Short-Range High Spectral Resolution Lidar for Aerosol Sensing Using a Compact High-Repetition-Rate Fiber Laser
Abstract
1. Introduction
2. Materials and Methods
2.1. HSRL Framework
2.2. Inversion Method
2.3. Lidar Design
2.4. Laser Source
3. Results
3.1. Proof-of-Concept Campaign Overview
3.2. Data Pre-Processing
3.3. Determination of the Attenuated Backscatter Signals
3.4. Estimation of the Aerosol Backscatter Coefficients
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BR | Backscatter Ratio |
CW | Continuous Wave |
EBL | Elastic Backscatter Lidar |
CDWL | Coherent Doppler Wind Lidar |
FWHM | Full-Width at Half-Maximum |
HSRL | High Spectral Resolution Lidar |
HSR-SLidar | High Spectral Resolution Scheimpflug Lidar |
MPL | MicroPulse Lidar |
NASA | National Aeronautics and Space Administration |
LR | Lidar Ratio |
PBL | Planetary Boundary Layer |
P-MPL | Polarized MicroPulse Lidar |
RCS | Range-Corrected Signal |
SR-EBL | Short-Range Elastic Backscatter Lidar |
SR-HSRL | Short-Sange High Spectral Resolution Lidar |
Appendix A
HSRL Characteristics | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Author Year | Laser | Spectral Filter | Resolution | ||||||||
Type | (nm) | frep (Hz) | E (mJ) | (ns) | (MHz) | Type | Temp. or Press. | FSR (GHz) | Temporal (min) | Spatial (m) | |
Hoyos-R. | L10 | 532 | 50 to 65 | 1 to 1 | 4.96 | 300 | F1 | 40 °C | 1.8 | 0.1 | 7.5 |
Chang 2025 [39] | L6 | 780 | – | 2 W | – | 1 | F8 | 60 °C 1.2 mPa | – | 1 | 0.2–80 |
Gao 2023 [40] | L2 | 532 | 10 | 150 | – | – | F6 | – | 0.3 | 0.5 | 1.5 |
Jin 2022 [56] | L3 | 355 532 | 10 | 100 | 4–6 | 173 116 | F3 | – | 2.4 | 15 | 90 |
Wang 2022 [37] | L4 | 532 | 20 | 1.5 | 15 | – | F4 | – | 3.0 | 5 | 15 |
Ke 2022 [60] | – | 532 | 30 | 21 | 15 | <10 | F1 | 39 °C | – | – | 24 |
Xu 2021 [27] | L5 | 532 | 100 | 120 | – | – | F7 | – | 8.4 | 5 | 300 |
Wang 2021 [61] | L3 | 532 | 10 | 100 | 10 | – | F1 | – | – | 2 | 75 |
Jin 2020 [13] | L3 | 355 | 10 | 100 | 4–6 | 173 | F3 | – | 2.4 | 15 | 90 |
Liu 2019 [44] | – | 532 | 40 | 150 | – | – | F1 | 39 °C | – | – | 480 |
Sannino 2019 [52] | L1 | 532 | 20 | 100 | – | – | F9 | – | – | – | 1000 |
Razenkov 2018 [54] | L9 | 532 | 4 | 5 | 2.7 | <50 | F1 | – | 1.8 | – | – |
Shen 2018 [51] | L1 | 355 | 50 | 350 | – | 90 | F5 | – | 8 | 5 | 30 |
Burton 2018 [62] | L1 | 355 | 200 | 11 | – | – | F4 | – | 2.0 | 12 | 15 |
532 | F1 | 65 °C | 2.0 | ||||||||
Jin 2017 [35] | L2 | 532 | 10 | 200 | 4–6 | 116 | F2 | – | 0.255 | 15 | 1.5 |
Hayman 2017 [38] | L6 | 780 | 7 | 5 | 1 | 77 | F8 | 65 °C | – | 1 | 150 |
Liu 2016 [55] | L1 | 532 | – | 270 | – | 100 | F4 | – | 3.0 | – | 7.5 |
Bruneau 2015 [28] | L1 | 355 | 20 | 50 | 7 | 70 | F10 | – | 1.5 | – | 60 |
Zhao 2015 [49] | L1 | 532 | 30 | 150 | 8 | <90 | F1 | 60 °C | 2.0 | 5 | 7.5 |
Hoffman 2012 [58] | L1 | 532 | 10 | 160 | 6 | <150 | F9 | – | 7.5 | 1 | 45 |
Wirth 2009 [57] | L8 | 532 | 100 | 100 | 7.5 | <150 | F1 | 53–159 Pa | 2.0 | ∼0.18 | 15 |
