Style Transfer from Sentinel-1 to Sentinel-2 for Fluvial Scenes with Multi-Modal and Multi-Temporal Image Fusion
Abstract
Highlights
- Fusion of an 8-year cloud-free composite mosaic of Sentinel-2 NIR data (band 8) to Sentinel-1 VV and VH SAR imagery enhances deep learning style transfer and delivers high-quality synthetic Sentinel-2 imagery that is 100% cloud-free.
- Our single model, trained on a global, multi-annual, and multi-seasonal dataset of 1.4 million samples, can synthesize cloud-free Sentinel-2 imagery for 99.2% of the globe.
- When used in an existing semantic classification pipeline designed for native Sentinel-2 imagery, our cloud-free synthetic Sentinel-2 imagery reaches an IoU score of 0.93 against an external benchmark, whereas native Sentinel-2 imagery achieves an IoU of 0.94.
- This method allows for semantic classification approaches focused on water to function in any cloud condition, which enhances our ability to remotely detect and monitor high discharge events at global scales with the native 10 m resolution of Sentinel-2 data.
Abstract
1. Introduction
1.1. Aim
1.2. Specific Objectives
- 1.
- Perform a style transfer (i.e., translation) from Sentinel-1 SAR imagery to Sentinel-2 optical imagery;
- 2.
- Function in conditions with as much as 100% cloud;
- 3.
- Data-sparse and computationally efficient, thus capable of global processing;
- 4.
- Optimized to deliver synthetic optical imagery suited to the specific task of semantic classification of fluvial features with an existing deep learning model [2].
2. Methods
2.1. Key Innovations
2.2. Full Archive Cloud-Free Mosaics
2.3. Study Area, Data, and Sampling Sites
2.4. External Testing Data
2.5. Model Architecture
2.6. Data Augmentation
2.7. Loss Functions and Training
2.8. Experimental Structure
3. Results
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Billson, J.; Islam, M.D.S.; Sun, X.; Cheng, I. Water Body Extraction from Sentinel-2 Imagery with Deep Convolutional Networks and Pixelwise Category Transplantation. Remote Sens. 2023, 15, 1253. [Google Scholar] [CrossRef]
- Carbonneau, P.E. Global Semantic Classification of Fluvial Landscapes with Attention-Based Deep Learning. Remote Sens. 2024, 16, 4747. [Google Scholar] [CrossRef]
- Carbonneau, P.E.; Bizzi, S. Global Mapping of River Sediment Bars. Earth Surf. Process. Landf. 2024, 49, 15–23. [Google Scholar] [CrossRef]
- Grill, G.; Lehner, B.; Thieme, M.; Geenen, B.; Tickner, D.; Antonelli, F.; Babu, S.; Borrelli, P.; Cheng, L.; Crochetiere, H.; et al. Mapping the World’s Free-Flowing Rivers. Nature 2019, 569, 215–221. [Google Scholar] [CrossRef]
- Linke, S.; Lehner, B.; Ouellet Dallaire, C.; Ariwi, J.; Grill, G.; Anand, M.; Beames, P.; Burchard-Levine, V.; Maxwell, S.; Moidu, H.; et al. Global Hydro-Environmental Sub-Basin and River Reach Characteristics at High Spatial Resolution. Sci. Data 2019, 6, 283. [Google Scholar] [CrossRef]
- Moortgat, J.; Li, Z.; Durand, M.; Howat, I.; Yadav, B.; Dai, C. Deep Learning Models for River Classification at Sub-Meter Resolutions from Multispectral and Panchromatic Commercial Satellite Imagery. Remote Sens. Environ. 2022, 282, 113279. [Google Scholar] [CrossRef]
- Nyberg, B.; Henstra, G.; Gawthorpe, R.L.; Ravnås, R.; Ahokas, J. Global Scale Analysis on the Extent of River Channel Belts. Nat. Commun. 2023, 14, 2163. [Google Scholar] [CrossRef]
- Valman, S.J.; Boyd, D.S.; Carbonneau, P.E.; Johnson, M.F.; Dugdale, S.J. An AI Approach to Operationalise Global Daily PlanetScope Satellite Imagery for River Water Masking. Remote Sens. Environ. 2024, 301, 113932. [Google Scholar] [CrossRef]
- Wieland, M.; Fichtner, F.; Martinis, S.; Groth, S.; Krullikowski, C.; Plank, S.; Motagh, M. S1S2-Water: A Global Dataset for Semantic Segmentation of Water Bodies from Sentinel- 1 and Sentinel-2 Satellite Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 1084–1099. [Google Scholar] [CrossRef]
- Carbonneau, P.E.; Dugdale, S.J.; Breckon, T.P.; Dietrich, J.T.; Fonstad, M.A.; Miyamoto, H.; Woodget, A.S. Adopting Deep Learning Methods for Airborne RGB Fluvial Scene Classification. Remote Sens. Environ. 2020, 251, 112107. [Google Scholar] [CrossRef]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-Resolution Mapping of Global Surface Water and Its Long-Term Changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Carbonneau, P.; Bizzi, S. Seasonal Monitoring of River and Lake Water Surface Areas at Global Scale with Deep Learning. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Bioresita, A.; Puissant, A.; Stumpf, A.; Malet, J.-P. A Method for Automated and Rapid Mapping of Water Bodies and Floods Using Sentinel-1 GRD SAR Data. Remote Sens. 2018, 10, 217. [Google Scholar] [CrossRef]
