A Progressive Saliency-Guided Small Ship Detection Method for Large-Scene SAR Images
Abstract
Highlights
- A progressive saliency-guided (PSG) method is proposed which employs saliency-derived positional priors to progressively enhance feature extraction and proposal learning for small ships in large-scene SAR images.
- The PSG framework effectively alleviates weak responses and missed detections, improving small ship feature representation and proposal quality.
- Extensive experiments on LS-SSDD and HRSID demonstrate that the PSG method significantly improves the detection performance compared with that of state-of-the-art methods.
- The method provides an effective solution for accurate and robust small ship detection in large-scale SAR imagery.
Abstract
1. Introduction
- To enhance the small ship detection performance in large-scene SAR images, we propose PSG, which uses saliency-derived positional priors to guide the model to focus on small targets and extract their features.
- In response to the feature disappearance introduced by downsampling small ships, DGPE is designed, incorporating saliency maps as additional prior information to facilitate cross-branch guidance and critical area alignment for SAR image features.
- To tackle missed detections of small ships caused by an excessively small field of view, the SCAA mechanism computes the classification and localization scores at key locations under saliency prior guidance, enhancing learning from hard proposals.
- Extensive experiments are conducted on the LS-SSDD and HRSID datasets. The results demonstrate that PSG achieves a 4% AP improvement over the baseline on each dataset, outperforming the existing methods.
2. Materials
2.1. Large-Scene SAR Ship Detection
2.2. Small Object Detection
3. Methods
3.1. The Overall Architecture
3.2. Gaussian Saliency Map Generation
3.3. Dual-Guided Perception Enhancement
3.4. Saliency Confidence Aware Assessment
Algorithm 1 The saliency confidence aware assessment (SCAA) strategy. |
Input: The main branch proposals with labels ; the saliency branch proposals with labels ; the IoU threshold ; the confidence threshold |
Output: Classification loss |
1: for all do |
2: for all do |
3: if then |
4: |
5: |
6: end if |
7: end for |
8: end for |
9: The primary branch foreground confidences |
10: The saliency branch foreground confidences |
11: The classification discrepancy |
12: Initialize a composite quality assessment weight |
13: for to N do |
14: if and then |
15: |
16: end if |
17: end for |
18: Use to guide each proposal |
19: return |
3.5. The Loss Function
4. Results
4.1. The Experimental Setup
4.2. Comparisons with the State-of-the-Art
4.2.1. Quantitative Evaluation
4.2.2. Quantitative Evaluation
4.3. Further Analysis
4.3.1. Ablation Studies
4.3.2. Sensitivity of the Hyperparameters
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Attema, E.; Davidson, M.; Snoeij, P.; Rommen, B.; Floury, N. Sentinel-1 mission overview. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009; Volume 1, pp. 1–36. [Google Scholar]
- Asiyabi, R.M.; Ghorbanian, A.; Tameh, S.N.; Amani, M.; Jin, S.; Mohammadzadeh, A. Synthetic aperture radar (SAR) for ocean: A review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 9106–9138. [Google Scholar] [CrossRef]
- Cui, Z.; Wang, X.; Liu, N.; Cao, Z.; Yang, J. Ship detection in large-scale SAR images via spatial shuffle-group enhance attention. IEEE Trans. Geosci. Remote Sens. 2020, 59, 379–391. [Google Scholar] [CrossRef]