Liu 2009 [63] | – | 532 | 2800 | 1.79 | 20 | 99% SP | F1 | 65 °C | – | 45 | 100 |
Esselborn 2008 [64] | L7 | 532 | 100 | 110 | – | – | F1 | 53–159 Pa | 2.0 | ∼0.18 | 15 |
Li 2008 [32] | L1 | 532 | 10 | 80 | 10 | 100 | F1 | – | – | – | 37.5 |
Hair 2008 [53] | L1 | 532 | 200 | 2.5 | 15 | 38 | F1 | 65 °C | 2.0 | ∼0.17 | 60 |
Liu 2006 [50] | L1 | 354.7 | 20 | 200 | – | – | F5 | – | 2.5 | 4 | 30 |
Hair 2001 [12] | L1 | 532 | 20 | 300 | 5 | 74 | F1 | 57 °C 82 °C | 3.0 4.3 | 3 | 75 |
Liu 1999 [48] | L1 | 532 | 10 | 400 | 5–7 | 90 | F1 | – | – | 15 | >7.5 |
References
- Haarig, M.; Ansmann, A.; Engelmann, R.; Baars, H.; Toledano, C.; Torres, B.; Althausen, D.; Radenz, M.; Wandinger, U. First triple-wavelength lidar observations of depolarization and extinction-to-backscatter ratios of Saharan dust. Atmos. Chem. Phys. 2022, 22, 355–369. [Google Scholar] [CrossRef]
- Qi, S.; Huang, Z.; Ma, X.; Huang, J.; Zhou, T.; Zhang, S.; Dong, Q.; Bi, J.; Shi, J. Classification of atmospheric aerosols and clouds by use of dual-polarization lidar measurements. Opt. Express 2021, 29, 23461–23476. [Google Scholar] [CrossRef]
- Bedoya-Velásquez, A.; Hoyos-Restrepo, M.; Barreto, A.; García Cabrera, R.; Romero-Campos, P.; García, O.; Ramos, R.; Roininen, R.; Toledano, C.; Sicard, M.; et al. Estimation of the Mass Concentration of Volcanic Ash Using Ceilometers: Study of Fresh and Transported Plumes from La Palma Volcano. Remote Sens. 2022, 14, 5680. [Google Scholar] [CrossRef]
- Ceolato, R.; Berg, M.J. Aerosol light extinction and backscattering: A review with a lidar perspective. J. Quant. Spectrosc. Radiat. Transf. 2021, 262, 107492. [Google Scholar] [CrossRef]
- Chen, C.; Song, X.; Wang, Z.; Wang, W.; Wang, X.; Zhuang, Q.; Liu, X.; Li, H.; Ma, K.; Li, X.; et al. Observations of Atmospheric Aerosol and Cloud Using a Polarized Micropulse Lidar in Xi’an, China. Atmosphere 2021, 12, 796. [Google Scholar] [CrossRef]
- Ceolato, R.; Bedoya-Velásquez, A.E.; Mouysset, V. Short-Range Elastic Backscatter Micro-Lidar for Quantitative Aerosol Profiling with High Range and Temporal Resolution. Remote Sens. 2020, 12, 3286. [Google Scholar] [CrossRef]
- Ceolato, R.; Bedoya-Velásquez, A.E.; Fossard, F.; Mouysset, V.; Paulien, L.; Lefebvre, S.; Mazzoleni, C.; Sorensen, C.; Berg, M.J.; Yon, J. Black carbon aerosol number and mass concentration measurements by picosecond short-range elastic backscatter lidar. Sci. Rep. 2022, 12, 8443. [Google Scholar] [CrossRef]
- Ong, P.M.; Lagrosas, N.; Shiina, T.; Kuze, H. Surface Aerosol Properties Studied Using a Near-Horizontal Lidar. Atmosphere 2020, 11, 36. [Google Scholar] [CrossRef]
- Queißer, M.; Harris, M.; Knoop, S. Atmospheric visibility inferred from continuous-wave Doppler wind lidar. Atmos. Meas. Tech. 2022, 15, 5527–5544. [Google Scholar] [CrossRef]
