Deformation Slope Extraction and Influencing Factor Analysis Using LT-1 Satellite Data: A Case Study of Chongqing and Surrounding Areas, China
Abstract
:1. Introduction
2. Study Area
3. Materials
3.1. LT-1 Deformation Data
3.2. Optical Imagery and 3D Terrain Model Data
3.3. Influencing Factor Data
4. Methods
4.1. Deformation Slope Extraction
4.2. Importance Ranking of Impact Factors
5. Results
6. Discussion
6.1. Differences Between Deformation Slopes, Potential Landslide Hazards, and Slope Deformation
6.2. Challenges and Application Potential of LT-1 Deformation Data
6.3. Limitations of Data Processing Methods
6.4. Research Prospects
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, M.; Xu, Q.; Wang, Y.; Luo, Y.; Chen, L.; Zhang, N.; LI, H. Development characteristics and disaster-causing mechanisms of the ”8·3” catastrophic flash flood and debris flow in Ganzi, Kangding, Sichuan Province. Geomat. Inf. Sci. Wuhan Univ. 2024, 49, 2136–2144. [Google Scholar] [CrossRef]
- Gao, H.; Xu, C.; Xie, C.; Ma, J.; Xiao, Z. Landslides triggered by the July 2023 extreme rainstorm in the Haihe River Basin, China. Landslides 2024, 21, 2885–2890. [Google Scholar] [CrossRef]
- Liu, J.; Xu, C. Construction and preliminary analysis of landslide database triggered by heavy storm in the parallel range-valley area of western Chongqing, China, on 8 June 2017. Front. Earth Sci. 2024, 12, 1420425. [Google Scholar] [CrossRef]
- Basher, R. Disaster impacts: Implications and policy responses. Soc. Res. Int. Q. 2008, 75, 937–954. [Google Scholar] [CrossRef]
- Han, Z.; Wu, G. Why do people not prepare for disasters? A national survey from China. NPJ Nat. Hazards 2024, 1, 1. [Google Scholar] [CrossRef]
- Padli, J.; Habibullah, M.S.; Baharom, A.H. The impact of human development on natural disaster fatalities and damage: Panel data evidence. Econ. Res.-Ekon. Istraživanja 2018, 31, 1557–1573. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, Q.; Yin, Y.; Lu, Z.; Yang, C.; Zhu, W.; Li, B. Pre-, co-, and post-rockslide analysis with ALOS/PALSAR imagery: A case study of the Jiweishan rockslide, China. Nat. Hazards Earth Syst. Sci. 2013, 13, 2851–2861. [Google Scholar] [CrossRef]
- Wang, X.; Diao, M.; Guo, H.; Wang, L.; Guo, H.; Li, D. Landslide deformation prediction and automatic warning by coupling machine learning and physical models. Earth Space Sci. 2024, 11, e2023EA003238. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, W.; Wang, L.; Xiao, T.; Meng, X.; Zhang, Z. Mechanism of the high-speed and long-run-out landslide considering the evolution of the frictional heat in the sliding zone. Nat. Hazards 2024, 120, 3299–3317. [Google Scholar] [CrossRef]
- Huang, L.; Zhou, T.; Zhuang, S.; Peng, T.; Wang, J.; Li, Y. Failure mechanism of a high-locality colluvial landslide in Wanzhou County, Chongqing, China. Bull. Eng. Geol. Environ. 2022, 81, 252. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, L.; Yin, K.; Shrestha, D.P.; Zhang, L. Quantitative risk assessment of slow-moving landslides from the viewpoint of decision-making: A case study of the Three Gorges Reservoir in China. Eng. Geol. 2020, 273, 105667. [Google Scholar] [CrossRef]
- Song, Q.H.; Li, X.L.; Ren, S.C.; Cheng, X.L. Case analysis of landslide hazard risk identification induced by coupling effect of rainfall and reservoir water level change. In Proceedings of the 2021 4th International Symposium on Traffic Transportation and Civil Architecture (ISTTCA), Suzhou, China, 12–14 November 2021; pp. 325–329. [Google Scholar]
