Forcing the SAFY Dynamic Crop Growth Model with Sentinel-2 LAI Estimates and Weather Inputs from AgERA5 Reanalysis and CM SAF SARAH-3 Radiation Data for Estimating Crop Water Requirements and Yield
Abstract
1. Introduction
2. Study Area, Data and Methods
2.1. Study Area and Field Data
2.2. Sentinel-2 LAI Estimates
2.3. AgERA5 Reanalyisis and CM SAF SARAH-3 Satellite-Based Radiation Data
2.4. The Dynamic Crop Growth Model: SAFY
2.4.1. SAFY Implementation: Input Data and Parameters
2.4.2. Assimilation of Sentinel-2 LAI into SAFY
2.5. The One-Step Approach for Evaluating Evapotranspiration (SAFY-E)
2.6. Assessing Net CWR and Yield
2.7. Statistical Indices for Evaluating Performance
3. Results
3.1. Validation of the S2 LAI Estimates with Ground-Based LAI Measurements
3.2. Performance of AgERA5 and CM SAF SARAH-3 Data
3.3. Calibration of the SAFY Model
3.4. LAI Dynamics
3.5. Assessment of Net CWR and Yield
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The Future of Food and Agriculture—Trends and Challenges; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017; Available online: http://www.fao.org/3/a-i6583e.pdf (accessed on 28 February 2025).
- Irrigation in EU Agriculture. Available online: http://www.europarl.europa.eu/thinktank (accessed on 12 July 2022).
- UNESCO. The United Nations World Water Development Report 2024: Water for Prosperity and Peace. 2024. Available online: https://www.unwater.org/publications/un-world-water-development-report-2024 (accessed on 24 April 2025).
- Pelosi, A.; Terribile, F.; D’Urso, G.; Chirico, G.B. Comparison of ERA5-Land and UERRA MESCAN-SURFEX Reanalysis Data with Spatially Interpolated Weather Observations for the Regional Assessment of Reference Evapotranspiration. Water 2020, 12, 1669. [Google Scholar] [CrossRef]
- Longo-Minnolo, G.; D’Emilio, A.; Vanella, D.; Consoli, S. Advancing in satellite-based models coupled with reanalysis agrometeorological data for improving the irrigation management under the European Water Framework Directive. Agric. Water Manag. 2024, 301, 108955. [Google Scholar] [CrossRef]
- Calera, A.; Campos, I.; Osann, A.; D’Urso, G.; Menenti, M. Remote Sensing for Crop Water Management: From ET Modelling to Services for the End Users. Sensors 2017, 17, 1104. [Google Scholar] [CrossRef] [PubMed]
- Chirico, G.B.; Pelosi, A.; De Michele, C.; Falanga Bolognesi, S.; D’Urso, G. Forecasting potential evapotranspiration by combining numerical weather predictions and visible and near-infrared satellite images: An application in southern Italy. J. Agric. Sci. 2018, 156, 702–710. [Google Scholar] [CrossRef]
- Pelosi, A.; Chirico, G.B.; Falanga Bolognesi, S.; De Michele, C.; D’Urso, G. Forecasting crop evapotranspiration under standard conditions in precision farming. In Proceedings of the 2019 IEEE International Workshop on Metrology for Agriculture and Forestry, MetroAgriFor 2019—Proceedings, Portici, Italy, 24–26 October 2019; pp. 174–179. [Google Scholar] [CrossRef]
- FAO. The State of Food and Agriculture 2020. In Overcoming Water Challenges in Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Pelosi, A.; Belfiore, O.R.; Aprile, A.L.; Villani, P.; D’Urso, G.; Chirico, G.B. Improving irrigation scheduling at farm level by using high quality weather forecasts. In Proceedings of the 2023 IEEE International Workshop on Metrology for Agriculture and Forestry, MetroAgriFor 2023—Proceedings, Pisa, Italy, 6–8 November 2023; pp. 542–546. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements, Irrigation and Drain—FAO Irrigation and Drainage Paper No. 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Consoli, S.; Vanella, D. Comparisons of satellite-based models for estimating evapotranspiration fluxes. J. Hydrol. 2014, 513, 475–489. [Google Scholar] [CrossRef]
- Koch, J.; Zhang, W.; Martinsen, G.; He, X.; Stisen, S. Estimating net irrigation across the North China Plain through dual modeling of evapotranspiration. Water Resour. Res. 2020, 56, e2020WR027413. [Google Scholar] [CrossRef]
- Brocca, L.; Tarpanelli, A.; Filippucci, P.; Dorigo, W.; Zaussinger, F.; Gruber, A.; Fernández-Prieto, D. How much water is used for irrigation? A new approach exploiting coarse resolution satellite soil moisture products. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 752–766. [Google Scholar] [CrossRef]