- Wei, T.; Wang, M.; Jiang, P.; Wu, K.; Zhang, Z.; Yuan, J.; Xia, H.; Lolli, S. Retrieving aerosol backscatter coefficient using coherent Doppler wind lidar. Opt. Express 2025, 33, 6832–6849. [Google Scholar] [CrossRef]
- Eloranta, E. High Spectral Resolution Lidar. In Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere; Weitkamp, C., Ed.; Springer: New York, NY, USA, 2005; pp. 143–163. [Google Scholar]
- Hair, J.W.; Caldwell, L.M.; Krueger, D.A.; She, C.Y. High-spectral-resolution lidar with iodine-vapor filters: Measurement of atmospheric-state and aerosol profiles. Appl. Opt. 2001, 40, 5280–5294. [Google Scholar] [CrossRef]
- Jin, Y.; Nishizawa, T.; Sugimoto, N.; Ishii, S.; Aoki, M.; Sato, K.; Okamoto, H. Development of a 355-nm high-spectral-resolution lidar using a scanning Michelson interferometer for aerosol profile measurement. Opt. Express 2020, 28, 23209–23222. [Google Scholar] [CrossRef]
- Fiocco, G.; DeWolf, J.B. Frequency spectrum of laser echoes from atmospheric constituents and determination of the aerosol content of air. J. Atmos. Sci. 1968, 25, 488–496. [Google Scholar] [CrossRef][Green Version]
- Eloranta, E.W.; Roesler, F.L.; Sroga, J.T. The High Spectral Resolution Lidar (Unpublished Report). In Proceedings of the Technical Digest, Workshop on Optical and Laser Remote Sensing, Monterey, XA, USA, 9–11 February 1982. paper I3. [Google Scholar]
- Shipley, S.T.; Tracy, D.H.; Eloranta, E.W.; Trauger, J.T.; Sroga, J.T.; Roesler, F.L.; Weinman, J.A. High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation. Appl. Opt. 1983, 22, 3716–3724. [Google Scholar] [CrossRef] [PubMed]
- Grund, C.J. Application of the HSRL Model II to Measurements of the Aerosol Backscatter Phase Function and Cross Section. Master’s Thesis, University of Wisconsin-Madison, Department of Meteorology, Madison, WI, USA, 1984. [Google Scholar]
- Grund, C.J. Measurement of Cirrus Cloud Optical Properties by High Spectral Resolution Lidar. Ph.D. Thesis, University of Wisconsin-Madison, Department of Meteorology, Madison, WI, USA, 1987. [Google Scholar]
- Grund, C.J.; Eloranta, E.W. The 27–28 October 1986 FIRE IFO Cirrus Case Study: Cloud Optical Properties Determined by High Spectral Resolution Lidar. Mon. Weather Rev. 1990, 118, 2344–2355. [Google Scholar] [CrossRef][Green Version]
- Grund, C.J.; Eloranta, E.W. University of Wisconsin High Spectral Resolution Lidar. Opt. Eng. 1991, 30, 6–12. [Google Scholar] [CrossRef]
- Schwiesow, R.L.; Lading, L. Temperature profiling by Rayleigh-scattering lidar. Appl. Opt. 1981, 20, 1972–1979. [Google Scholar] [CrossRef]
- Shimizu, H.; She, C.-Y. Atomic and Molecular Blocking Filters for High-Resolution Lidar: A Proposed Method for Measuring Atmospheric Visibility Temperature and Pressure. In NASA Conference Publication 2228 Paper D9, Proceedings of the Eleventh International Laser Radar Conference, Madison, WI, USA, 21–25 June 1982; NASA Langley Research Center: Washington, DC, USA, 1982; pp. 117–119. [Google Scholar]