- Huang, B.; Yin, Y.; Wang, S.; Chen, X.; Liu, G.; Jiang, Z.; Liu, J. A physical similarity model of an impulsive wave generated by Gongjiafang landslide in Three Gorges Reservoir, China. Landslides 2014, 11, 513–525. [Google Scholar] [CrossRef]
- Noferini, L.; Pieraccini, M.; Mecatti, D.; Macaluso, G.; Atzeni, C.; Mantovani, M.; Marcato, G.; Pasuto, A.; Silvano, S.; Tagliavini, F. Using GB-SAR technique to monitor slow moving landslide. Eng. Geol. 2007, 95, 88–98. [Google Scholar] [CrossRef]
- Long, S.; Tong, A.; Yuan, Y.; Li, Z.; Wu, W.; Zhu, C. New approaches to processing ground-based SAR (GBSAR) data for deformation monitoring. Remote Sens. 2018, 10, 1936. [Google Scholar] [CrossRef]
- Wu, S.; Hu, X.; Zheng, W.; Berti, M.; Qiao, Z.; Shen, W. Threshold definition for monitoring Gapa Landslide under large variations in reservoir level using GNSS. Remote Sens. 2021, 13, 4977. [Google Scholar] [CrossRef]
- Liu, X.; Du, Y.; Huang, G.; Wang, D.; Zhang, Q. Mitigating GNSS multipath in landslide areas: A novel approach considering mutation points at different stages. Landslides 2023, 20, 2497–2510. [Google Scholar] [CrossRef]
- Dematteis, N.; Wrzesniak, A.; Allasia, P.; Bertolo, D.; Giordan, D. Integration of robotic total station and digital image correlation to assess the three-dimensional surface kinematics of a landslide. Eng. Geol. 2022, 303, 106655. [Google Scholar] [CrossRef]
- Mora, O.E.; Lenzano, M.G.; Toth, C.K.; Grejner-Brzezinska, D.A.; Fayne, J.V. Landslide change detection based on multi-temporal Airborne LiDAR-derived DEMs. Geosciences 2018, 8, 23. [Google Scholar] [CrossRef]
- Tu, K.; Ye, S.; Zou, J.; Guo, J.; Chen, H.; He, Y. Combination of satellite InSAR, stereo mapping, and LiDAR to improve the understanding of the Chuwangjing landslide in the Three Gorges Reservoir Area. Nat. Hazards 2024, 120, 12203–12220. [Google Scholar] [CrossRef]
- Peternel, T.; Kumelj, Š.; Oštir, K.; Komac, M. Monitoring the Potoška planina landslide (NW Slovenia) using UAV photogrammetry and tachymetric measurements. Landslides 2017, 14, 395–406. [Google Scholar] [CrossRef]
- Huang, H.; Long, J.; Lin, H.; Zhang, L.; Yi, W.; Lei, B. Unmanned aerial vehicle based remote sensing method for monitoring a steep mountainous slope in the Three Gorges Reservoir, China. Earth Sci. Inform. 2017, 10, 287–301. [Google Scholar] [CrossRef]
- Kuang, J.; Ge, L.; Ng, A.H.-M.; Clark, S.R.; Karimzadeh, S.; Matsuoka, M.; Du, Z.; Zhang, Q. Monitoring slope stabilization of a reactivated landslide in the Three Gorges Reservoir Region (China) with multi-source satellite SAR and optical datasets. Landslides 2024, 21, 2227–2247. [Google Scholar] [CrossRef]
- Yu, X.; Hu, X.; Song, Y.; Xu, S.; Li, X.; Song, X.; Fan, X.; Wang, F. Intelligent assessment of building damage of 2023 Turkey-Syria Earthquake by multiple remote sensing approaches. NPJ Nat. Hazards 2024, 1, 3. [Google Scholar] [CrossRef]
- Tamburini-Beliveau, G.; Balbarani, S.; Monserrat, O. Brief communication: Landslide activity on the Argentinian Santa Cruz River mega dam works confirmed by PSI DInSAR. Nat. Hazards Earth Syst. Sci. 2023, 23, 1987–1999. [Google Scholar] [CrossRef]
- Bovenga, F.; Pasquariello, G.; Pellicani, R.; Refice, A.; Spilotro, G. Landslide monitoring for risk mitigation by using corner reflector and satellite SAR interferometry: The large landslide of Carlantino (Italy). Catena 2017, 151, 49–62. [Google Scholar] [CrossRef]