- D’Urso, G. Current Status and Perspectives for the Estimation of Crop Water Requirements from Earth Observation. Ital. J. Agron. 2010, 5, 107–120. [Google Scholar] [CrossRef]
- Pelosi, A.; Chirico, G.B. Regional assessment of daily reference evapotranspiration: Can ground observations be replaced by blending ERA5-Land meteorological reanalysis and CM-SAF satellite-based radiation data? Agric. Water Manag. 2021, 258, 107169. [Google Scholar] [CrossRef]
- Bauer, P.; Thorpe, A.; Brunet, G. The quiet revolution of numerical weather prediction. Nature 2015, 525, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Soci, C.; Bazile, E.; Besson, F.; Landelius, T. High-resolution precipitation reanalysis system for climatological purposes. Tellus A 2016, 68, 29879. [Google Scholar] [CrossRef]
- Boogaard, H.; Schubert, J.; De Wit, A.; Lazebnik, J.; Hutjes, R.; Van der Grijn, G. Agrometeorological Indicators from 1979 to Present Derived from Reanalysis. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Available online: https://doi.org/10.24381/cds.6c68c9bb (accessed on 15 September 2024).
- Copernicus Climate Change Service. Agrometeorological Indicators from 1979 to Present Derived from Reanalysis. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), 2020. Available online: https://doi.org/10.24381/cds.6c68c9bb (accessed on 15 September 2024).
- Vanella, D.; Longo-Minnolo, G.; Belfiore, O.R.; Ramírez-Cuesta, J.M.; Pappalardo, S.; Consoli, S.; D’Urso, G.; Chirico, G.B.; Coppola, A.; Comegna, A.; et al. Comparing the use of ERA5 reanalysis dataset and ground-based agrometeorological data under different climates and topography in Italy. J. Hydrol. Reg. Stud. 2022, 42, 101182. [Google Scholar] [CrossRef]
- Pelosi, A. Performance of the Copernicus European Regional Reanalysis (CERRA) dataset as proxy of ground-based agrometeorological data. Agric. Water Manag. 2023, 289, 108556. [Google Scholar] [CrossRef]
- Garcia-Prats, A.; Carricondo-Anton, J.M.; Ippolito, M.; De Caro, D.; Jiménez-Bello, M.A.; Manzano-Juárez, J.; Pulido-Velazquez, M. High-Resolution Spatially Interpolated FAO Penman-Monteith Crop Reference Evapotranspiration Maps Using Agera5 and Era5-Land Reanalysis Datasets. Available online: https://doi.org/10.2139/ssrn.5065028 (accessed on 10 January 2025).
- Pelosi, A.; Aceto, G.; Aprile, A.L.; Chirico, G.B. Evaluation of the Performance of the Global Weather Dataset AgERA5 for Sustainable Water Management in Agriculture: A Focus on Reference Evapotranspiration. In Computational Science and Its Applications—ICCSA 2025 Workshops; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2025; Volume 15899. [Google Scholar] [CrossRef]
- Rolle, M.; Tamea, S.; Claps, P. ERA5-based global assessment of irrigation requirement and validation. PLoS ONE 2021, 16, e0250979. [Google Scholar] [CrossRef] [PubMed]
- Nouri, M.; Homaee, M. Reference crop evapotranspiration for data-sparse regions using reanalysis products. Agric. Water Manag. 2022, 262, 107319. [Google Scholar] [CrossRef]
- Jin, L.; Chen, S.; Yang, H.; Zhang, C. Evaluation and Drivers of Four Evapotranspiration Products in the Yellow River Basin. Remote Sens. 2024, 16, 1829. [Google Scholar] [CrossRef]
- Tiruye, A.; Ditthakit, P.; Linh, N.T.T.; Wipulanusat, W.; Weesakul, U.; Thongkao, S. Comparing WaPOR and ERA5-Land: Innovative Estimations of Precipitation and Evapotranspiration in the Tana Basin, Ethiopia. Earth Syst. Environ. 2024, 8, 1225–1246. [Google Scholar] [CrossRef]
- Paredes, P.; Trigo, I.; de Bruin, H.; Simoes, N.; Pereira, L.S. Daily grass reference evapotranspiration with Meteosat Second Generation shortwave radiation and reference ET products. Agric. Water Manag. 2021, 248, 10654. [Google Scholar] [CrossRef]
- Pfeifroth, U.; Kothe, S.; Drücke, J.; Trentmann, J.; Schröder, M.; Selbach, N.; Hollmann, R. Surface Radiation Data Set—Heliosat (SARAH)—Edition 3, Satellite Application Facility on Climate Monitoring, 2023. Available online: https://doi.org/10.5676/EUM_SAF_CM/SARAH/V003 (accessed on 8 January 2025).