- Shimizu, H.; Lee, S.A.; She, C.Y. High spectral resolution lidar system with atomic blocking filter for measuring atmospheric parameters. Appl. Opt. 1983, 22, 1373–1381. [Google Scholar] [CrossRef]
- She, C.Y.; Alvarez, R.J.; Caldwell, L.M.; Krueger, D.A. High-spectral-resolution Rayleigh-Mie lidar measurement of aerosol and atmospheric profiles. Opt. Lett. 1992, 17, 541–543. [Google Scholar] [CrossRef]
- Piironen, P.; Eloranta, E.W. Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter. Opt. Lett. 1994, 19, 234–236. [Google Scholar] [CrossRef]
- Xia, H.; Dou, X.; Shangguan, M.; Zhao, R.; Sun, D.; Wang, C.; Qiu, J.; Shu, Z.; Xue, X.; Han, Y.; et al. Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar. Opt. Express 2014, 22, 21775. [Google Scholar] [CrossRef]
- Xu, J.; Witschas, B.; Kabelka, P.G.; Liang, K. High-spectral-resolution lidar for measuring tropospheric temperature profiles by means of Rayleigh–Brillouin scattering. Opt. Lett. 2021, 46, 3320–3323. [Google Scholar] [CrossRef]
- Bruneau, D.; Pelon, J.; Blouzon, F.; Spatazza, J.; Genau, P.; Buchholtz, G.; Amarouche, N.; Abchiche, A.; Aouji, O. 355-nm high spectral resolution airborne lidar LNG: System description and first results. Appl. Opt. 2015, 54, 8776–8785. [Google Scholar] [CrossRef] [PubMed]
- Burton, S.P.; Ferrare, R.A.; Hostetler, C.A.; Hair, J.W.; Rogers, R.R.; Obland, M.D.; Butler, C.F.; Cook, A.L.; Harper, D.B.; Froyd, K.D. Aerosol classification using airborne High Spectral Resolution Lidar measurements-methodology and examples. Atmos. Meas. Tech. 2012, 5, 73–98. [Google Scholar] [CrossRef]
- Burton, S.P.; Ferrare, R.A.; Vaughan, M.A.; Omar, A.H.; Rogers, R.R.; Hostetler, C.A.; Hair, J.W. Aerosol classification from airborne HSRL and comparisons with the CALIPSO vertical feature mask. Atmos. Meas. Tech. 2013, 6, 1397–1412. [Google Scholar] [CrossRef]
- Dmitrovic, S.; Hair, J.W.; Collister, B.L.; Crosbie, E.; Fenn, M.A.; Ferrare, R.A.; Harper, D.B.; Hostetler, C.A.; Hu, Y.; Reagan, J.A.; et al. High Spectral Resolution Lidar–generation 2 (HSRL-2) retrievals of ocean surface wind speed: Methodology and evaluation. Atmos. Meas. Tech. 2024, 17, 3515–3532. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Z.; Yan, Z.; Guo, J. Research on characters of the marine atmospheric boundary layer structure and aerosol profiles by high spectral resolution lidar. Opt. Eng. 2008, 47, 086001. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, D.; Xu, P.; Liu, C.; Bai, J.; Yang, L.; Cheng, Z.; Tang, P.; Zhang, Y.; Su, L. Retrieving the seawater volume scattering function at the 180° scattering angle with a high-spectral-resolution lidar. Opt. Express 2017, 25, 11813. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, Y.; Zhao, H.; Jamet, C.; Dionisi, D.; Chami, M.; Girolamo, P.D.; Churnside, J.H.; Malinka, A.; Zhao, H.; et al. Shipborne oceanic high-spectral-resolution lidar for accurate estimation of seawater depth-resolved optical properties. Light. Sci. Appl. 2022, 11, 261. [Google Scholar] [CrossRef]