- Li, J.; Xu, C.; Su, H.; Gao, L.; Wang, T. Deep learning for SAR ship detection: Past, present and future. Remote Sens. 2022, 14, 2712. [Google Scholar] [CrossRef]
- Ciecholewski, M. Review of segmentation methods for coastline detection in sar images. Arch. Comput. Methods Eng. 2024, 31, 839–869. [Google Scholar] [CrossRef]
- Mittal, H.; Joshi, A. Automatic Ship Detection Using CFAR Algorithm for Quad-Pol UAV-SAR Imagery. In Proceedings of the International Conference on Unmanned Aerial System in Geomatics, Roorkee, India, 2–4 April 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 199–210. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 2015, 1, 91–99. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Tang, C.; Cui, Z.; Liu, N.; Cao, Z. D-Atr Via Deep Neural Network for Large Scene Sar Images. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 2326–2329. [Google Scholar]
- Huang, Z.; Li, W.; Xia, X.G.; Tao, R. A general Gaussian heatmap label assignment for arbitrary-oriented object detection. IEEE Trans. Image Process. 2022, 31, 1895–1910. [Google Scholar] [CrossRef]
- Dai, H.; Gao, S.; Huang, H.; Mao, D.; Zhang, C.; Zhou, Y. An adaptive sample assignment network for tiny object detection. IEEE Trans. Multimed. 2023, 26, 2918–2931. [Google Scholar] [CrossRef]
- Frery, A.C.; Muller, H.J.; Yanasse, C.d.C.F.; Sant’Anna, S.J.S. A model for extremely heterogeneous clutter. IEEE Trans. Geosci. Remote Sens. 1997, 35, 648–659. [Google Scholar] [CrossRef]
- Novak, L.; Hesse, S. On the performance of order-statistics CFAR detectors. In Proceedings of the Conference Record of the Twenty-Fifth Asilomar Conference on Signals, Systems & Computers, Pacific Grove, CA, USA, 4–6 November 1991; IEEE Computer Society: Pacific Grove, CA, USA, 1991; pp. 835–836. [Google Scholar]
- Novak, L.M.; Owirka, G.J.; Netishen, C.M. Performance of a high-resolution polarimetric SAR automatic target recognition system. Linc. Lab. J. 1993, 6, 835–840. [Google Scholar]
- Liu, Y.; Zhang, M.h.; Xu, P.; Guo, Z.w. SAR ship detection using sea-land segmentation-based convolutional neural network. In Proceedings of the 2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP), Shanghai, China, 18–21 May 2017; pp. 1–4. [Google Scholar]
- Cui, J.; Jia, H.; Wang, H.; Xu, F. A fast threshold neural network for ship detection in large-scene SAR images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 6016–6032. [Google Scholar] [CrossRef]
- Jia, H.; Pu, X.; Liu, Q.; Wang, H.; Xu, F. A fast progressive ship detection method for very large full-scene SAR images. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5206615. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 21–37. [Google Scholar]
- Zhang, C.; Yang, C.; Cheng, K.; Guan, N.; Dong, H.; Deng, B. MSIF: Multisize inference fusion-based false alarm elimination for ship detection in large-scale SAR images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5224811. [Google Scholar] [CrossRef]
- Shao, Z.; Zhang, X.; Xu, X.; Zeng, T.; Zhang, T.; Shi, J. CFAR-guided convolution neural network for large scale scene SAR ship detection. In Proceedings of the 2023 IEEE Radar Conference (RadarConf23), San Antonio, TX, USA, 1–5 May 2023; pp. 1–5. [Google Scholar]
- Yan, G.; Chen, Z.; Wang, Y.; Cai, Y.; Shuai, S. LssDet: A lightweight deep learning detector for SAR ship detection in high-resolution SAR images. Remote Sens. 2022, 14, 5148. [Google Scholar] [CrossRef]
