning. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Vancouver, BC, Canada, 17–24 June 2023; pp. 2125–2135. [Google Scholar]
- Zhang, X.; Liu, L.; Liu, Y.; Jayavelu, S.; Wang, J.; Moon, M.; Henebry, G.M.; Friedl, M.A.; Schaaf, C.B. Generation and Evaluation of the VIIRS Land Surface Phenology Product. Remote Sens. Environ. 2018, 216, 212–229. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Karasiak, N.; Dejoux, J.-F.; Monteil, C.; Sheeren, D. Spatial Dependence between Training and Test Sets: Another Pitfall of Classification Accuracy Assessment in Remote Sensing. Mach. Learn. 2021, 111, 2715–2740. [Google Scholar] [CrossRef]
- Uhl, J.H.; Leyk, S. A Framework for Scale-Sensitive, Spatially Explicit Accuracy Assessment of Binary Built-up Surface Layers. Remote Sens. Environ. 2022, 279, 113117. [Google Scholar] [CrossRef]
- Evans, J.S.; Murphy, M.A. rfUtilities. 2018. Available online: https://github.com/jeffreyevans/rfUtilities (accessed on 31 March 2024).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Evans, J.S.; Cushman, S.A. Gradient Modeling of Conifer Species Using Random Forests. Landsc. Ecol. 2009, 24, 673–683. [Google Scholar] [CrossRef]
- Nembrini, S.; König, I.R.; Wright, M.N. The Revival of the Gini Importance? Bioinformatics 2018, 34, 3711–3718. [Google Scholar] [CrossRef]
- Bosch, M. PyLandStats: An Open-Source Pythonic Library to Compute Landscape Metrics. PLoS ONE 2019, 14, e0225734. [Google Scholar] [CrossRef] [PubMed]
- Shinneman, D.J.; Baker, W.L.; Rogers, P.C.; Kulakowski, D. Fire Regimes of Quaking Aspen in the Mountain West. For. Ecol. Manag. 2013, 299, 22–34. [Google Scholar] [CrossRef]
- Grabska, E.; Hostert, P.; Pflugmacher, D.; Ostapowicz, K. Forest Stand Species Mapping Using the Sentinel-2 Time Series. Remote Sens. 2019, 11, 1197. [Google Scholar] [CrossRef]
- Meier, G.A.; Brown, J.F.; Evelsizer, R.J.; Vogelmann, J.E. Phenology and Climate Relationships in Aspen (Populus Tremuloides Michx.) Forest and Woodland Communities of Southwestern Colorado. Ecol. Indic. 2015, 48, 189–197. [Google Scholar] [CrossRef]
Landfire EVT Sub-Class | Number of Samples |
---|---|
Evergreen closed tree canopy | 23,957 |
Mixed evergreen–deciduous shrubland | 13,421 |
Evergreen open tree canopy | 12,991 |
Perennial graminoid grassland | 7637 |
Annual graminoid/forb | 3537 |
Evergreen shrubland | 3273 |
Sparsely vegetated | 2869 |
Mixed evergreen–deciduous open tree canopy | 1016 |
Developed | 896 |
Non-vegetated | 808 |
Perennial graminoid | 716 |
Evergreen dwarf-shrubland | 669 |
Evergreen sparse tree canopy | 624 |
Deciduous open tree canopy | 617 |
Total | 73,031 |
Satellite | Abbrev. | Name | Center Wavelength | Seasonal Windows |
---|---|---|---|---|
Sentinel-1 | VV | Vertical–Vertical | 5.5 cm | Summer/ Winter |
VH | Vertical–Horizontal | 5.5 cm | ||
Sentinel-2 | B2 | Blue | 490 nm | Summer/ Autumn |
B3 | Green | 560 nm | ||
B4 | Red | 665 nm | ||
B5 | Red-edge 1 | 705 nm | ||