- Vanino, S.; Nino, P.; De Michele, C.; Falanga Bolognesi, S.; D’Urso, G.; Di Bene, C.; Pennelli, B.; Vuolo, F.; Farina, R.; Pulighe, G.; et al. Capability of Sentinel-2 data for estimating maximum evapotranspiration and irrigation requirements for tomato crop in Central Italy. Remote Sens. Environ. 2018, 215, 452–470. [Google Scholar] [CrossRef]
- Falanga Bolognesi, S.; Pasolli, E.; Belfiore, O.R.; De Michele, C.; D’Urso, G. Harmonized Landsat 8 and Sentinel-2 Time Series Data to Detect Irrigated Areas: An Application in Southern Italy. Remote Sens. 2020, 12, 1275. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Dalla Marta, A.; Chirico, G.B.; Falanga Bolognesi, S.; Mancini, M.; D’Urso, G.; Orlandini, S.; De Michele, C.; Altobelli, F. Integrating Sentinel-2 Imagery with AquaCrop for Dynamic Assessment of Tomato Water Requirements in Southern Italy. Agronomy 2019, 9, 404. [Google Scholar] [CrossRef]
- Pelosi, A.; Belfiore, O.R.; D’Urso, G.; Chirico, G.B. Assessing Crop Water Requirement and Yield by Combining ERA5-Land Reanalysis Data with CM-SAF Satellite-Based Radiation Data and Sentinel-2 Satellite Imagery. Remote Sens. 2022, 14, 6233. [Google Scholar] [CrossRef]
- Corbari, C.; Ben Charfi, I.; Al Bitar, A.; Skokovic, D.; Sobrino, J.A.; Perelli, C.; Branca, G.; Mancini, M. A fully coupled crop-water-energy balance model based on satellite data for maize and tomato crops yield estimates: The FEST-EWB-SAFY model. Agric. Water Manag. 2022, 272, 107850. [Google Scholar] [CrossRef]
- Duchemin, B.; Maisongrande, P.; Boulet, G.; Benhadj, I. A simple algorithm for yield estimates: Evaluation for semi-arid irrigated winter wheat monitored with green leaf area index. Environ. Modell. Softw. 2008, 23, 876–892. [Google Scholar] [CrossRef]
- Battude, M.; Al Bitar, A.; Morin, D.; Demarez, V. Estimating maize biomass and yield over large areas using high spatial and temporal resolution Sentinel-2 like remote sensing data: SAFY. Remote Sens. Environ. 2016, 184, 668. [Google Scholar] [CrossRef]
- Corbari, C.; Ben Charfi, I.; Mancini, M. Optimizing Irrigation Water Use Efficiency for Tomato and Maize Fields across Italy Combining Remote Sensing Data and the AquaCrop Model. Hydrology 2021, 8, 39. [Google Scholar] [CrossRef]
- Steduto, P.; Hsiao, T.C.; Raes, D.; Fereres, E. AquaCrop—The FAO crop model for predicting yield response to water: I. Concepts and underlying principles. Agron. J. 2009, 101, 426437. [Google Scholar] [CrossRef]
- AquaCrop, the Crop Water Productivity Model. Available online: https://www.fao.org/documents/card/en/c/f34330d3-592e-42e1-883e-1db3506c8c8d/ (accessed on 12 September 2021).
- Pereira, L.S.; Paredes, P.; Jovanovic, N. Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach. Agric. Water Manag. 2020, 241, 106357. [Google Scholar] [CrossRef]
- Pelosi, A.; Medina, H.; Villani, P.; D’Urso, G.; Chirico, G.B. Probabilistic forecasting of reference evapotranspiration with a limited area ensemble prediction system. Agric. Water Manag. 2016, 178, 106–118. [Google Scholar] [CrossRef]
- LICOR. LAI-2000 Plant Canopy Analyzer Instruction Manual; LiCor Inc.: Lincoln, NE, USA, 1992; Available online: https://www.licor.com (accessed on 18 January 2018).
