Sensitivity Analysis of the Differential Atmospheric Transmission in Water Vapour Mixing Ratio Retrieval from Raman Lidar Measurements
Abstract
Highlights
- Differential transmission omission may cause up to 18 % bias in water vapour profiles.
- This study proposes a new and operational approach to estimate this term.
- The approach allows transforming systematic uncertainties into random ones.
- The approach improves the accuracy of water vapour retrievals from Raman lidar.
Abstract
1. Introduction
2. Experimental Site and Instrumentation
2.1. Granada Urban Station
2.2. Instrumentation
3. Methodology
3.1. Water Vapour Mixing Ratio Retrieval from Raman Lidar Measurements
3.2. Differential Atmospheric Transmission Assessments
4. Results and Discussion
4.1. Sensitivity of the Differential Atmospheric Transmission with Wavelength
4.2. Sensitivity of Differential Atmospheric Transmission on Aerosol Loading
4.3. Comparison of AOD from Sun Photometer and Raman Lidar Measurements
4.4. Validation of Differential Atmospheric Transmission Estimated from Sun Photometer Against Raman Lidar
4.5. Evaluation of the Differential Atmospheric Transmission Calculation in Water Vapour Measurements
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| RS | Radiosonde |
| MR | Molecular Reference |
| VR | Vibrational–Rotational |
| EARLINET | European Aerosol Research Lidar Network |
| ACTRIS | Aerosol, Clouds, and Trace Gases Research Infrastructure |
| RR | Pure–Rotational |
| SNR | Signal–to–Noise Ratio |
| UGR | Granada urban station |
| AOD | Aerosol Optical Depth |
| AERONET | Aerosol Robotic Network |
| SP | Sun Photometer |
| AGORA | Global ObseRvatory of the Atmosphere |
| PMT | Photomultiplier tube |
| JCFG | Joint Committee for Guides in Metrology |
| GUM | Guide to the Expression of Uncertainty in Measurement |
| ABL | Atmospheric Boundary Layer |
| GNSS | Global Navigation Satellite System |
References
- Douville, H.; Raghavan, K.; Renwick, J.; Allan, R.; Arias, P.; Barlow, M.; Cerezo-Mota, R.; Cherchi, A.; Gan, T.; Gergis, J.; et al. Water Cycle Changes. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; Chapter 8; pp. 1055–1210. [Google Scholar] [CrossRef]
- Ferrare, R.; Ismail, S.; Browell, E.; Brackett, V.; Clayton, M.; Kooi, S.; Melfi, S.H.; Whiteman, D.; Schwemmer, G.; Evans, K.; et al. Comparison of aerosol optical properties and water vapor among ground and airborne lidars and Sun photometers during TARFOX. J. Geophys. Res. Atmos. 2000, 105, 9917–9933. [Google Scholar] [CrossRef]
- Niemeier, U.; Wallis, S.; Timmreck, C.; van Pham, T.; von Savigny, C. How the Hunga Tonga—Hunga Ha’apai water vapor cloud impacts its transport through the stratosphere: Dynamical and radiative effects. Geophys. Res. Lett. 2023, 50, e2023GL106482. [Google Scholar] [CrossRef]
- Haefele, A.; Hocke, K.; Kämpfer, N.; Keckhut, P.; Marchand, M.; Bekki, S.; Morel, B.; Egorova, T.; Rozanov, E. Diurnal changes in middle atmospheric H2O and O3: Observations in the Alpine region and climate models. JGR Atmos. 2008, 113, 60. [Google Scholar] [CrossRef]
- Reichardt, J.; Wandinger, U.; Klein, V.; Mattis, I.; Hilber, B.; Begbie, R. RAMSES: German meteorological service autonomous Raman Iidar for water vapor, temperature, aerosol, and cloud measurements. Appl. Opt. 2012, 51, 8111–8131. [Google Scholar] [CrossRef]