- Jin, Y.; Sugimoto, N.; Ristori, P.; Nishizawa, T.; Otero, L.; Quel, E. Measurement method of high spectral resolution lidar with a multimode laser and a scanning Mach–Zehnder interferometer. Appl. Opt. 2017, 56, 5990–5995. [Google Scholar] [CrossRef]
- Cheng, Z.; Liu, D.; Zhang, Y.; Liu, C.; Bai, J.; Wang, D.; Wang, N.; Zhou, Y.; Luo, J.; Yang, Y.; et al. Generalized high-spectral-resolution lidar technique with a multimode laser for aerosol remote sensing. Opt. Express 2017, 25, 979. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Liu, D.; Pan, S.; Chen, S.; Wu, L.; Xiao, D.; Zhang, K.; Wang, N.; Wu, H.; Zhang, K.; et al. High-spectral-resolution LIDAR based on a few-longitudinal mode laser for aerosol and cloud characteristics detection. Opt. Lett. 2022, 47, 5028. [Google Scholar] [CrossRef] [PubMed]
- Hayman, M.; Spuler, S. Demonstration of a diode-laser-based high spectral resolution lidar (HSRL) for quantitative profiling of clouds and aerosols. Opt. Express 2017, 25, A1096–A1110. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Kong, Z.; Wang, X.; Cheng, Y.; Xu, N.; Wang, Z.; Song, J.; Mei, L. High Spectral Resolution Scheimpflug Lidar for Atmospheric Aerosol Sensing. Laser Photonics Rev. 2025, e00897. [Google Scholar] [CrossRef]
- Gao, F.; Gao, F.; Yang, X.; Li, G.; Yang, F.; Li, S.; Wang, L.; Hua, D.; Stanič, S. Accurate measurement of aerosol optical properties using the multilongitudinal mode high-spectral-resolution lidar with self-tuning Mach–Zehnder interferometer. Chin. Opt. Lett. 2023, 21, 030101. [Google Scholar] [CrossRef]
- The Leibniz Institute for Tropospheric Research. HSRL. Technology at TROPOS—Remote Sensing. Available online: https://www.tropos.de/en/research/projects-infrastructures-technology/technology-at-tropos/remote-sensing/hsrl (accessed on 6 December 2022).
- Yu, X.; Chen, B.; Min, M.; Zhang, X.; Yao, L.; Zhao, Y.; Lidong, W.; Fu, W.; Deng, X. Simulating return signals of a spaceborne high-spectral resolution lidar channel at 532 nm. Opt. Commun. 2018, 417, 89–96. [Google Scholar] [CrossRef]
- Bucholtz, A. Rayleigh-scattering calculations for the terrestrial atmosphere. Appl. Opt. 1995, 34, 2765–2773. [Google Scholar] [CrossRef]
- Liu, D.; Zheng, Z.; Chen, W.; Wang, Z.; Li, W.; Ke, J.; Zhang, Y.; Chen, S.; Cheng, C.; Wang, S. Performance estimation of space-borne high-spectral-resolution lidar for cloud and aerosol optical properties at 532 nm. Opt. Express 2019, 27, A481. [Google Scholar] [CrossRef]
- Keopsys by Lumibird (2025). Pulsed Green Laser Transmitter for Underwater-Telemetry and Environment Applications. Available online: https://www.keopsys.com/portfolio/underwater-telemetry-pgfl-series/ (accessed on 18 August 2025).