- Pelosi, A.; Falanga Bolognesi, S.; D’Urso, G.; Chirico, G.B. Assessing crop evapotranspiration by combining ERA5-Land meteorological reanalysis data and visible and near-infrared satellite imagery. In Proceedings of the 2021 IEEE International Workshop on Metrology for Agriculture and Forestry, MetroAgriFor 2021—Proceedings, Trento-Bolzano, Italy, 3–5 November 2021; pp. 285–289. [Google Scholar] [CrossRef]
- ESA—Sentinel Online. Available online: https://sentinels.copernicus.eu/web/sentinel/copernicus/sentinel-2 (accessed on 4 June 2021).
- D’Urso, G.; Bolognesi, S.F.; Kustas, W.P.; Knipper, K.R.; Anderson, M.C.; Alsina, M.M.; Hain, C.R.; Alfieri, J.G.; Prueger, J.H.; Gao, F.; et al. Determining Evapotranspiration by Using Combination Equation Models with Sentinel-2 Data and Comparison with Thermal-Based Energy Balance in a California Irrigated Vineyard. Remote Sens. 2021, 13, 3720. [Google Scholar] [CrossRef]
- SNAP—ESA Sentinel Application Platform v{LATEST-VERSION}. Available online: https://step.esa.int (accessed on 12 May 2023).
- Weiss, M.; Baret, F. S2 ToolBox Level 2 Products: LAI, FAPAR, FCOVER Version 1.1, 2016. Available online: http://step.esa.int/docs/extra/ATBD_S2ToolBox_L2B_V1.1.pdf (accessed on 4 June 2021).
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Muñoz Sabater, J. ERA5-Land Hourly Data from 1981 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2019. Available online: https://doi.org/10.24381/cds.e2161bac (accessed on 18 July 2020).
- Pfeifroth, U.; Trentmann, J.; Hollmann, R.; Selbach, N.; Werscheck, M.; Meirink, J.F. ICDR SEVIRI Radiation—Based on SARAH-2 Methods, Satellite Application Facility on Climate Monitoring. 2018. Available online: https://wui.cmsaf.eu/safira/action/viewICDRDetails?acronym=SARAHV002ICDR (accessed on 4 January 2021).
- Lee, D.T.; Schachter, B.J. Two algorithms for constructing a Delaunay triangulation. Int. J. Comput. Inf. Sci. 1980, 9, 219–242. [Google Scholar] [CrossRef]
- Doorenbos, J.; Pruitt, W.O. Crop Water Requirements; FAO Irrigation and Drainage Paper 24; FAO: Rome, Italy, 1984; Available online: https://www.fao.org/4/s8376e/s8376e.pdf (accessed on 4 March 2018).
- Vuolo, F.; D’Urso, G.; De Michele, C.; Bianchi, B.; Cutting, M. Satellite-based irrigation advisory services: A common tool for different experiences from Europe to Australia. Agric. Water Manag. 2015, 147, 82–89. [Google Scholar] [CrossRef]
- Cavalleri, F.; Lussana, C.; Viterbo, F.; Brunetti, M.; Bonanno, R.; Manara, V.; Lacavalla, M.; Sperati, S.; Raffa, M.; Capecchi, V.; et al. Multi-scale assessment of high-resolution reanalysis precipitation fields over Italy. Atmos. Res. 2024, 312, 107734. [Google Scholar] [CrossRef]
- Pelosi, A.; Medina, H.; Van den Bergh, J.; Vannitsem, S.; Chirico, G.B. Adaptive Kalman filtering for post-processing of ensemble numerical weather predictions. Mon. Weather Rev. 2017, 145, 4837–4854. [Google Scholar] [CrossRef]
- Silvestro, P.C.; Pignatti, S.; Pascucci, S.; Yang, H.; Li, Z.; Yang, G.; Huang, W.; Casa, R. Estimating Wheat Yield in China at the Field and District Scale from the Assimilation of Satellite Data into the Aquacrop and Simple Algorithm for Yield (SAFY) Models. Remote Sens. 2017, 9, 509. [Google Scholar] [CrossRef]
- Huang, J.; Gómez-Dans, J.L.; Huang, H.; Ma, H.; Wu, Q.; Lewis, P.E.; Liang, S.; Chen, Z.; Xue, J.H.; Wu, Y.; et al. Assimilation of remote sensing into crop growth models: Current status and perspectives. Agric. For. Meteorol. 2019, 276–277, 107609. [Google Scholar] [CrossRef]