- Navas-Guzmán, F.; Martucci, G.; Coen, M.C.; Granados-Muñoz, M.J.; Hervo, M.; Sicard, M.; Haefele, A. Characterization of aerosol hygroscopicity using Raman lidar measurements at the EARLINET station of Payerne. Atmos. Chem. Phys. 2019, 19, 11651–11668. [Google Scholar] [CrossRef]
- Perez-Ramirez, D.; Whiteman, D.N.; Veselovskii, I.; Ferrare, R.; Titos, G.; Granados-Munoz, M.J.; Sanchez-Hernandez, G.; Navas-Guzman, F. Spatiotemporal changes in aerosol properties by hygroscopic growth and impacts on radiative forcing and heating rates during DISCOVER-AQ 2011. Atmos. Chem. Phys. 2021, 21, 12021–12048. [Google Scholar] [CrossRef]
- Whiteman, D.N.; Demoz, B.; Girolamo, P.D.; Comer, J.; Veselovskii, I.; Evans, K.; Wang, Z.; Sabatino, D.; Schwemmer, G.; Gentry, B.; et al. Raman lidar measurements during the International H2O Project. Part II: Case studies. J. Atmos. Ocean. Technol. 2006, 23, 170–183. [Google Scholar] [CrossRef]
- Whiteman, D.N.; Venable, D.; Landulfo, E. Comments on “Accuracy of Raman lidar water vapor calibration and its applicability to long-term measurements”. Appl. Opt. 2011, 50, 2170–2176. [Google Scholar] [CrossRef]
- Navas-Guzmán, F.; Fernández-Gálvez, J.; Granados-Muñoz, M.J.; Guerrero-Rascado, J.L.; Bravo-Aranda, J.A.; Alados-Arboledas, L. Tropospheric water vapour and relative humidity profiles from lidar and microwave radiometry. Atmos. Meas. Tech. 2014, 7, 1201–1211. [Google Scholar] [CrossRef]
- Sica, R.J.; Haefele, A. Retrieval of water vapor mixing ratio from a multiple channel Raman-scatter lidar using an optimal estimation method. Appl. Opt. 2016, 55, 763–777. [Google Scholar] [CrossRef]
- Kulla, B.S.; Ritter, C. Water vapor calibration: Using a raman lidar and radiosoundings to obtain highly resolvedwater vapor profiles. Remote Sens. 2019, 11, 616. [Google Scholar] [CrossRef]
- Turner, D.D.; Lesht, B.M.; Clough, S.A.; Liljegren, J.C.; Revercomb, H.E.; Tobin, D.C. Dry bias and variability in Vaisala RS80-H radiosondes: The ARM experience. J. Atmos. Ocean. Technol. 2003, 20, 117–132. [Google Scholar] [CrossRef]
- Guerrero-Rascado, J.L.; Ruiz, B.; Chourdakis, G.; Georgoussis, G.; Alados-Arboledas, L. One year of water vapour raman lidar measurements at the andalusian centre for environmental studies (CEAMA). Int. J. Remote Sens. 2008, 29, 5437–5453. [Google Scholar] [CrossRef]
- Whiteman, D.N. Examination of the traditional Raman lidar technique I Evaluating the temperature-dependent lidar equations. Appl. Opt. 2003, 42, 2571–2592. [Google Scholar] [CrossRef]
- Whiteman, D.N.; Melfi, S.H.; Ferrare, R.A. Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere. Appl. Opt. 1992, 31, 3068–3082. [Google Scholar] [CrossRef]
- Whiteman, D.N. Examination of the traditional Raman lidar technique II Evaluating the ratios for water vapor and aerosols. Appl. Opt. 2003, 42, 2593–2608. [Google Scholar] [CrossRef]
- Brocard, E.; Philipona, R.; Haefele, A.; Romanens, G.; Mueller, A.; Ruffieux, D.; Simeonov, V.; Calpini, B. Raman lidar for meteorological observations, RALMO—Part 2: Validation of water vapor measurements. Atmos. Meas. Tech. 2013, 6, 1347–1358. [Google Scholar] [CrossRef]
