Synergistic Multi-Model Approach for GPR Data Interpretation: Forward Modeling and Robust Object Detection
Abstract
1. Introduction
- (i).
- Unsupervised GPR Data Augmentation Framework: A CycleGAN-based generation methodology is proposed, synthesizing diverse B-scan images through simulation of varying geological parameter and scanning configurations(This process is also known as GPR data forward modeling). This significantly enhances the geological rationality and generalization of synthetic data.
- (ii).
- BiFPN-Driven B-scan Feature Recognition: A detection architecture incorporating BiFPN is engineered for multi-scale hyperbolic targets in GPR imagery. By utilizing cross-scale dynamically weighted fusion mechanisms, the framework optimizes feature representation for small targets and hyperbolae while suppressing time-varying noise, thereby striking a balance between geometric feature preservation and detection efficiency.
2. Methodology
2.1. Architecture of Data Augmentation Model
2.1.1. CycleGAN Model
2.1.2. Loss Function
2.2. Architecture of Object Detection Model
2.2.1. EfficientDet Model
2.2.2. BiFPN: Bidirectional Feature Pyramid Network for Multi-Scale Fusion
3. GPR Dataset Construction
3.1. Simulated Dataset
3.2. Measured Dataset
3.3. GPR Data Augmentation Results by CycleGAN
4. Results and Discussion
4.1. Experimental Setup and Evaluation Metrics
4.2. Performance Evaluation
4.3. Comparison with Different Object Detection Models
5. Conclusions
- (i).
- Recall-Precision Trade-off: While precision under lenient localization thresholds is exceptional (mAP50 = 0.986), the average recall (AR = 0.667), though superior to baselines, indicates potential missed detections, particularly for low-contrast targets or in high-clutter environments.
- (ii).
- Localization Precision under Strict Criteria: The significant performance gap between mAP50 (0.986) and mAP75 (0.578) highlights difficulties in precisely localizing hyperbolic vertices under stringent IoU thresholds, likely due to residual sensitivity to geometric distortions and noise affecting vertex accuracy.
- (i)
- Replacing binary permittivity maps to enable the generation of B-scans depicting more complex subsurface scenarios, such as soil-concrete interfaces and gradual dielectric transitions, thereby increasing the visual complexity and diversity of the synthetic training data.
- (ii)
- Developing detection methodologies for closely spaced or overlapping subsurface targets to address current limitations in resolving adjacent objects.
- (iii)
- Establishing systematic C-scan processing workflows to shift focus beyond current B-scan hyperbolic signature detection toward exploring 3D subsurface interpretation.
- (iv)
- Exploring technical pathways for integrating EM wave propagation laws (Maxwell’s equations) into neural networks to enhance the physical plausibility of synthetic B-scans. This direction aims to combine physics-guided DL frameworks with generative models, improving the realism of reflection/attenuation behavior while maintaining data generation efficiency.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xiao, X.; Chen, S.; Xu, Y.; Ge, L.; Wu, J. Ground Penetrating Radar (GPR) Based Mapping of Underground Pipeline Network Distribution. IEEE Sens. J. 2024, 24, 19562–19576. [Google Scholar] [CrossRef]
- Chang, C.-W.; Tsai, C.-A.; Shiau, Y.-C. Inspection of steel bars corrosion in reinforced concrete structures by nondestructive ground penetrating radar. Appl. Sci. 2022, 12, 5567. [Google Scholar] [CrossRef]
- Wang, Y.; Qin, H.; Miao, F. A Multi-Path Encoder Network for GPR Data Inversion to Improve Defect Detection in Reinforced Concrete. Remote Sens. 2022, 14, 5871. [Google Scholar] [CrossRef]
- Faris, N.; Zayed, T.; Fares, A.; Abdelkhalek, S.; Abdelkader, E.M. Automated rebar recognition and corrosion assessment of concrete bridge decks using ground penetrating radar. Autom. Constr. 2024, 166, 105631. [Google Scholar] [CrossRef]
- Ghodoosi, F.; Bagchi, A.; Zayed, T.; Hosseini, M.R. Method for developing and updating deterioration models for concrete bridge decks using GPR data. Autom. Constr. 2018, 91, 133–141. [Google Scholar] [CrossRef]