Weather Variable | Mean | Standard Deviation | Coefficient of Variation (−) |
---|---|---|---|
Daily mean air temperature at 2 m (°C) | 19.4 | 5.1 | 0.27 |
Daily maximum air temperature at 2 m (°C) | 25.7 | 5.9 | 0.23 |
Daily minimum air temperature at 2 m (°C) | 13.5 | 4.7 | 0.35 |
Daily mean air relative humidity (%) | 69.8 | 12.3 | 0.18 |
Daily mean wind speed at 10 m (m s−1) | 2.5 | 0.9 | 0.38 |
Daily solar radiation (W m−2) | 258 | 75 | 0.29 |
Total Accumulated Precipitation in the period Apr–Jul (mm) | 195 | 113 | 0.58 |
Field Data | Value |
---|---|
Cumulative net irrigation volume (9 April–17 July) | 294 mm (2940 m3/ha) |
Total yield at harvesting date | 121 t/ha |
Dates | Mean Value | Minimum Value | Maximum Value |
---|---|---|---|
21 May 2019 | 0.78 | 0.58 | 0.97 |
17 June 2019 | 1.78 | 1.27 | 2.24 |
25 June 2019 | 1.80 | 1.45 | 2.16 |
7 July 2019 | 1.92 | 1.50 | 2.31 |
27 July 2019 | 1.50 | 1.21 | 2.19 |
Dates | Mean Value | Minimum Value | Maximum Value |
---|---|---|---|
22 May 2019 | 0.76 | 0.69 | 0.89 |
17 June 2019 | 1.63 | 1.27 | 1.94 |
25 June 2019 | 1.71 | 1.02 | 2.36 |
5 July 2019 | 1.74 | 1.36 | 2.29 |
27 July 2019 | 1.17 | 0.79 | 1.58 |
Dataset | Weather Variable | PBIAS (%) | PRMSE (%) |
---|---|---|---|
AgERA5 | T | −7.0 | 6.1 |
Tmax | −0.024 | 3.4 | |
Tmin | −11.1 | 10.7 | |
RH | 6.5 | 10.1 | |
WS | 21.0 | 24.2 | |
P 1 | −17.7 | 234.8 | |
RS | −3.4 | 11.7 | |
CM SAF | RS | 0.16 | 4.7 |
Parameter | Value | Measurement Unit | Source of Data |
---|---|---|---|
DAM0 | 4.1 | g m−2 | As in [36] calibrated under comparable climatic conditions at tomato-growing fields in a neighboring region. |
εc | 0.46 | - | |
K | 0.26 | - | |
ELUE | 3.7 | g MJ−1 | |
SLA | 0.0175 | m2 g−1 | |
PLa | 0.29 | - | |
PLb | 0.00167 | - | |
STT | 400 | °C | Locally calibrated at tomato-growing fields in the study area. |
Rsen | 9000 | °C day−1 | |
Tc,min | 11 | °C | |
Topt | 25 | °C | |
Tc,max | 32 | °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pelosi, A.; Aprile, A.; Belfiore, O.R.; Chirico, G.B. Forcing the SAFY Dynamic Crop Growth Model with Sentinel-2 LAI Estimates and Weather Inputs from AgERA5 Reanalysis and CM SAF SARAH-3 Radiation Data for Estimating Crop Water Requirements and Yield. Remote Sens. 2025, 17, 2464. https://doi.org/10.3390/rs17142464
Pelosi A, Aprile A, Belfiore OR, Chirico GB. Forcing the SAFY Dynamic Crop Growth Model with Sentinel-2 LAI Estimates and Weather Inputs from AgERA5 Reanalysis and CM SAF SARAH-3 Radiation Data for Estimating Crop Water Requirements and Yield. Remote Sensing. 2025; 17(14):2464. https://doi.org/10.3390/rs17142464
Chicago/Turabian StylePelosi, Anna, Angeloluigi Aprile, Oscar Rosario Belfiore, and Giovanni Battista Chirico. 2025. "Forcing the SAFY Dynamic Crop Growth Model with Sentinel-2 LAI Estimates and Weather Inputs from AgERA5 Reanalysis and CM SAF SARAH-3 Radiation Data for Estimating Crop Water Requirements and Yield" Remote Sensing 17, no. 14: 2464. https://doi.org/10.3390/rs17142464
APA StylePelosi, A., Aprile, A., Belfiore, O. R., & Chirico, G. B. (2025). Forcing the SAFY Dynamic Crop Growth Model with Sentinel-2 LAI Estimates and Weather Inputs from AgERA5 Reanalysis and CM SAF SARAH-3 Radiation Data for Estimating Crop Water Requirements and Yield. Remote Sensing, 17(14), 2464. https://doi.org/10.3390/rs17142464