Hydro-Topographic Contribution to In-Field Crop Yield Variation Using High-Resolution Surface and GPR-Derived Subsurface DEMs
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Crop Yield and Meteorological Data
2.3. Hydro-Topographic Variables and Remote Sensing Data
2.4. Explanatory Performance and Feature Importance Score
2.5. Spatially Normalized Yield Maps and Long-Term Persistent Yield Regions (LTRs)
2.6. Machine Learning-Based Crop Yield Prediction with Hydro-Topo Integration
3. Results
3.1. Interannual Relationship Between Crop Yields and Meteorological Variables and LST
3.2. Contribution of Hydro-Topographic Variables to Explaining the Spatial Variation in Crop Yield
3.3. Estimated Crop Yield Map Using Hydro-Topographic Variables and LTRs
3.4. Improved Capture of Spatial Variability in Crop Yield by Synergistic Use of Hydro-Topo Variables and Remote Sensing Data
3.5. Improvement of Yield Prediction Accuracy by Synergistic Use of Hydro-Topographic Variables and Remote Sensing Data
4. Discussion
4.1. Scalability of Hydro-Topographic Variables
4.2. Further Improvements and Diverse Scenarios for Integrated Modeling
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Kim, S.; Daughtry, C.; Russ, A.; Pedrera-Parrilla, A.; Pachepsky, Y. Analysis of Spatiotemporal Variability of Corn Yields Using Empirical Orthogonal Functions. Water 2020, 12, 3339. [Google Scholar] [CrossRef]
- Morgan, B.J.; Daughtry, C.S.T.; Russ, A.L.; Dulaney, W.P.; Gish, T.J.; Pachepsky, Y.A. Effect of Shallow Subsurface Flow Pathway Networks on Corn Yield Spatial Variation under Different Weather and Nutrient Management. Int. Agrophys. 2019, 33, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Dulaney, W.P.; Anderson, M.C.; Gao, F.; Stern, A.; Moglen, G.; Meyers, G.; Daughtry, C.S.T.; White, W.; Akumaga, U.; Showalter, J. Development of a Gridded Yield Data Archive for Farm Management and Research at the USDA Beltsville Agricultural Research Center. Agrosyst. Geosci. Environ. 2024, 7, e20474. [Google Scholar] [CrossRef]
- Keeney, D.R.; DeLuca, T.H. Des Moines River Nitrate in Relation to Watershed Agricultural Practices: 1945 versus 1980s. J. Environ. Qual. 1993, 22, 267–272. [Google Scholar] [CrossRef]
- Gish, T.J.; Walthall, C.L.; Daughtry, C.S.T.; Kung, K. Using Soil Moisture and Spatial Yield Patterns to Identify Subsurface Flow Pathways. J. Environ. Qual. 2005, 34, 274–286. [Google Scholar] [CrossRef]
- De Lannoy, G.J.M.; Verhoest, N.E.C.; Houser, P.R.; Gish, T.J.; Van Meirvenne, M. Spatial and Temporal Characteristics of Soil Moisture in an Intensively Monitored Agricultural Field (OPE3). J. Hydrol. 2006, 331, 719–730. [Google Scholar] [CrossRef]
- Gao, F.; Anderson, M.; Daughtry, C.; Johnson, D. Assessing the Variability of Corn and Soybean Yields in Central Iowa Using High Spatiotemporal Resolution Multi-Satellite Imagery. Remote Sens. 2018, 10, 1489. [Google Scholar] [CrossRef]
- Gish, T.J.; Dulaney, W.P.; Kung, K.-J.; Daughtry, C.S.T.; Doolittle, J.A.; Miller, P.T. Evaluating Use of Ground-penetrating Radar for Identifying Subsurface Flow Pathways. Soil Sci. Soc. Am. J. 2002, 66, 1620–1629. [Google Scholar] [CrossRef]
- Herrmann, I.; Pimstein, A.; Karnieli, A.; Cohen, Y.; Alchanatis, V.; Bonfil, D.J. LAI Assessment of Wheat and Potato Crops by VENμS and Sentinel-2 Bands. Remote Sens. Environ. 2011, 115, 2141–2151. [Google Scholar] [CrossRef]
- Chang, G.J.; Oh, Y.; Goldshleger, N.; Shoshany, M. Biomass Estimation of Crops and Natural Shrubs by Combining Red-Edge Ratio with Normalized Difference Vegetation Index. J. Appl. Remote. Sens. 2022, 16, 014501. [Google Scholar] [CrossRef]
- Chang, G.J.; Oh, Y.; Shoshany, M. Biomass Estimation along a Climatic Gradient Using Multi-Frequency Polarimetric Radar Vegetation Index. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, V-3-2022, 369–374. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Batlivala, P.P.; Dobson, M.C. Microwave Backscatter Dependence on Surface Roughness, Soil Moisture, and Soil Texture: Part I-Bare Soil. IEEE Trans. Geosci. Electron. 1978, 16, 286–295. [Google Scholar] [CrossRef]