- Abouhamad, M.; Dawood, T.; Jabri, A.; Alsharqawi, M.; Zayed, T. Corrosiveness mapping of bridge decks using image-based analysis of GPR data. Autom. Constr. 2017, 80, 104–117. [Google Scholar] [CrossRef]
- Asadi, P.; Gindy, M.; Alvarez, M.; Asadi, A. A computer vision based rebar detection chain for automatic processing of concrete bridge deck GPR data. Autom. Constr. 2020, 112, 103106. [Google Scholar] [CrossRef]
- Rasol, M.; Pais, J.C.; Pérez-Gracia, V.; Solla, M.; Fernandes, F.M.; Fontul, S.; Ayala-Cabrera, D.; Schmidt, F.; Assadollahi, H. GPR monitoring for road transport infrastructure: A systematic review and machine learning insights. Constr. Build. Mater. 2022, 324, 126686. [Google Scholar] [CrossRef]
- Liu, H.; Shi, Z.; Li, J.; Liu, C.; Meng, X.; Du, Y.; Chen, J. Detection of Cavities In Urban Cities by 3D Ground Penetrating Radar. Geophysics 2021, 86, A27–WB97. [Google Scholar] [CrossRef]
- Luo, X.H.; Lai, W.L. GPR pattern recognition of shallow subsurface air voids. Tunn. Undergr. Space Technol. 2020, 99, 103355. [Google Scholar] [CrossRef]
- Li, H.; Zhang, J.; Yang, X.; Ye, M.; Jiang, W.; Gong, J.; Tian, Y.; Zhao, L.; Wang, W.; Xu, Z. Bayesian optimization based extreme gradient boosting and GPR time-frequency features for the recognition of moisture damage in asphalt pavement. Constr. Build. Mater. 2024, 434, 136675. [Google Scholar] [CrossRef]
- Li, H.; Zhang, J.; Ye, M.; Wang, Q.; Wei, M.; Zhang, Z.; Guo, Y.; Tian, Y.; Zhang, Y.; Wang, C.; et al. High-accuracy intelligent detection of centimeter-level voids in cement pavement via ground-penetrating radar. Measurement 2025, 228, 118354. [Google Scholar] [CrossRef]
- Prego, F.J.; Solla, M.; Núñez-Nieto, X.; Arias, P. Assessing the applicability of ground-penetrating radar to quality control in tunneling construction. J. Constr. Eng. Manag. 2016, 142, 06015006. [Google Scholar] [CrossRef]
- Li, J.; Liu, H.; Meng, X.; Duan, D.; Lu, H.; Zhang, J.; Zhang, F.; Elsworth, D.; Cardenas, B.T.; Manga, M.; et al. Ancient ocean coastal deposits imaged on Mars. Proc. Natl. Acad. Sci. USA 2025, 122, e2422213122. [Google Scholar] [CrossRef] [PubMed]
- Hou, F.; Qiao, B.; Dong, J.; Ma, Z. S-cyclegan: A novel target signature segmentation method for gpr image interpretation. IEEE Geosci. Remote Sens. Lett. 2024, 21, 7502005. [Google Scholar] [CrossRef]
- Xiao, J.; Gao, Q.; Ling, Y.; Yan, J.; Liu, B. Research on Hyperbola Detection and Fitting in GPR B-Scan Image. In Proceedings of the International Conference on Communications, Information System and Computer Engineering (CISCE), Beijing, China, 14–16 May 2021; IEEE: New York City, NY, USA, 2021; pp. 266–270. [Google Scholar]
- Chen, R.; Wang, Z.; Zhang, K.Y.; Wu, S.; Sun, J.; Wang, S.; Yao, T.; Ding, S. Decoupled data augmentation for improving image classification. arXiv 2024, arXiv:2411.02592. [Google Scholar]
- Zhang, L.; Ma, R.; Zhang, Y. Application of improved LeNet—5 model in apple image recognition. Comput. Eng. Des. 2018, 39, 3570–3575. [Google Scholar]
- Huang, Z.; Huang, L.; Gong, Y.; Huang, C.; Wang, X. Mask scoring r-cnn. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 6409–6418. [Google Scholar]
- Kirillov, A.; Wu, Y.; He, K.; Girshick, R. Pointrend: Image segmentation as rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 9799–9808. [Google Scholar]
- Chen, K.; Cao, Y.; Loy, C.C.; Lin, D. Feature pyramid grids. arXiv 2020, arXiv:2004.03580. [Google Scholar] [CrossRef]
- Hou, F.; Yin, X.; Fan, X. Refined Target Signature Segmentation from GPR B-scans based on the MaskScoreNet-E Model and RATS Method. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5108614. [Google Scholar] [CrossRef]
- Wang, A.; Chen, H.; Liu, L.; Chen, K.; Lin, Z.; Han, J. Yolov10, Real-time end-to-end object detection. Adv. Neural Inf. Process. Syst. 2024, 37, 107984–108011. [Google Scholar]
- Wang, Y.; Qin, H.; Zhang, D.; Wu, T.; Pan, S. Domain Adaption YOLO Network to Enhance Target Detection in GPR Images. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5936415. [Google Scholar] [CrossRef]