B6 | Red-edge 2 | 740 nm | ||
B7 | Red-edge 3 | 783 nm | ||
B8 | Near Infrared | 842 nm | ||
B8A | Red-edge 4 | 865 nm | ||
B11 | Shortwave Infrared 1 | 1610 nm | ||
B12 | Shortwave Infrared 2 | 2190 nm |
Satellite | Index | Abbreviation | Formula | Seasonal Windows | Reference |
---|---|---|---|---|---|
Sentinel-1 | GLCM Entropy | VV_ent, VH_ent | GLCM | Summer/ Winter | [46] |
Sentinel-1 | GLCM Variance | VV_var, VH_var | GLCM | Summer/ Winter | |
Sentinel-1 | GLCM Correlation | VV_corr, VH_corr | GLCM | Summer/ Winter | |
Sentinel-1 | GLCM Contrast | VV_contrast, VH_contrast | GLCM | Summer/ Winter | |
Sentinel-2 | Chlorophyll Index Red-edge | CIRE | (B8/B5) − 1 | Summer/Autumn | [47] |
Sentinel-2 | Inverted Red-edge Chlorophyll Index | IRECI | (B8 − B4)/(B5/B6) | Summer/Autumn | [48] |
Sentinel-2 | Specific Leaf Area Vegetation Index | SLAVI | B8/(B4 + B12) | Summer/Autumn | [49] |
Sentinel-2 | Modified Chlorophyll Absorption in Reflectance Index | MCARI | ((B5 − B4) − 0.2 ∗ (B5 − B3)) ∗ (B5/B4) | Summer/Autumn | [35] |
Sentinel-2 | Red-edge Normalized Difference Vegetation Index | NDVI705 | (B6 − B5)/(B6 + B5) | Summer/Autumn | [50] |
Sentinel-2 | Modified Normalized Difference Water Index | MNDWI | (B3 − B11)/(B3 + B11) | Summer/Autumn | [51] |
Data Source | Precision | Recall | F1-Score |
---|---|---|---|
Sentinel-based map | 0.9516 | 0.9116 | 0.9311 |
USFS TreeMap | 0.8087 | 0.9302 | 0.8652 |
Landfire EVT | 0.8168 | 0.8995 | 0.8562 |
USFS ITSP | 0.7959 | 0.8669 | 0.8299 |
Data Source | Total Area (km2) | Number of Patches | Patch Density | Average Patch Size (ha) | Average Perimeter/Area Ratio |
---|---|---|---|---|---|
Sentinel-based Map | 9384.41 | 1,760,386 | 35.73 | 0.53 | 2745.57 |
Landfire EVT | 13,441.59 | 728,370 | 14.22 | 1.85 | 1060.98 |
USFS TreeMap | 13,931.85 | 1,268,131 | 24.82 | 1.10 | 1145.88 |
USFS ITSP | 20,477.69 | 266,762 | 4.82 | 7.68 | 941.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cook, M.; Chapman, T.; Hart, S.; Paudel, A.; Balch, J. Mapping Quaking Aspen Using Seasonal Sentinel-1 and Sentinel-2 Composite Imagery across the Southern Rockies, USA. Remote Sens. 2024, 16, 1619. https://doi.org/10.3390/rs16091619
Cook M, Chapman T, Hart S, Paudel A, Balch J. Mapping Quaking Aspen Using Seasonal Sentinel-1 and Sentinel-2 Composite Imagery across the Southern Rockies, USA. Remote Sensing. 2024; 16(9):1619. https://doi.org/10.3390/rs16091619
Chicago/Turabian StyleCook, Maxwell, Teresa Chapman, Sarah Hart, Asha Paudel, and Jennifer Balch. 2024. "Mapping Quaking Aspen Using Seasonal Sentinel-1 and Sentinel-2 Composite Imagery across the Southern Rockies, USA" Remote Sensing 16, no. 9: 1619. https://doi.org/10.3390/rs16091619
APA StyleCook, M., Chapman, T., Hart, S., Paudel, A., & Balch, J. (2024). Mapping Quaking Aspen Using Seasonal Sentinel-1 and Sentinel-2 Composite Imagery across the Southern Rockies, USA. Remote Sensing, 16(9), 1619. https://doi.org/10.3390/rs16091619