- Cui, J.; Tao, Y.; Kou, P.; Jin, Z.; Huang, Y.; Zhang, J. Hydrological influences on landslide dynamics in the three gorges reservoir area: An SBAS-InSAR study in Yunyang county, Chongqing. Environ. Earth Sci. 2024, 83, 466. [Google Scholar] [CrossRef]
- Xiao, T.; Huang, W.; Deng, Y.; Tian, W.; Sha, Y. Long-term and emergency monitoring of Zhongbao landslide using space-borne and ground-based InSAR. Remote Sens. 2021, 13, 1578. [Google Scholar] [CrossRef]
- Gao, Y.; Li, J.; Liu, X.; Wu, W.; Zhang, H.; Liu, P. Deformation monitoring and dynamic analysis of long-runout bedding landslide based on InSAR and particle flow code. Remote Sens. 2023, 15, 5105. [Google Scholar] [CrossRef]
- Rosi, A.; Tofani, V.; Tanteri, L.; Tacconi Stefanelli, C.; Agostini, A.; Catani, F.; Casagli, N. The new landslide inventory of Tuscany (Italy) updated with PS-InSAR: Geomorphological features and landslide distribution. Landslides 2018, 15, 5–19. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Z.; Yu, C.; Chen, B.; Ding, M.; Zhu, W.; Yang, J.; Liu, Z.; Peng, J. An integrated framework for wide-area active landslide detection with InSAR observations and SAR pixel offsets. Landslides 2022, 19, 2905–2923. [Google Scholar] [CrossRef]
- Zhang, L.; Dai, K.; Deng, J.; Ge, D.; Liang, R.; Li, W.; Xu, Q. Identifying potential landslides by stacking-InSAR in southwestern China and its performance comparison with SBAS-InSAR. Remote Sens. 2021, 13, 3662. [Google Scholar] [CrossRef]
- Wang, Z.; Li, T.; Tang, W.; Yang, B.; Yuan, Y.; Wen, X.; Lu, J.; Li, Y. Identification capability analysis of landslide hazards for LT-1 and sentinel-1 using time series SAR interferometry: A case study of Maoxian, Sichuan. In Proceedings of the 2023 SAR in Big Data Era (BIGSARDATA), Beijing, China, 20–22 September 2023; pp. 1–4. [Google Scholar]
- Zhang, X.; Li, T.; Zhang, X.; Zhou, X.; Lu, J. A feasibility study of LT-1 SAR satellite for permafrost deformation monitoring. In Proceedings of the 2023 SAR in Big Data Era (BIGSARDATA), Beijing, China, 20–22 September 2023; pp. 1–4. [Google Scholar]
- Han, S.S.; Wang, Y. Chongqing. Cities 2001, 18, 115–125. [Google Scholar] [CrossRef]
- Cascini, L.; Fornaro, G.; Peduto, D. Analysis at medium scale of low-resolution DInSAR data in slow-moving landslide-affected areas. ISPRS J. Photogramm. Remote Sens. 2009, 64, 598–611. [Google Scholar] [CrossRef]
- Cascini, L.; Fornaro, G.; Peduto, D. Advanced low-and full-resolution DInSAR map generation for slow-moving landslide analysis at different scales. Eng. Geol. 2010, 112, 29–42. [Google Scholar] [CrossRef]
- Qu, X. The LT-1 01 satellite group. Satell. Appl. 2020, 3, 70. [Google Scholar] [CrossRef]
- Wu, X.; Xu, X.; Yu, G.; Ren, J.; Yang, X.; Chen, G.; Xu, C.; Du, K.; Huang, X.; Yang, H. The China Active Faults Database (CAFD) and its web system. Earth Syst. Sci. Data 2024, 16, 3391–3417. [Google Scholar] [CrossRef]
- Zhao, Q.; Yu, L.; Li, X.; Peng, D.; Zhang, Y.; Gong, P. Progress and trends in the application of Google Earth and Google Earth Engine. Remote Sens. 2021, 13, 3778. [Google Scholar] [CrossRef]
- Yu, L.; Gong, P. Google Earth as a virtual globe tool for Earth science applications at the global scale: Progress and perspectives. Int. J. Remote Sens. 2012, 33, 3966–3986. [Google Scholar] [CrossRef]