- Qin, H.; Zhang, D.; Tang, Y.; Wang, Y. Automatic recognition of tunnel lining elements from GPR images using deep convolutional networks with data augmentation. Autom. Constr. 2021, 130, 103830. [Google Scholar] [CrossRef]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Dai, Q.; Lee, Y.H.; Sun, H.H.; Qian, J.; Ow, G.; Yusof, M.L.; Yucel, A.C. A deep learning-based GPR forward solver for predicting B-scans of subsurface objects. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4025805. [Google Scholar] [CrossRef]
- Hou, F.; Qian, X.; Meng, Q.; Dong, J.; Lyu, F. Multi-scale GAN-driven GPR data inversion for monitoring urban road substructure. Autom. Constr. 2025, 174, 106140. [Google Scholar] [CrossRef]
- Wang, X.; Yu, T.; Feng, D.; Li, B.; Ding, S. Spatiotemporal Optimization of GPR Full Waveform Inversion Based on Super-Resolution Technology. IEEE Trans. Geosci. Remote Sens. 2025, 63, 5908413. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. Adv. Neural Inf. Process. Syst. 2014, 27. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2223–2232. [Google Scholar]
- Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10781–10790. [Google Scholar]
- Denton, E.L.; Chintala, S.; Fergus, R. Deep generative image models using a laplacian pyramid of adversarial networks. Adv. Neural. Inf. Process. Syst. 2015, 28. [Google Scholar] [CrossRef]
- Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv 2015, arXiv:1511.06434. [Google Scholar]
- Zhao, J.; Mathieu, M.; LeCun, Y. Energy-based generative adversarial network. arXiv 2016, arXiv:1609.03126. [Google Scholar]
- Zhu, J.Y.; Krähenbühl, P.; Shechtman, E.; Efros, A.A. Generative Visual Manipulation on the Natural Image Manifold. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Proceedings, Part v 14, Amsterdam, The Netherlands, 11–14 October, 2016; Springer International Publishing: Cham, Switzerland, 2016; pp. 597–613. [Google Scholar]
- Warren, C.; Giannopoulos, A.; Giannakis, I. gprMax: Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar. Comput. Phys. Commun. 2016, 209, 163–170. [Google Scholar] [CrossRef]
- Dai, Q.; Lee, Y.H.; Sun, H.H.; Ow, G.; Yusof, M.L.M.; Yucel, A.C. DMRF-UNet: A two-stage deep learning scheme for GPR data inversion under heterogeneous soil conditions. IEEE Trans. Antennas Propag. 2022, 70, 6313–6328. [Google Scholar] [CrossRef]
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134. [Google Scholar]
Dataset | Source | Quantity | Train/Val | Description |
---|---|---|---|---|
Simulated data | gprMax3.0 [37] | 1000 pairs | 1386 pairs/212 pairs | Paired permittivity maps and B-scan images |
Measured data | Open-source [38] | 98 pairs | ||
Synthetic data | CycleGAN | 500 pairs | ||
Object Detection data | LabelImg1.8.1 | 1469 images | 1214/255 images | Annotated B-scans |
Model Medium | Concrete | Asphalt | Free_Space (Cavity) |
---|---|---|---|
Relative permittivity | 6.4 | 4 | 1 |
Conductivity | 0.01 | 0.005 | 0 |
Method | Quantity | Time Cost | Resolution | Notes |
---|---|---|---|---|
gprMax (v3.0) | 1000 pairs | 20 days | 3543 × 1772 pixels | Numerical simulation (B-scans + permittivity maps) |
Proposed CycleGAN | - | 10 h | - | Model training |
200 B-scans | 2 min | 1000 × 180 pixels | Image generation (inference) | |
Measured data | 98 pairs | - | 128 × 128 pixels | Open-source dataset; field acquisition excluded |
Model | mAP | mAP50 | mAP75 | AR |
---|---|---|---|---|
RetinaNet | 0.469 | 0.752 | 0.516 | 0.528 |
YOLOv3 | 0.499 | 0.796 | 0.563 | 0.551 |
EfficientDet | 0.579 | 0.986 | 0.578 | 0.667 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Ma, Z.; Fan, X.; Hou, F. Synergistic Multi-Model Approach for GPR Data Interpretation: Forward Modeling and Robust Object Detection. Remote Sens. 2025, 17, 2521. https://doi.org/10.3390/rs17142521
Zhang H, Ma Z, Fan X, Hou F. Synergistic Multi-Model Approach for GPR Data Interpretation: Forward Modeling and Robust Object Detection. Remote Sensing. 2025; 17(14):2521. https://doi.org/10.3390/rs17142521
Chicago/Turabian StyleZhang, Hang, Zhijie Ma, Xinyu Fan, and Feifei Hou. 2025. "Synergistic Multi-Model Approach for GPR Data Interpretation: Forward Modeling and Robust Object Detection" Remote Sensing 17, no. 14: 2521. https://doi.org/10.3390/rs17142521
APA StyleZhang, H., Ma, Z., Fan, X., & Hou, F. (2025). Synergistic Multi-Model Approach for GPR Data Interpretation: Forward Modeling and Robust Object Detection. Remote Sensing, 17(14), 2521. https://doi.org/10.3390/rs17142521