- Foth, A.; Baars, H.; Girolamo, P.D.; Pospichal, B. Water vapour profiles from raman lidar automatically calibrated by microwave radiometer data during hope. Atmos. Chem. Phys. 2015, 15, 7753–7763. [Google Scholar] [CrossRef]
- Dai, G.; Althausen, D.; Hofer, J.; Engelmann, R.; Seifert, P.; Bühl, J.; Mamouri, R.E.; Wu, S.; Ansmann, A. Calibration of Raman lidar water vapor profiles by means of AERONET photometer observations and GDAS meteorological data. Atmos. Meas. Tech. 2018, 11, 2735–2748. [Google Scholar] [CrossRef]
- Martucci, G.; Voirin, J.; Simeonov, V.; Renaud, L.; Haefele, A. A novel automatic calibration system for water vapor Raman LIDAR. In Proceedings of the EPJ Web of Conferences, Crete, Greece, 17–29 August 2018; Volume 176. [Google Scholar] [CrossRef]
- Di Girolamo, P.; Rosa, B.D.; Flamant, C.; Summa, D.; Bousquet, O.; Chazette, P.; Totems, J.; Cacciani, M. Water vapor mixing ratio and temperature inter-comparison results in the framework of the Hydrological Cycle in the Mediterranean Experiment—Special Observation Period 1. Bull. Atmos. Sci. Technol. 2020, 1, 113–153. [Google Scholar] [CrossRef]
- Laj, P.; Lund Myhre, C.; Riffault, V.; Amiridis, V.; Fuchs, H.; Eleftheriadis, K.; Petäjä, T.; Salameh, T.; Kivekäs, N.; Juurola, E.; et al. Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS): The European Research Infrastructure Supporting Atmospheric Science. Bull. Am. Meteorol. Soc. 2024, 105, E1098–E1136. [Google Scholar] [CrossRef]
- Veselovskii, I.; Whiteman, D.N.; Korenskiy, M.; Suvorina, A.; Perez-Ramirez, D. Use of rotational Raman measurements in multiwavelength aerosol lidar for evaluation of particle backscattering and extinction. Atmos. Meas. Tech. 2015, 8, 4111–4122. [Google Scholar] [CrossRef]
- Wu, D.; Wang, Z.; Wechsler, P.; Mahon, N.; Deng, M.; Glover, B.; Burkhart, M.; Kuestner, W.; Heesen, B. Airborne compact rotational Raman lidar for temperature measurement. Opt. Express 2016, 24, A1210–A1223. [Google Scholar] [CrossRef]
- Martucci, G.; Navas-Guzmán, F.; Renaud, L.; Romanens, G.; Gamage, S.M.; Hervo, M.; Jeannet, P.; Haefele, A. Validation of pure rotational Raman temperature data from the Raman Lidar for Meteorological Observations (RALMO) at Payerne. Atmos. Meas. Tech. 2021, 14, 1333–1353. [Google Scholar] [CrossRef]
- JCFG/GUM. Guide to the Expression of Uncertainty in Measurement—Part 6: Developing and Using Measurement Models; JCFG/GUM: Saint-Cloud, France, 2020. [Google Scholar]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Bazo, E.; Perez-Ramirez, D.; Valenzuela, A.; Martins, V.; Titos, G.; Cazorla, A.; Rejano, F.; Patrón, D.; Diaz-Zurita, A.; Garcia-Izquierdo, F.J.; et al. Phase matrix characterization of long-range transported Saharan dust using multiwavelength polarized polar imaging nephelometry. Atmos. Chem. Phys. 2024, 2024, 1–29. [Google Scholar] [CrossRef]
- Ortiz-Amezcua, P. Atmospheric Profiling Based on Aerosol and Doppler Lidar. Ph.D. Thesis, Universidad de Granada, Granada, Spain, 2019. [Google Scholar]
- Wandinger, U.; Apituley, A.; Blumenstock, T.; Bukowiecki, N.; Cammas, J.P.; Connolly, P.; de Maziere, M.; Dils, B.; Fiebig, M.; Freney, E.; et al. ACTRIS PPP D5.1: Documentation on Technical Concepts and Requirements for ACTRIS Observational Platforms. Ph.D. Thesis, Leibniz Institute for Tropospheric Research, Leipzig, Germany, 2018. [Google Scholar]