- Lisle, R.J. Google Earth: A new geological resource. Geol. Today 2006, 22, 29–32. [Google Scholar] [CrossRef]
- Luo, L.; Wang, X.; Guo, H.; Lasaponara, R.; Shi, P.; Bachagha, N.; Li, L.; Yao, Y.; Masini, N.; Chen, F. Google Earth as a powerful tool for archaeological and cultural heritage applications: A review. Remote Sens. 2018, 10, 1558. [Google Scholar] [CrossRef]
- Liang, J.; Gong, J.; Li, W. Applications and impacts of Google Earth: A decadal review (2006–2016). ISPRS J. Photogramm. Remote Sens. 2018, 146, 91–107. [Google Scholar] [CrossRef]
- Li, L.; Xu, C.; Yang, Z.; Zhang, Z.; Lv, M. An inventory of large-scale landslides in Baoji city, Shaanxi province, China. Data 2022, 7, 114. [Google Scholar] [CrossRef]
- Guo, J.; Yi, S.; Yin, Y.; Cui, Y.; Qin, M.; Li, T.; Wang, C. The effect of topography on landslide kinematics: A case study of the Jichang town landslide in Guizhou, China. Landslides 2020, 17, 959–973. [Google Scholar] [CrossRef]
- Fernandes, N.F.; Guimarães, R.F.; Gomes, R.A.T.; Vieira, B.C.; Montgomery, D.R.; Greenberg, H. Topographic controls of landslides in Rio de Janeiro: Field evidence and modeling. Catena 2004, 55, 163–181. [Google Scholar] [CrossRef]
- Gritzner, M.L.; Marcus, W.A.; Aspinall, R.; Custer, S.G. Assessing landslide potential using GIS, soil wetness modeling and topographic attributes, Payette River, Idaho. Geomorphology 2001, 37, 149–165. [Google Scholar] [CrossRef]
- Li, G.K.; Moon, S. Topographic stress control on bedrock landslide size. Nat. Geosci. 2021, 14, 307–313. [Google Scholar] [CrossRef]
- Korup, O.; Clague, J.J.; Hermanns, R.L.; Hewitt, K.; Strom, A.L.; Weidinger, J.T. Giant landslides, topography, and erosion. Earth Planet. Sci. Lett. 2007, 261, 578–589. [Google Scholar] [CrossRef]
- Xue, L.; Ding, H.; Wang, H.; Li, L.; Liu, H. Shallow slope stabilization by arbor root Systems: A physical model study. Catena 2024, 246, 108458. [Google Scholar] [CrossRef]
- Bellugi, D.G.; Milledge, D.G.; Cuffey, K.M.; Dietrich, W.E.; Larsen, L.G. Controls on the size distributions of shallow landslides. Proc. Natl. Acad. Sci. USA 2021, 118, e2021855118. [Google Scholar] [CrossRef]
- Asada, H.; Minagawa, T. Impact of vegetation differences on shallow landslides: A case study in Aso, Japan. Water 2023, 15, 3193. [Google Scholar] [CrossRef]
- Peruccacci, S.; Brunetti, M.T.; Luciani, S.; Vennari, C.; Guzzetti, F. Lithological and seasonal control on rainfall thresholds for the possible initiation of landslides in central Italy. Geomorphology 2012, 139, 79–90. [Google Scholar] [CrossRef]
- Henriques, C.; Zêzere, J.L.; Marques, F. The role of the lithological setting on the landslide pattern and distribution. Eng. Geol. 2015, 189, 17–31. [Google Scholar] [CrossRef]
- Froude, M.J.; Petley, D.N. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 2018, 18, 2161–2181. [Google Scholar] [CrossRef]
- Zeng, T.; Guo, Z.; Wang, L.; Jin, B.; Wu, F.; Guo, R. Tempo-spatial landslide susceptibility assessment from the perspective of human engineering activity. Remote Sens. 2023, 15, 4111. [Google Scholar] [CrossRef]
- Ma, S.; Shao, X.; Xu, C. Characterizing the distribution pattern and a physically based susceptibility assessment of shallow landslides triggered by the 2019 heavy rainfall event in Longchuan County, Guangdong Province, China. Remote Sens. 2022, 14, 4257. [Google Scholar] [CrossRef]