- Gao, S.; Liu, J.; Miao, Y.; He, Z. A high-effective implementation of ship detector for SAR images. IEEE Geosci. Remote Sens. Lett. 2021, 19, 4019005. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, X.; Wang, Z.; Fu, K. Oriented ship detection based on strong scattering points network in large-scale SAR images. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5218018. [Google Scholar] [CrossRef]
- Fu, K.; Fu, J.; Wang, Z.; Sun, X. Scattering-keypoint-guided network for oriented ship detection in high-resolution and large-scale SAR images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 11162–11178. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Z.; Sun, X.; Fu, K. SPAN: Strong scattering point aware network for ship detection and classification in large-scale SAR imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 1188–1204. [Google Scholar] [CrossRef]
- Yu, X.; Gong, Y.; Jiang, N.; Ye, Q.; Han, Z. Scale match for tiny person detection. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Snowmass Village, CO, USA, 1–5 March 2020; pp. 1257–1265. [Google Scholar]
- Kisantal, M.; Wojna, Z.; Murawski, J.; Naruniec, J.; Cho, K. Augmentation for small object detection. arXiv 2019, arXiv:1902.07296. [Google Scholar] [CrossRef]
- Wang, J.; Yang, W.; Guo, H.; Zhang, R.; Xia, G.S. Tiny object detection in aerial images. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021; pp. 3791–3798. [Google Scholar]
- Yu, J.; Zhou, G.; Zhou, S.; Qin, M. A fast and lightweight detection network for multi-scale SAR ship detection under complex backgrounds. Remote Sens. 2021, 14, 31. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, X.; Zhang, T. Lite-yolov5: A lightweight deep learning detector for on-board ship detection in large-scene sentinel-1 sar images. Remote Sens. 2022, 14, 1018. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, F.; Ma, F.; Xiang, D.; Zhang, F. Small vessel detection based on adaptive dual-polarimetric feature fusion and sea–land segmentation in SAR images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 2519–2534. [Google Scholar] [CrossRef]
- Zhu, M.; Hu, G.; Li, S.; Zhou, H.; Wang, S. FSFADet: Arbitrary-oriented ship detection for SAR images based on feature separation and feature alignment. Neural Process. Lett. 2022, 54, 1995–2005. [Google Scholar] [CrossRef]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8759–8768. [Google Scholar]
- Hong, M.; Li, S.; Yang, Y.; Zhu, F.; Zhao, Q.; Lu, L. SSPNet: Scale selection pyramid network for tiny person detection from UAV images. IEEE Geosci. Remote Sens. Lett. 2021, 19, 8018505. [Google Scholar] [CrossRef]
- Li, H.; Zhang, R.; Pan, Y.; Ren, J.; Shen, F. Lr-fpn: Enhancing remote sensing object detection with location refined feature pyramid network. In Proceedings of the 2024 International Joint Conference on Neural Networks (IJCNN), Yokohama, Japan, 30 June–5 July 2024; pp. 1–8. [Google Scholar]
- Xu, C.; Wang, J.; Yang, W.; Yu, L. Dot distance for tiny object detection in aerial images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 1192–1201. [Google Scholar]
- Wang, J.; Xu, C.; Yang, W.; Yu, L. A normalized Gaussian Wasserstein distance for tiny object detection. arXiv 2021, arXiv:2110.13389. [Google Scholar]
- Xu, C.; Wang, J.; Yang, W.; Yu, H.; Yu, L.; Xia, G.S. RFLA: Gaussian receptive field based label assignment for tiny object detection. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 526–543. [Google Scholar]