- Nawar, S.; Corstanje, R.; Halcro, G.; Mulla, D.; Mouazen, A.M. Delineation of Soil Management Zones for Variable-Rate Fertilization: A Review. Adv. Agron. 2017, 143, 175–245. [Google Scholar]
- Kalita, P.K.; Kanwar, R.S. Effect of Water-Table Management Practices on the Transport of Nitrate-N to Shallow Groundwater. Trans. Am. Soc. Agric. Eng. 1993, 36, 413–422. [Google Scholar] [CrossRef]
- Kung, K.J.S. Preferential Flow in a Sandy Vadose Zone: 2. Mechanism and Implications. Geoderma 1990, 46, 59–71. [Google Scholar] [CrossRef]
- Kitchen, N.R.; Blanchard, P.E.; Hughes, D.F.; Lerch, R.N. Impact of Historical and Current Farming Systems on Groundwater Nitrate in Northern Missouri. J. Soil Water Conserv. 1997, 52, 272–277. [Google Scholar] [CrossRef]
- Zhu, Q.; Lin, H.S. Simulation and Validation of Concentrated Subsurface Lateral Flow Paths in an Agricultural Landscape. Hydrol. Earth Syst. Sci. 2009, 13, 1503–1518. [Google Scholar] [CrossRef]
- Arundel, S.T.; Phillips, L.A.; Lowe, A.J.; Bobinmyer, J.; Mantey, K.S.; Dunn, C.A.; Constance, E.W.; Usery, E.L. Preparing The National Map for the 3D Elevation Program–Products, Process and Research. Cartogr. Geogr. Inf. Sci. 2015, 42, 40–53. [Google Scholar] [CrossRef]
- O’Geen, A.; Walkinshaw, M.; Beaudette, D. SoilWeb: A Multifaceted Interface to Soil Survey Information. Soil Sci. Soc. Am. J. 2017, 81, 853–862. [Google Scholar] [CrossRef]
- Beaudette, D.E.; O’Geen, A.T. Soil-Web: An Online Soil Survey for California, Arizona, and Nevada. Comput. Geosci. 2009, 35, 2119–2128. [Google Scholar] [CrossRef]
- Daly, C.; Taylor, G.H.; Gibson, W.P.; Parzybok, T.W.; Johnson, G.L.; Pasteris, P.A. High-Quality Spatial Climate Data Sets for the United States and Beyond. Trans. Am. Soc. Agric. Eng. 2000, 43, 1957–1962. [Google Scholar] [CrossRef]
- Masek, J.; Ju, J.; Roger, J.; Skakun, S.; Vermote, E.; Claverie, M.; Dungan, J.; Yin, Z.; Freitag, B.; Justice, C. HLS Operational Land Imager Surface Reflectance and TOA Brightness Daily Global 30 m v2.0; NASA Land Processes Distributed Active Archive Center: Sioux Falls, SD, USA, 2021. [Google Scholar]
- Chang, J.G.; Kraatz, S.; Anderson, M.; Gao, F. Enhanced Polarimetric Radar Vegetation Index and Integration with Optical Index for Biomass Estimation in Grazing Lands Across the Contiguous United States. Remote Sens. 2024, 16, 4476. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 1–10. [Google Scholar]
- Spiess, A.-N.; Neumeyer, N. An Evaluation of R2 as an Inadequate Measure for Nonlinear Models in Pharmacological and Biochemical Research: A Monte Carlo Approach. BMC Pharmacol. 2010, 10, 6. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Yang, X. Distribution of High-Yield and High-Yield-Stability Zones for Maize Yield Potential in the Main Growing Regions in China. Agric. For. Meteorol. 2018, 248, 511–517. [Google Scholar] [CrossRef]
- Kucharik, C.J.; Ramiadantsoa, T.; Zhang, J.; Ives, A.R. Spatiotemporal Trends in Crop Yields, Yield Variability, and Yield Gaps across the USA. Crop Sci. 2020, 60, 2085–2101. [Google Scholar] [CrossRef]
- Chang, G.J. Biodiversity Estimation by Environment Drivers Using Machine/Deep Learning for Ecological Management. Ecol. Inform. 2023, 78, 102319. [Google Scholar] [CrossRef]
- Chang, J.G.; Gao, F.; Anderson, M.; Cirone, R.; Zhao, H. Regionalization Analysis of Environmental Drivers of CONUS Grazing Land Biomass. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 12634–12644. [Google Scholar] [CrossRef]
- Loveland, T.R.; Merchant, J.M. Ecoregions and Ecoregionalization: Geographical and Ecological Perspectives. Environ. Manag. 2004, 34, S1–S13. [Google Scholar] [CrossRef]