- Shao, X.; Ma, S.; Xu, C.; Xu, Y. Insight into the characteristics and triggers of loess landslides during the 2013 heavy rainfall event in the Tianshui Area, China. Remote Sens. 2023, 15, 4304. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth Syst. Sci. Data Discuss. 2020, 13, 2753–2776. [Google Scholar] [CrossRef]
- Dijkshoorn, K.; van Engelen, V.; Huting, J. Soil and landform properties for LADA partner countries. ISRIC Rep. 2008, 6, 1–28. [Google Scholar]
- European Space Agency. Copernicus Global Digital Elevation Model. 2024. Available online: https://portal.opentopography.org/datasetMetadata?otCollectionID=OT.032021.4326.1 (accessed on 29 August 2024). [CrossRef]
- Huffman, G.J.; Stocker, E.F.; Bolvin, D.T.; Nelkin, E.J.; Tan, J. GPM IMERG Final Precipitation L3 1 Day 0.1 Degree x 0.1 Degree V07. 2023. Available online: https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDF_07/summary (accessed on 29 August 2024). [CrossRef]
- Zhang, X.; Xu, C.; Li, L.; Feng, L.; Yang, W. Inventory of landslides in the northern half of the Taihang Mountain Range, China. Geosciences 2024, 14, 74. [Google Scholar] [CrossRef]
- Feng, L.; Xu, C.; Tian, Y.; Li, L.; Sun, J.; Huang, Y.; Wang, P.; Zhang, X.; Li, T.; Yang, W. Landslides of China’s Qinling. Geosci. Data J. 2024, 11, 725–741. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, C.; Huang, X. Detailed landslide traces database of Hancheng County, China, based on high-resolution satellite images available on the Google Earth Platform. Data 2024, 9, 63. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, C.; Li, L.; He, X.; Cheng, J.; Xu, X.; Li, J.; Zhang, X. Inventory and spatial distribution of ancient landslides in Hualong County, China. Land 2022, 12, 136. [Google Scholar] [CrossRef]
- Shao, X.; Xu, C.; Li, L.; Yang, Z.; Yao, X.; Shao, B.; Liang, C.; Xue, Z.; Xu, X. Spatial analysis and hazard assessment of Large-scale ancient landslides around the reservoir area of Wudongde Hydropower Station, China. Nat. Hazards 2024, 120, 87–105. [Google Scholar] [CrossRef]
- Kang, Y.; Zhao, C.; Zhang, Q.; Lu, Z.; Li, B. Application of InSAR techniques to an analysis of the Guanling Landslide. Remote Sens. 2017, 9, 1046. [Google Scholar] [CrossRef]
- Yao, J.; Yao, X.; Liu, X. Landslide detection and mapping based on SBAS-InSAR and PS-InSAR: A case study in Gongjue County, Tibet, China. Remote Sens. 2022, 14, 4728. [Google Scholar] [CrossRef]
- Xie, M.; Zhao, W.; Ju, N.; He, C.; Huang, H.; Cui, Q. Landslide evolution assessment based on InSAR and real-time monitoring of a large reactivated landslide, Wenchuan, China. Eng. Geol. 2020, 277, 105781. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Amin, A.A.; Bankher, K.A. Karst hazard assessment of eastern Saudi Arabia. Nat. Hazards 1997, 15, 21–30. [Google Scholar] [CrossRef]
- De Waele, J.; Gutiérrez, F.; Parise, M.; Plan, L. Geomorphology and natural hazards in karst areas: A review. Geomorphology 2011, 134, 1–8. [Google Scholar] [CrossRef]
- Pacheco Quevedo, R.; Velastegui-Montoya, A.; Montalván-Burbano, N.; Morante-Carballo, F.; Korup, O.; Daleles Rennó, C. Land use and land cover as a conditioning factor in landslide susceptibility: A literature review. Landslides 2023, 20, 967–982. [Google Scholar] [CrossRef]
- Luino, F.; De Graff, J.; Biddoccu, M.; Faccini, F.; Freppaz, M.; Roccati, A.; Ungaro, F.; D’Amico, M.; Turconi, L. The role of soil type in triggering shallow landslides in the Alps (Lombardy, Northern Italy). Land 2022, 11, 1125. [Google Scholar] [CrossRef]