- Giles, D.M.; Sinyuk, A.; Sorokin, M.G.; Schafer, J.S.; Smirnov, A.; Slutsker, I.; Eck, T.F.; Holben, B.N.; Lewis, J.R.; Campbell, J.R.; et al. Advancements in the Aerosol Robotic Network (AERONET) Version 3 database—Automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech. 2019, 12, 169–209. [Google Scholar] [CrossRef]
- Whiteman, D.N.; Demoz, B.; Girolamo, P.D.; Comer, J.; Veselovskii, I.; Evans, K.; Wang, Z.; Cadirola, M.; Rush, K.; Schwemmer, G.; et al. Raman lidar measurements during the International H2O Project. Part I: Instrumentation and analysis techniques. J. Atmos. Ocean. Technol. 2006, 23, 157–169. [Google Scholar] [CrossRef]
- Goldsmith, J.E. Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols. Appl. Opt. 1998, 37, 4979–4990. [Google Scholar] [CrossRef]
- Bucholtz, A. Rayleigh-scattering calculations for the terrestrial atmosphere. Appl. Opt. 1995, 34, 2765–2773. [Google Scholar] [CrossRef]
- O’Connor, E. Model Data from Granada on 13 February 2025; ACTRIS Cloud Remote Sensing Data Centre Unit (CLU): Helsinki, Finland, 2025. [Google Scholar]
- Ansmann, A.; Riebesell, M.; Weitkamp, C. Measurement of atmospheric aerosol extinction profiles with a Raman lidar. Opt. Lett. 1990, 15, 746–748. [Google Scholar] [CrossRef]
- Klett, J.D. Stable analytical inversion solution for processing lidar returns. Appl. Opt. 1981, 20, 211–220. [Google Scholar] [CrossRef]
- Klett, J.D. Lidar inversion with variable backscatter/extinction ratios. Appl. Opt. 1985, 24, 1638–1643. [Google Scholar] [CrossRef]
- Müller, D.; Ansmann, A.; Mattis, I.; Tesche, M.; Wandinger, U.; Althausen, D.; Pisani, G. Aerosol-type-dependent lidar ratios observed with Raman lidar. JGR Atmos. 2007, 112, 411. [Google Scholar] [CrossRef]
- Guerrero-Rascado, J.L.; Olmo, F.J.; Avilés-Rodríguez, I.; Navas-Guzmán, F.; Pérez-Ramírez, D.; Lyamani, H.; Arboledas, L.A. Extreme saharan dust event over the southern iberian peninsula in september 2007: Active and passive remote sensing from surface and satellite. Atmos. Chem. Phys. 2009, 9, 8453–8469. [Google Scholar] [CrossRef]
- Ångström, A. On the Atmospheric Transmission of Sun Radiation and on Dust in the Air. Geogr. Ann. Ser. B 1929, 11, 156–166. [Google Scholar] [CrossRef]
- Gras, J.L. Southern Hemisphere tropospheric aerosol microphysics. J. Geophys. Res. Atmos. 1991, 96, 5345–5356. [Google Scholar] [CrossRef]
- Moreira, G.D.A.; Guerrero-Rascado, J.L.; Bravo-Aranda, J.A.; Foyo-Moreno, I.; Cazorla, A.; Alados, I.; Lyamani, H.; Landulfo, E.; Alados-Arboledas, L. Study of the planetary boundary layer height in an urban environment using a combination of microwave radiometer and ceilometer. Atmos. Res. 2020, 240, 104932. [Google Scholar] [CrossRef]
- Li, J.; Li, C.; Guo, J.; Li, J.; Tan, W.; Kang, L.; Chen, D.; Song, T.; Liu, L. Retrieval of aerosol profiles by Raman lidar with dynamic determination of the lidar equation reference height. Atmos. Environ. 2019, 199, 252–259. [Google Scholar] [CrossRef]
- Xie, C.B.; Zhou, J.; Wang, Z.F.; Sugimoto, N. Aerosol observation with Raman LIDAR in Beijing, China. J. Opt. Soc. Korea 2010, 14, 215–220. [Google Scholar] [CrossRef]