- Sassen, K.; Dodd, G.C. Lidar crossover function and misalignment effects. Appl. Opt. 1982, 21, 3162–3165. [Google Scholar] [CrossRef]
- Sicard, M.; Rodríguez-Gómez, A.; Comerón, A.; Muñoz-Porcar, C. Calculation of the Overlap Function and Associated Error of an Elastic Lidar or a Ceilometer: Cross-Comparison with a Cooperative Overlap-Corrected System. Sensors 2020, 20, 6312. [Google Scholar] [CrossRef]
- Liu, Z.; Matsui, I.; Sugimoto, N. High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements. Opt. Eng. 1999, 38, 1661–1670. [Google Scholar] [CrossRef]
- Zhao, M.; Xie, C.B.; Zhong, Z.Q.; Wang, B.X.; Wang, Z.Z.; Dai, P.D.; Shang, Z.; Liu, D.; Wang, Y.J. Development of high spectral resolution lidar system for measuring aerosol and cloud. J. Opt. Soc. Korea 2015, 19, 695–699. [Google Scholar] [CrossRef][Green Version]
- Liu, J.; Hua, D.X.; Li, Y. Development of a high-spectral-resolution lidar for accurate profiling of the urban aerosol spatial variations. J. Physics: Conf. Ser. 2006, 48, 745–749. [Google Scholar] [CrossRef]
- Shen, F.; Xie, C.; Qiu, C.; Wang, B. Fabry–Perot etalon-based ultraviolet trifrequency high-spectral-resolution lidar for wind, temperature, and aerosol measurements from 02 to 35 km altitude. Appl. Opt. 2018, 57, 9328. [Google Scholar] [CrossRef] [PubMed]
- Sannino, A.; Boselli, A.; Maisto, D.; Porzio, A.; Song, C.; Spinelli, N.; Wang, X. Development of a High Spectral Resolution Lidar for day-time measurements of aerosol extinction. EDP Sci. 2019, 197, 02009. [Google Scholar] [CrossRef][Green Version]
- Hair, J.W.; Hostetler, C.A.; Cook, A.L.; Harper, D.B.; Ferrare, R.A.; Mack, T.L.; Welch, W.; Izquierdo, L.R.; Hovis, F.E. Airborne High Spectral Resolution Lidar for profiling aerosol optical properties. Appl. Opt. 2008, 47, 6734–6752. [Google Scholar] [CrossRef] [PubMed]
- Razenkov, I.I.; Eloranta, E.W. High spectral resolution lidar at the University of Wisconsin-Madison. EDP Sci. 2018, 176, 01024. [Google Scholar] [CrossRef][Green Version]
- Liu, D.; Cheng, Z.; Luo, J.; Yang, Y.; Zhang, Y.; Zhou, Y.; Bai, J.; Liu, C.; Shen, Y. Polarized high-spectral-resolution lidar based on field-widened Michelson interferometer. SPIE 2016, 9832, 98320Z. [Google Scholar] [CrossRef]
- Jin, Y.; Nishizawa, T.; Sugimoto, N.; Takakura, S.; Aoki, M.; Ishii, S.; Yamazaki, A.; Kudo, R.; Yumimoto, K.; Sato, K.; et al. Demonstration of aerosol profile measurement with a dual-wavelength high-spectral-resolution lidar using a scanning interferometer. Appl. Opt. 2022, 61, 3523–3532. [Google Scholar] [CrossRef]
- Wirth, M.; Fix, A.; Mahnke, P.; Schwarzer, H.; Schrandt, F.; Ehret, G. The airborne multi-wavelength water vapor differential absorption lidar WALES: System design and performance. Appl. Phys. B Lasers Opt. 2009, 96, 201–213. [Google Scholar] [CrossRef]
- Hoffman, D.S.; Repasky, K.S.; Reagan, J.A.; Carlsten, J.L. Development of a high spectral resolution lidar based on confocal Fabry-Perot spectral filters. Appl. Opt. 2012, 51, 6233–6244. [Google Scholar] [CrossRef]
- Osibanjo, O.; Rappenglück, B.; Ahmad, M.; Jaimes-Palomera, M.; Rivera-Hernández, O.; Prieto-González, R.; Retama, A. Intercomparison of planetary boundary-layer height in Mexico City as retrieved by microwave radiometer, micro-pulse lidar and radiosondes. Atmos. Res. 2022, 271, 106088. [Google Scholar] [CrossRef]