- Fan, L.; Lehmann, P.; Or, D. Effects of soil spatial variability at the hillslope and catchment scales on characteristics of rainfall-induced landslides. Water Resour. Res. 2016, 52, 1781–1799. [Google Scholar] [CrossRef]
- Medwedeff, W.G.; Clark, M.K.; Zekkos, D.; West, A.J. Characteristic landslide distributions: An investigation of landscape controls on landslide size. Earth Planet. Sci. Lett. 2020, 539, 116203. [Google Scholar] [CrossRef]
- Ranjan, R.; Karmakar, S. Compound hazard mapping for tropical cyclone-induced concurrent wind and rainfall extremes over India. NPJ Nat. Hazards 2024, 1, 15. [Google Scholar] [CrossRef]
- Thomas, M.A.; Michaelis, A.C.; Oakley, N.S.; Kean, J.W.; Gensini, V.A.; Ashley, W.S. Rainfall intensification amplifies exposure of American Southwest to conditions that trigger postfire debris flows. NPJ Nat. Hazards 2024, 1, 14. [Google Scholar] [CrossRef]
- Huang, F.; Liu, K.; Li, Z.; Zhou, X.; Zeng, Z.; Li, W.; Huang, J.; Catani, F.; Chang, Z. Single landslide risk assessment considering rainfall-induced landslide hazard and the vulnerability of disaster-bearing body. Geol. J. 2024, 59, 2549–2565. [Google Scholar] [CrossRef]
- Preuth, T.; Glade, T.; Demoulin, A. Stability analysis of a human-influenced landslide in eastern Belgium. Geomorphology 2010, 120, 38–47. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Mao, H. Influence of human activity on landslide susceptibility development in the Three Gorges area. Nat. Hazards 2020, 104, 2115–2151. [Google Scholar] [CrossRef]
- Skilodimou, H.D.; Bathrellos, G.D.; Koskeridou, E.; Soukis, K.; Rozos, D. Physical and anthropogenic factors related to landslide activity in the Northern Peloponnese, Greece. Land 2018, 7, 85. [Google Scholar] [CrossRef]
- Balaji, P.M.; Kumar, S. Effect of atmospheric propagation of electromagnetic wave on DInSAR phase. Proceedings 2019, 18, 5. [Google Scholar] [CrossRef]
- Li, Z.W.; Xu, W.B.; Feng, G.C.; Hu, J.; Wang, C.C.; Ding, X.L.; Zhu, J.J. Correcting atmospheric effects on InSAR with MERIS water vapour data and elevation-dependent interpolation model. Geophys. J. Int. 2012, 189, 898–910. [Google Scholar] [CrossRef]
- Ghaderpour, E.; Masciulli, C.; Zocchi, M.; Bozzano, F.; Scarascia Mugnozza, G.; Mazzanti, P. Estimating reactivation times and velocities of slow-moving landslides via PS-InSAR and their relationship with precipitation in Central Italy. Remote Sens. 2024, 16, 3055. [Google Scholar] [CrossRef]
- Kulsoom, I.; Hua, W.; Hussain, S.; Chen, Q.; Khan, G.; Shihao, D. SBAS-InSAR based validated landslide susceptibility mapping along the Karakoram Highway: A case study of Gilgit-Baltistan, Pakistan. Sci. Rep. 2023, 13, 3344. [Google Scholar] [CrossRef]
- Bayik, C.; Abdikan, S.; Gül, M. Mass movement evaluation in deformed clastic rock with InSAR technique. Earth Surf. Process. Landf. 2023, 49, 875–886. [Google Scholar] [CrossRef]
- Strozzi, T.; Wegmuller, U.; Werner, C.; Wiesmann, A. Measurement of slow uniform surface displacement with mm/year accuracy. In Proceedings of the IGARSS 2000, IEEE 2000 International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 24–28 July 2000; pp. 2239–2241. [Google Scholar]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Ahmad, S.M.; Sadhasivam, N.; Lisa, M.; Lombardo, L.; Emil, M.K.; Zaki, A.; Van Westen, C.J.; Fadel, I.; Tanyas, H. Standing on the shoulder of a giant landslide: A six-year long InSAR look at a slow-moving hillslope in the western Karakoram. Geomorphology 2024, 444, 108959. [Google Scholar] [CrossRef]