- Sicard, M.; Rocadenbosch, F.; Reba, M.N.; ComerÓn, A.; Tomás, S.; García-Vízcaino, D.; Batet, O.; Barrios, R.; Kumar, D.; Baldasano, J.M. Seasonal variability of aerosol optical properties observed by means of a Raman lidar at an EARLINET site over Northeastern Spain. Atmos. Chem. Phys. 2011, 11, 175–190. [Google Scholar] [CrossRef]
- Mamouri, R.E.; Papayannis, A.; Amiridis, V.; Müller, D.; Kokkalis, P.; Rapsomanikis, S.; Karageorgos, E.T.; Tsaknakis, G.; Nenes, A.; Kazadzis, S.; et al. Multi-wavelength Raman lidar, sun photometric and aircraft measurements in combination with inversion models for the estimation of the aerosol optical and physico-chemical properties over Athens, Greece. Atmos. Meas. Tech. 2012, 5, 1793–1808. [Google Scholar] [CrossRef]
- Pérez-Ramírez, D.; Ruiz, B.; Aceituno, J.; Olmo, F.J.; Alados-Arboledas, L. Application of Sun/star photometry to derive the aerosol optical depth. Int. J. Remote Sens. 2008, 29, 5113–5132. [Google Scholar] [CrossRef]
- Pérez-Ramírez, D.; Lyamani, H.; Olmo, F.J.; Alados-Arboledas, L. Improvements in star photometry for aerosol characterizations. J. Aerosol. Sci. 2011, 42, 737–745. [Google Scholar] [CrossRef]
- Barreto, A.; Román, R.; Cuevas, E.; Pérez-Ramírez, D.; Berjón, A.J.; Kouremeti, N.; Kazadzis, S.; Gröbner, J.; Mazzola, M.; Toledano, C.; et al. Evaluation of night-time aerosols measurements and lunar irradiance models in the frame of the first multi-instrument nocturnal intercomparison campaign. Atmos. Environ. 2019, 202, 190–211. [Google Scholar] [CrossRef]






| First Optical Configuration: at ∼387 nm and at ∼408 nm | ||
|---|---|---|
| Mean ± SD | ||
| at 3.0 km agl | at 6.0 km agl | |
| Molecular | 0.977 ± 0.003 (2.2%) | 0.962 ± 0.001 (3.8%) |
| Aerosol | 0.988 ± 0.007 (1.2%) | 0.987 ± 0.008 (1.3%) |
| Total | 0.966 ± 0.007 (3.4%) | 0.949 ± 0.007 (5.1%) |
| Second Optical Configuration: at ∼354 nm and at ∼408 nm | ||
| Mean ± SD | ||
| at 3.0 km agl | at 6.0 km agl | |
| Molecular | 0.929 ± 0.001 (7.0%) | 0.88 ± 0.01 (12%) |
| Aerosol | 0.97 ± 0.02 (3.3%) | 0.96 ± 0.02 (4.0%) |
| Total | 0.90 ± 0.02 (10%) | 0.85 ± 0.02 (15%) |
| First Optical Configuration: at ∼387 nm and at ∼408 nm | |||
|---|---|---|---|
| Mean ± SD of the total | |||
| Aerosol loading conditions by AOD at 355 nm | at 3.0 km agl | at 6.0 km agl | |
| Molecular | = 0 | 0.977 ± 0.003 (2.2%) | 0.962 ± 0.001 (3.8%) |
| Low aerosol load | < 0.18 | 0.97 ± 0.01 (3.0%) | 0.95 ± 0.02 (4.5%) |
| Medium aerosol load | 0.18 ≤ < 0.38 | 0.97 ± 0.01 (3.3%) | 0.95 ± 0.01 (5.0%) |
| High aerosol load | ≥ 0.38 | 0.96 ± 0.01 (4.0%) | 0.94 ± 0.01 (6.0%) |
| Second Optical Configuration: at ∼354 nm and at ∼408 nm | |||
| Mean ± SD of the total | |||
| Aerosol loading conditions by AOD at 355 nm | at 3.0 km agl | at 6.0 km agl | |
| Molecular | = 0 | 0.929 ± 0.001 (7.0%) | 0.88 ± 0.01 (12%) |
| Low aerosol load | < 0.18 | 0.90 ± 0.01 (9.5%) | 0.86± 0.01 (14%) |
| Medium aerosol load | 0.18 ≤ < 0.38 | 0.90 ± 0.02 (10%) | 0.85 ± 0.01 (15%) |
| High aerosol load | ≥ 0.38 | 0.88 ± 0.02 (12%) | 0.82 ± 0.02 (18%) |
| Datasets | Slope | Intercept | Mean ± SD | RMSE | |
|---|---|---|---|---|---|
| Total | 0.93 ± 0.03 | 0.04 ± 0.01 | 0.80 | 0.03 ± 0.04 | 0.05 |