- Wang, W.; Dai, J.; Chen, Z.; Huang, Z.; Li, Z.; Zhu, X.; Hu, X.; Lu, T.; Lu, L.; Li, H.; et al. Internimage: Exploring large-scale vision foundation models with deformable convolutions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 14408–14419. [Google Scholar]
- Gao, S.; Chen, Y.; Cui, N.; Qin, W. Enhancing object detection in low-resolution images via frequency domain learning. Array 2024, 22, 100342. [Google Scholar] [CrossRef]
- Yu, C.; Liu, Y.; Wu, S.; Xia, X.; Hu, Z.; Lan, D.; Liu, X. Pay attention to local contrast learning networks for infrared small target detection. IEEE Geosci. Remote Sens. Lett. 2022, 19, 3512705. [Google Scholar] [CrossRef]
- Bai, J.; Ren, J.; Yang, Y.; Xiao, Z.; Yu, W.; Havyarimana, V.; Jiao, L. Object detection in large-scale remote-sensing images based on time-frequency analysis and feature optimization. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5405316. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, J.; Jiang, Z.; Zong, F.; Liu, S.; Li, Z.; Sun, J. Autoassign: Differentiable label assignment for dense object detection. arXiv 2020, arXiv:2007.03496. [Google Scholar] [CrossRef]
- Yuan, X.; Cheng, G.; Yan, K.; Zeng, Q.; Han, J. Small object detection via coarse-to-fine proposal generation and imitation learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–3 October 2023; pp. 6317–6327. [Google Scholar]
- Zhao, Z.; Du, J.; Li, C.; Fang, X.; Xiao, Y.; Tang, J. Dense tiny object detection: A scene context guided approach and a unified benchmark. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5606913. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, J.; Qi, Y.; Wu, Y.; Zhang, Y. Tiny object detection in remote sensing images based on object reconstruction and multiple receptive field adaptive feature enhancement. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5616213. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, K.; Wang, X.; Wang, N.; Gao, X. An adaptive region proposal network with progressive attention propagation for tiny person detection from UAV images. IEEE Trans. Circuits Syst. Video Technol. 2023, 34, 4392–4406. [Google Scholar] [CrossRef]
- Wang, F.; Su, Y.; Wang, R.; Sun, J.; Sun, F.; Li, H. Cross-modal and cross-level attention interaction network for salient object detection. IEEE Trans. Artif. Intell. 2023, 5, 2907–2920. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, X.; Ke, X.; Zhan, X.; Shi, J.; Wei, S.; Pan, D.; Li, J.; Su, H.; Zhou, Y.; et al. LS-SSDD-v1.0: A deep learning dataset dedicated to small ship detection from large-scale Sentinel-1 SAR images. Remote Sens. 2020, 12, 2997. [Google Scholar] [CrossRef]
- Wei, S.; Zeng, X.; Qu, Q.; Wang, M.; Su, H.; Shi, J. HRSID: A high-resolution SAR images dataset for ship detection and instance segmentation. IEEE Access 2020, 8, 120234–120254. [Google Scholar] [CrossRef]
- Everingham, M.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes (voc) challenge. Int. J. Comput. Vision 2010, 88, 303–338. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. Yolox: Exceeding yolo series in 2021. arXiv 2021, arXiv:2107.08430. [Google Scholar] [CrossRef]
- Zhang, S.; Chi, C.; Yao, Y.; Lei, Z.; Li, S.Z. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 9759–9768. [Google Scholar]