- Famiglietti, N.A.; Miele, P.; Defilippi, M.; Cantone, A.; Riccardi, P.; Tessari, G.; Vicari, A. Landslide mapping in Calitri (Southern Italy) using new multi-temporal InSAR algorithms based on permanent and distributed scatterers. Remote Sens. 2024, 16, 1610. [Google Scholar] [CrossRef]
- Bru, G.; Ezquerro, P.; Azañón, J.M.; Mateos, R.M.; Tsige, M.; Béjar-Pizarro, M.; Guardiola-Albert, C. Deceleration captured by InSAR after local stabilization works in a slow-moving landslide: The case of Arcos de la Frontera (SW Spain). Landslides 2024, 21, 2827–2843. [Google Scholar] [CrossRef]
- Lu, H.; Ma, L.; Fu, X.; Liu, C.; Wang, Z.; Tang, M.; Li, N. Landslides information extraction using object-oriented image analysis paradigm based on deep learning and transfer learning. Remote Sens. 2020, 12, 752. [Google Scholar] [CrossRef]
- Yang, S.; Wang, Y.; Wang, P.; Mu, J.; Jiao, S.; Zhao, X.; Wang, Z.; Wang, K.; Zhu, Y. Automatic identification of landslides based on deep learning. Appl. Sci. 2022, 12, 8153. [Google Scholar] [CrossRef]
- Rouet-Leduc, B.; Jolivet, R.; Dalaison, M.; Johnson, P.A.; Hulbert, C. Autonomous extraction of millimeter-scale deformation in InSAR time series using deep learning. Nat. Commun. 2021, 12, 6480. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, X.; Gu, Z.; Zhou, Z.; Liu, X.; Chen, X.; Wei, S. Study of the automatic recognition of landslides by using InSAR images and the improved mask R-CNN model in the Eastern Tibet Plateau. Remote Sens. 2022, 14, 3362. [Google Scholar] [CrossRef]
- Shao, X.; Ma, S.; Xu, C.; Xie, C.; Li, T.; Huang, Y.; Huang, Y.; Xiao, Z. Landslides triggered by the 2022 Ms. 6.8 Luding strike-slip earthquake: An update. Eng. Geol. 2024, 335, 107536. [Google Scholar] [CrossRef]
- Ma, S.; Shao, X.; Li, K.; Xu, C. Landslides triggered by the 30th June 2012 Ms6. 6 Hejing earthquake, Xinjiang province, China. Bull. Eng. Geol. Environ. 2024, 83, 256. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, C.; He, X.; Cheng, J.; Huang, Y.; Wu, L.; Xu, X. Distribution characteristics and cumulative effects of landslides triggered by multiple moderate-magnitude earthquakes: A case study of the comprehensive seismic impact area in Yibin, Sichuan, China. Landslides 2024, 21, 2927–2943. [Google Scholar] [CrossRef]
- Ma, S.; Shao, X.; Xu, C. Landslides triggered by the 2016 heavy rainfall event in Sanming, Fujian Province: Distribution pattern analysis and spatio-temporal susceptibility assessment. Remote Sens. 2023, 15, 2738. [Google Scholar] [CrossRef]
- Xie, C.; Huang, Y.; Li, L.; Li, T.; Xu, C. Detailed inventory and spatial distribution analysis of rainfall-induced landslides in Jiexi County, Guangdong Province, China in August 2018. Sustainability 2023, 15, 13930. [Google Scholar] [CrossRef]
- Li, T.; Xie, C.; Xu, C.; Qi, W.; Huang, Y.; Li, L. Automated machine learning for rainfall-induced landslide hazard mapping in Luhe County of Guangdong Province, China. China Geol. 2024, 7, 315–329. [Google Scholar] [CrossRef]
- Bouissou, S.; Darnault, R.; Chemenda, A.; Rolland, Y. Evolution of gravity-driven rock slope failure and associated fracturing: Geological analysis and numerical modelling. Tectonophysics 2012, 526, 157–166. [Google Scholar] [CrossRef]