- Ke, J.; Sun, Y.; Dong, C.; Zhang, X.; Wang, Z.; Lyu, L.; Zhu, W.; Ansmann, A.; Su, L.; Bu, L.; et al. Development of China’s first space-borne aerosol-cloud high-spectral-resolution lidar: Retrieval algorithm and airborne demonstration. PhotoniX 2022, 3, 17. [Google Scholar] [CrossRef]
- Wang, N.; Shen, X.; Xiao, D.; Veselovskii, I.; Zhao, C.; Chen, F.; Liu, C.; Rong, Y.; Ke, J.; Wang, B.; et al. Development of ZJU high-spectral-resolution lidar for aerosol and cloud: Feature detection and classification. J. Quant. Spectrosc. Radiat. Transf. 2021, 261. [Google Scholar] [CrossRef]
- Burton, S.P.; Hostetler, C.A.; Cook, A.L.; Hair, J.W.; Seaman, S.T.; Scola, S.; Harper, D.B.; Smith, J.A.; Fenn, M.A.; Ferrare, R.A.; et al. Calibration of a high spectral resolution lidar using a Michelson interferometer, with data examples from ORACLES. Appl. Opt. 2018, 57, 6061–6075. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.S.; Bi, D.C.; Song, X.Q.; Xia, J.B.; Li, R.Z.; Wang, Z.J.; She, C.Y. Iodine-filter-based high spectral resolution lidar for atmospheric temperature measurements. Opt. Lett. 2009, 34, 2712–2714. [Google Scholar] [CrossRef]
- Esselborn, M.; Wirth, M.; Fix, A.; Tesche, M.; Ehret, G. Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients. Appl. Opt. 2008, 47, 346–358. [Google Scholar] [CrossRef]
Laser | Wavelength | 532.11357 to 532.20615 nm |
Wavelength stability | <0.1 pm | |
Linewidth | <400 MHz | |
Linewidth stability | <400 MHz | |
Pulse duration | 4.96 ns | |
Pulse repetition rate | 50 to 65 kHz | |
Pulse energy | 0.90 to 11.30 J | |
Divergence angle | 1.5 mrad | |
Beam diameter (1/e) | 1 mm | |
Beam quality | M2 = 1.3 | |
Dimensions | 270 × 270 × 40 mm | |
Weight | 2.9 kg | |
Spectral filter | Type | Iodine cell |
Diameter | 2 in | |
Length | 400 mm | |
Absorption band wavenumber | 18,809.82 cm−1 | |
Absorption band FWHM | 1.8 GHz | |
Cell temperature | 40 °C | |
Receiver | Type | Schmidt–Cassegrain |
Diameter | 203.2 mm | |
Focal length | 2032 mm | |
F-number | 10 | |
Sensors | Type | Hamamatsu MPPC |
Reference | C13366 | |
Bandwidth | 5 MHz | |
Active area | 9 mm2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoyos-Restrepo, M.; Ceolato, R.; Bedoya-Velásquez, A.E.; Jin, Y. Short-Range High Spectral Resolution Lidar for Aerosol Sensing Using a Compact High-Repetition-Rate Fiber Laser. Remote Sens. 2025, 17, 3084. https://doi.org/10.3390/rs17173084
Hoyos-Restrepo M, Ceolato R, Bedoya-Velásquez AE, Jin Y. Short-Range High Spectral Resolution Lidar for Aerosol Sensing Using a Compact High-Repetition-Rate Fiber Laser. Remote Sensing. 2025; 17(17):3084. https://doi.org/10.3390/rs17173084
Chicago/Turabian StyleHoyos-Restrepo, Manuela, Romain Ceolato, Andrés E. Bedoya-Velásquez, and Yoshitaka Jin. 2025. "Short-Range High Spectral Resolution Lidar for Aerosol Sensing Using a Compact High-Repetition-Rate Fiber Laser" Remote Sensing 17, no. 17: 3084. https://doi.org/10.3390/rs17173084
APA StyleHoyos-Restrepo, M., Ceolato, R., Bedoya-Velásquez, A. E., & Jin, Y. (2025). Short-Range High Spectral Resolution Lidar for Aerosol Sensing Using a Compact High-Repetition-Rate Fiber Laser. Remote Sensing, 17(17), 3084. https://doi.org/10.3390/rs17173084