- Feng, C.; Zhong, Y.; Gao, Y.; Scott, M.R.; Huang, W. Tood: Task-aligned one-stage object detection. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; IEEE Computer Society: Montreal, QC, Canada, 2021; pp. 3490–3499. [Google Scholar]
Dataset | LS-SSDD | HRSID |
---|---|---|
Satellite | Sentinel-1 | Sentinel-1,TerraSAR-X |
Polarization | VV, VH | HH, HV, VV |
Scenes | inshore and offshore | inshore and offshore |
Swath (km) | 250 | 80 |
Image Size | 24,000 × 16,000 | 800 × 800 |
Image number | 9000 | 5604 |
Ship number | 3350 | 16,951 |
Ship Pixel Proportion | 0.0001% | 0.2800% |
Method | Precision (%) | Recall (%) | F1-Score (%) | AP (%) | T (s) | FPS (img/s) |
---|---|---|---|---|---|---|
Baseline [7] | 92.61 | 77.50 | 84.38 | 69.00 | 28.57 | 21.00 |
RetinaNet [54] | 89.78 | 50.98 | 65.03 | 66.50 | 23.44 | 25.60 |
YOLOx [55] | 96.83 | 40.99 | 57.60 | 59.80 | 9.33 | 64.30 |
ATSS [56] | 95.12 | 51.66 | 66.96 | 73.10 | 23.53 | 25.50 |
AutoAssign [44] | 59.76 | 72.86 | 65.67 | 58.80 | 23.26 | 25.80 |
TOOD [57] | 84.20 | 67.88 | 75.16 | 72.80 | 34.48 | 17.40 |
NWD [38] | 60.76 | 69.39 | 64.79 | 68.80 | 29.27 | 20.50 |
RFLA [39] | 76.52 | 71.49 | 73.92 | 71.50 | 37.74 | 15.90 |
PSG (Ours) | 95.60 | 80.28 | 87.27 | 73.38 | 27.91 | 21.50 |
Method | Precision (%) | Recall (%) | F1-Score (%) | AP (%) | FPS (img/s) |
---|---|---|---|---|---|
Baseline [7] | 99.35 | 82.34 | 90.05 | 78.81 | 18.20 |
RetinaNet [54] | 58.10 | 68.41 | 62.83 | 68.70 | 24.50 |
YOLOx [55] | 94.16 | 67.91 | 78.91 | 78.80 | 60.50 |
ATSS [56] | 96.06 | 47.78 | 63.82 | 61.20 | 24.30 |
AutoAssign [44] | 75.57 | 85.96 | 80.43 | 86.60 | 28.00 |
TOOD [57] | 78.81 | 84.45 | 81.53 | 85.60 | 18.80 |
NWD [38] | 71.26 | 82.43 | 76.44 | 83.00 | 16.40 |
RFLA [39] | 72.82 | 77.92 | 75.28 | 82.23 | 13.20 |
PSG (Ours) | 99.47 | 87.08 | 92.86 | 83.16 | 18.10 |
Method | SCAA | CGA | CACA | Precision (%) | Recall (%) | AP (%) |
---|---|---|---|---|---|---|
Baseline | ✗ | ✗ | ✗ | 92.61 | 77.50 | 69.00 |
Ours w/o DGPE | ✓ | ✗ | ✗ | 93.41 | 80.53 | 71.52 |
Ours w/o SCAA | ✗ | ✓ | ✓ | 94.25 | 80.11 | 71.43 |
Ours w/o CGA | ✓ | ✗ | ✓ | 94.60 | 79.90 | 72.10 |
Ours w/o CACA | ✓ | ✓ | ✗ | 95.58 | 78.89 | 71.97 |
Ours (Full Model) | ✓ | ✓ | ✓ | 95.60 | 80.28 | 73.38 |
Method | Precision (%) | Recall (%) | AP (%) |
---|---|---|---|
Baseline | 93.41 | 80.53 | 71.52 |
C2 | 93.18 | 81.54 | 72.86 |
C3 | 95.43 | 80.11 | 72.03 |
C4 | 94.58 | 79.69 | 71.84 |
C2 & C3 | 95.60 | 80.28 | 73.38 |
C2 & C4 | 93.47 | 78.81 | 70.56 |
C3 & C4 | 94.03 | 78.68 | 71.30 |
C2 & C3 & C4 | 90.08 | 80.19 | 70.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Li, D.; Wang, H.; Yang, R.; Liang, J.; Liu, S.; Wan, J. A Progressive Saliency-Guided Small Ship Detection Method for Large-Scene SAR Images. Remote Sens. 2025, 17, 3085. https://doi.org/10.3390/rs17173085
Zhu H, Li D, Wang H, Yang R, Liang J, Liu S, Wan J. A Progressive Saliency-Guided Small Ship Detection Method for Large-Scene SAR Images. Remote Sensing. 2025; 17(17):3085. https://doi.org/10.3390/rs17173085
Chicago/Turabian StyleZhu, Hanying, Dong Li, Haoran Wang, Ruquan Yang, Jishen Liang, Shuang Liu, and Jun Wan. 2025. "A Progressive Saliency-Guided Small Ship Detection Method for Large-Scene SAR Images" Remote Sensing 17, no. 17: 3085. https://doi.org/10.3390/rs17173085
APA StyleZhu, H., Li, D., Wang, H., Yang, R., Liang, J., Liu, S., & Wan, J. (2025). A Progressive Saliency-Guided Small Ship Detection Method for Large-Scene SAR Images. Remote Sensing, 17(17), 3085. https://doi.org/10.3390/rs17173085