- Gao, B.-C. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Anderson, M.; Kustas, W. Thermal Remote Sensing of Drought and Evapotranspiration. Eos Trans. Am. Geophys. Union 2008, 89, 233–234. [Google Scholar] [CrossRef]
- Anderson, M.C.; Allen, R.G.; Morse, A.; Kustas, W.P. Use of Landsat Thermal Imagery in Monitoring Evapotranspiration and Managing Water Resources. Remote Sens. Environ. 2012, 122, 50–65. [Google Scholar] [CrossRef]
- Chang, J.G.; Oh, Y.; Shoshany, M. Soil Moisture Mapping Along Climatic Gradient by Dual-Polarization Sentinel-1 C-Band Data. IEEE Geosci. Remote Sens. Lett. 2023, 20, 2500205. [Google Scholar] [CrossRef]
- Chang, J.; Shoshany, M. Mediterranean Shrublands Biomass Estimation Using Sentinel-1 and Sentinel-2. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 5300–5303. [Google Scholar]
- Bean, A.R.; Coffin, A.W.; Arthur, D.K.; Baffaut, C.; Holifield Collins, C.; Goslee, S.C.; Ponce-Campos, G.E.; Sclater, V.L.; Strickland, T.C.; Yasarer, L.M. Regional Frameworks for the USDA Long-Term Agroecosystem Research Network. Front. Sustain. Food Syst. 2021, 4, 612785. [Google Scholar] [CrossRef]
Planting Date (Crop) | Precipitation (mm) | SW (W/m2) | LST (°C) | TA (°C) | VPD (hPa) |
---|---|---|---|---|---|
28 May 2016 (Corn) | 463.2 | 769 | 29.4 | 24.9 | 21.8 |
10 June 2017 (Corn) | 545.0 | 740 | 28.3 | 23.4 | 19.7 |
18 June 2018 (Soybean) | 906.2 | 688 | 30.8 | 23.8 | 20.8 |
8 June 2019 (Corn) | 474.0 | 773 | 29.7 | 25.9 | 23.3 |
20 May 2020 (Corn) | 831.5 | 771 | 29.8 | 25.9 | 20.8 |
1 June 2022 (Soybean) | 691.3 | 699 | 29.6 | 25.2 | 21.1 |
8 June 2023 (Soybean) | 455.4 | 714 | 27.6 | 24.8 | 21.5 |
Hydro-Topographic Variables | Avg. RMSE Corn (t/ha) | Avg. RMSE Soybean (t/ha) | Avg. RRMSE | Avg. r2 |
---|---|---|---|---|
Topo: DEM, slope, aspect | 2.29 | 0.42 | 23.7% | 0.38 |
Topo and flowAccum | 1.77 | 0.33 | 18.4% | 0.62 |
Topo and distance | 1.58 | 0.30 | 16.5% | 0.69 |
Topo and depth | 1.53 | 0.29 | 15.9% | 0.71 |
Topo and Hydro | 1.47 | 0.28 | 15.3% | 0.73 |
Hydro: flowAccum, distance, depth | 2.10 | 0.40 | 22.0% | 0.46 |
Feature Variables | Model Accuracy | |
---|---|---|
RRMSE | R2 | |
Prec., NDVI | 33.9% | 0.28 |
Prec., NDVI, Hydro-topo | 29.8% | 0.45 |
Prec., DSR, NDVI | 37.0% | 0.15 |
Prec., DSR, NDVI, Hydro-topo | 29.8% | 0.45 |
Prec., LST, NDVI | 33.0% | 0.32 |
Prec., LST, NDVI, Hydro-topo | 28.2% | 0.50 |
Prec., LST, TA, DSR, VPD, NDVI | 32.6% | 0.34 |
Prec., LST, TA, DSR, VPD, NDVI, Hydro-topo | 30.3% | 0.43 |
Average without Hydro-topo | 34.1% | 0.27 |
Average with Hydro-topo | 29.6% | 0.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, J.G.; Anderson, M.; Gao, F.; Russ, A.; Zhao, H.; Cirone, R.; Pachepsky, Y.; Johnson, D.M. Hydro-Topographic Contribution to In-Field Crop Yield Variation Using High-Resolution Surface and GPR-Derived Subsurface DEMs. Remote Sens. 2025, 17, 3061. https://doi.org/10.3390/rs17173061
Chang JG, Anderson M, Gao F, Russ A, Zhao H, Cirone R, Pachepsky Y, Johnson DM. Hydro-Topographic Contribution to In-Field Crop Yield Variation Using High-Resolution Surface and GPR-Derived Subsurface DEMs. Remote Sensing. 2025; 17(17):3061. https://doi.org/10.3390/rs17173061
Chicago/Turabian StyleChang, Jisung Geba, Martha Anderson, Feng Gao, Andrew Russ, Haoteng Zhao, Richard Cirone, Yakov Pachepsky, and David M. Johnson. 2025. "Hydro-Topographic Contribution to In-Field Crop Yield Variation Using High-Resolution Surface and GPR-Derived Subsurface DEMs" Remote Sensing 17, no. 17: 3061. https://doi.org/10.3390/rs17173061
APA StyleChang, J. G., Anderson, M., Gao, F., Russ, A., Zhao, H., Cirone, R., Pachepsky, Y., & Johnson, D. M. (2025). Hydro-Topographic Contribution to In-Field Crop Yield Variation Using High-Resolution Surface and GPR-Derived Subsurface DEMs. Remote Sensing, 17(17), 3061. https://doi.org/10.3390/rs17173061