- Chemenda, A.I.; Bois, T.; Bouissou, S.; Tric, E. Numerical modelling of the gravity-induced destabilization of a slope: The example of the La Clapière landslide, southern France. Geomorphology 2009, 109, 86–93. [Google Scholar] [CrossRef]
- Tric, E.; Lebourg, T.; Jomard, H.; Le Cossec, J. Study of large-scale deformation induced by gravity on the La Clapière landslide (Saint-Etienne de Tinée, France) using numerical and geophysical approaches. J. Appl. Geophys. 2010, 70, 206–215. [Google Scholar] [CrossRef]
- Hasan, M.F.R.; Susilo, A.; Suryo, E.A.; Agung, P.A.M.; Idmi, M.H.; Suaidi, D.A.; Aprilia, F. Mapping of landslide potential in Payung, Batu City, Indonesia, using Global Gravity Model Plus (GGMplus) Data as landslide mitigation. Iraqi Geol. J. 2024, 57, 159–168. [Google Scholar] [CrossRef]
- Paronuzzi, P.; Bolla, A. Gravity-induced rock mass damage related to large en masse rockslides: Evidence from Vajont. Geomorphology 2015, 234, 28–53. [Google Scholar] [CrossRef]
Data | Resolution | Source |
---|---|---|
Active fault | - | Wu et al. [37] |
SRTMTPI 90 m resolution topographic position data product | 90 m | The data set is provided by Geospatial Data Cloud site, Computer Network Information Center, Chinese Academy of Sciences. (http://www.gscloud.cn, accessed on 22 August 2024). |
Landcover product | 30 m | Zhang, et al. [58] |
Lithology | - | Dijkshoorn, et al. [59] |
Soil | ||
Slope | - | Calculated from DEM. |
Relief | ||
Copernicus Global Digital Elevation Model | 30 m | European Space Agency [60] |
Rainfall data | 0.1 degree × 0.1 degree | Huffman, et al. [61] |
Railway | - | 1:1 million public version of basic geographic information data (2021) (https://www.webmap.cn/commres.do?method=result100W, accessed on 29 August 2024) |
Road | ||
River |
Topographic Position | Explanation |
---|---|
Ridge | TPI > 1 SD |
Upper slope | 0.5 SD < TPI ≤ 1 SD |
Middle slope | −0.5 SD < TPI < 0.5 SD, slope > 5° |
Flat slope | −0.5 SD < TPI < 0.5 SD, slope ≤ 5° |
Lower slope | −1 SD < TPI ≤ −0.5 SD |
Valley | TPI < −1 STDV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Xu, C.; Zhao, B.; Yang, Z.; Liu, Y.; Zhang, S.; Kong, X.; Lan, Q.; Xu, W.; Qi, W. Deformation Slope Extraction and Influencing Factor Analysis Using LT-1 Satellite Data: A Case Study of Chongqing and Surrounding Areas, China. Remote Sens. 2025, 17, 156. https://doi.org/10.3390/rs17010156
Liu J, Xu C, Zhao B, Yang Z, Liu Y, Zhang S, Kong X, Lan Q, Xu W, Qi W. Deformation Slope Extraction and Influencing Factor Analysis Using LT-1 Satellite Data: A Case Study of Chongqing and Surrounding Areas, China. Remote Sensing. 2025; 17(1):156. https://doi.org/10.3390/rs17010156
Chicago/Turabian StyleLiu, Jielin, Chong Xu, Binbin Zhao, Zhi Yang, Yi Liu, Sihang Zhang, Xiaoang Kong, Qiongqiong Lan, Wenbin Xu, and Wenwen Qi. 2025. "Deformation Slope Extraction and Influencing Factor Analysis Using LT-1 Satellite Data: A Case Study of Chongqing and Surrounding Areas, China" Remote Sensing 17, no. 1: 156. https://doi.org/10.3390/rs17010156
APA StyleLiu, J., Xu, C., Zhao, B., Yang, Z., Liu, Y., Zhang, S., Kong, X., Lan, Q., Xu, W., & Qi, W. (2025). Deformation Slope Extraction and Influencing Factor Analysis Using LT-1 Satellite Data: A Case Study of Chongqing and Surrounding Areas, China. Remote Sensing, 17(1), 156. https://doi.org/10.3390/rs17010156