| Daytime | 0.96 ± 0.03 | 0.05 ± 0.01 | 0.85 | 0.03 ± 0.04 | 0.05 |
| Nighttime | 0.56 ± 0.06 | 0.09 ± 0.01 | 0.66 | −0.01 ± 0.04 | 0.05 |
| First Optical Configuration: at ∼387 nm and at ∼408 nm | ||
|---|---|---|
| Mean ± SD | ||
| at 3.0 km agl | at 6.0 km agl | |
| Aerosol (Lidar) | 0.988 ± 0.007 (1.2%) | 0.987 ± 0.008 (1.3%) |
| Aerosol (Simulated) | 0.989 ± 0.007 (1.1%) | 0.988 ± 0.008 (1.2%) |
| Differences in | at 3.0 km agl | at 6.0 km agl |
| Lidar-Simulated | 0.001 ± 0.001 (0.10%) | 0.001 ± 0.001 (0.10%) |
| Second Optical Configuration: at ∼354 nm and at ∼408 nm | ||
| Mean ± SD | ||
| at 3.0 km agl | at 6.0 km agl | |
| Aerosol (Lidar) | 0.97 ± 0.02 (3.3%) | 0.96 ± 0.02 (4.0%) |
| Aerosol (Simulated) | 0.97 ± 0.01 (3.0%) | 0.96 ± 0.01 (3.5%) |
| Differences in | at 3.0 km agl | at 6.0 km agl |
| Lidar-Simulated | 0.003 ± 0.002 (0.30%) | 0.004 ± 0.002 (0.40%) |
| Case I: 11 July 2016 at 20:50 UTC, First Optical Configuration | |||
|---|---|---|---|
| 0.0–3.0 km agl | 3.0–6.0 km agl | 0.0–6.0 km agl | |
| r (g/kg) | −0.16 ± 0.10 (−2.5%) | 0.01 ± 0.03 (−2.0%) | −0.08 ± 0.11 (−2.3%) |
| Precipitable Water Vapour (Without ): 18.42 ± 0.20 mm | |||
| Precipitable Water Vapour (With ): 18.90 ± 0.19 mm | |||
| Precipitable Water Vapour (GNSS): 19.04 ± 0.33 mm | |||
| Case II: 24 August 2017 at 19:36 UTC, Second Optical Configuration | |||
| 0.0–3.0 km agl | 3.0–6.0 km agl | 0.0–6.0 km agl | |
| r (g/kg) | −0.41 ± 0.20 (−7.0%) | −0.04 ± 0.05 (−0.7%) | −0.22 ± 0.23 (−4.0%) |
| Precipitable Water Vapour (Without ): 20.03 ± 0.11 mm | |||
| Precipitable Water Vapour (With ): 21.25 ± 0.12 mm | |||
| Precipitable Water Vapour (GNSS): 21.20 ± 0.33 mm | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz-Zurita, A.; Naval-Hernández, V.M.; Whiteman, D.N.; Rodríguez-Navarro, O.; Muñiz-Rosado, J.; Pérez-Ramírez, D.; Alados-Arboledas, L.; Navas-Guzmán, F. Sensitivity Analysis of the Differential Atmospheric Transmission in Water Vapour Mixing Ratio Retrieval from Raman Lidar Measurements. Remote Sens. 2025, 17, 3444. https://doi.org/10.3390/rs17203444
Díaz-Zurita A, Naval-Hernández VM, Whiteman DN, Rodríguez-Navarro O, Muñiz-Rosado J, Pérez-Ramírez D, Alados-Arboledas L, Navas-Guzmán F. Sensitivity Analysis of the Differential Atmospheric Transmission in Water Vapour Mixing Ratio Retrieval from Raman Lidar Measurements. Remote Sensing. 2025; 17(20):3444. https://doi.org/10.3390/rs17203444
Chicago/Turabian StyleDíaz-Zurita, Arlett, Víctor M. Naval-Hernández, David N. Whiteman, Onel Rodríguez-Navarro, Jorge Muñiz-Rosado, Daniel Pérez-Ramírez, Lucas Alados-Arboledas, and Francisco Navas-Guzmán. 2025. "Sensitivity Analysis of the Differential Atmospheric Transmission in Water Vapour Mixing Ratio Retrieval from Raman Lidar Measurements" Remote Sensing 17, no. 20: 3444. https://doi.org/10.3390/rs17203444
APA StyleDíaz-Zurita, A., Naval-Hernández, V. M., Whiteman, D. N., Rodríguez-Navarro, O., Muñiz-Rosado, J., Pérez-Ramírez, D., Alados-Arboledas, L., & Navas-Guzmán, F. (2025). Sensitivity Analysis of the Differential Atmospheric Transmission in Water Vapour Mixing Ratio Retrieval from Raman Lidar Measurements. Remote Sensing, 17(20), 3444. https://doi.org/10.3390/rs17203444