- Huth, J.; Gessner, U.; Klein, I.; Yésou, H.; Lai, X.; Oppelt, N.; Kuenzer, C. Analyzing Water Dynamics Based on Sentinel-1 Time Series—A Study for Dongting Lake Wetlands in China. Remote Sens. 2020, 12, 1761. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, H.; Wang, C.; Ge, J.; Wu, F. Water Surface Mapping from Sentinel-1 Imagery Based on Attention-UNet3+: A Case Study of Poyang Lake Region. Remote Sens. 2022, 14, 4708. [Google Scholar] [CrossRef]
- Oakes, G.; Hardy, A.; Bunting, P.; Rosenqvist, A. RadWet-L: A Novel Approach for Mapping of Inundation Dynamics of Forested Wetlands Using ALOS-2 PALSAR-2 L-Band Radar Imagery. Remote Sens. 2024, 16, 2078. [Google Scholar] [CrossRef]
- Shen, G.; Fu, W.; Guo, H.; Liao, J. Water Body Mapping Using Long Time Series Sentinel-1 SAR Data: A Case Study of Poyang Lake. Water 2022, 14, 1902. [Google Scholar] [CrossRef]
- Twele, A.; Cao, W.; Plank, S.; Martinis, S. Sentinel-1-Based Flood Mapping: A Fully Automated Processing Chain. Int. J. Remote Sens. 2016, 37, 2990–3004. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, F.; Ling, F.; Du, Y. Monitoring Surface Water Inundation of Poyang Lake and Dongting Lake in China Using Sentinel-1 SAR Images. Remote Sens. 2022, 14, 3473. [Google Scholar] [CrossRef]
- Xing, L.; Tang, X.; Wang, H.; Fan, W.; Wang, G. Monitoring Monthly Surface Water Dynamics of Dongting Lake Using Sentinel-1 Data at 10 m. PeerJ 2018, 6, e4992. [Google Scholar] [CrossRef] [PubMed]
- Gulácsi, A.; Kovács, F. Sentinel-1–Imagery-Based High-Resolution Water Cover Detection on Wetlands, Aided by Google Earth Engine. Remote Sens. 2020, 12, 1614. [Google Scholar] [CrossRef]
- Chamatidis, I.; Istrati, D.; Lagaros, N.D. Vision Transformer for Flood Detection Using Satellite Images from Sentinel-1 and Sentinel-2. Water 2024, 16, 1670. [Google Scholar] [CrossRef]
- Meraner, A.; Ebel, P.; Zhu, X.X.; Schmitt, M. Cloud Removal in Sentinel-2 Imagery Using a Deep Residual Neural Network and SAR-Optical Data Fusion. ISPRS J. Photogramm. Remote Sens. 2020, 166, 333–346. [Google Scholar] [CrossRef] [PubMed]
- Isola, P.; Zhu, J.-Y.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks. arXiv 2018, arXiv:1611.07004. [Google Scholar]
- Tsai, Y.-H.; Hung, W.-C.; Schulter, S.; Sohn, K.; Yang, M.-H.; Chandraker, M. Learning to Adapt Structured Output Space for Semantic Segmentation. arXiv 2020, arXiv:1802.10349. [Google Scholar] [CrossRef]
- Simonetti, D.; Pimple, U.; Langner, A.; Marelli, A. Pan-Tropical Sentinel-2 Cloud-Free Annual Composite Datasets. Data Brief 2021, 39, 107488. [Google Scholar] [CrossRef]
- Ao, D.; Dumitru, C.O.; Schwarz, G.; Datcu, M. Dialectical Generative Adversarial Networks for SAR Image Translation: From Sentinel-1 to TerraSAR-X. Remote Sens. 2018, 10, 1597. [Google Scholar] [CrossRef]
- Çolak, E.; Sunar, F. A Comparison between CycleGAN Based Feature Translation and Optical-SAR Vegetation Indices. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2022, XLIII-B3-2022, 583–590. [Google Scholar] [CrossRef]
- Guo, Z.; Guo, H.; Liu, X.; Zhou, W.; Wang, Y.; Fan, Y. Sar2color: Learning Imaging Characteristics of SAR Images for SAR-to-Optical Transformation. Remote Sens. 2022, 14, 3740. [Google Scholar] [CrossRef]
- Ebel, P.; Meraner, A.; Schmitt, M.; Zhu, X.X. Multisensor Data Fusion for Cloud Removal in Global and All-Season Sentinel-2 Imagery. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5866–5878. [Google Scholar] [CrossRef]
- Do, J.; Lee, J.; Kim, M. C-DiffSET: Leveraging Latent Diffusion for SAR-to-EO Image Translation with Confidence-Guided Reliable Object Generation. arXiv 2024, arXiv:2411.10788. [Google Scholar]
- Zhang, M.; Zhang, P.; Zhang, Y.; Yang, M.; Li, X.; Dong, X.; Yang, L. SAR-to-Optical Image Translation via an Interpretable Network. Remote Sens. 2024, 16, 242. [Google Scholar] [CrossRef]
- Li, M.; Lin, J.; Ding, Y.; Liu, Z.; Zhu, J.-Y.; Han, S. GAN Compression: Efficient Architectures for Interactive Conditional GANs. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 9331–9346. [Google Scholar] [CrossRef] [PubMed]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. arXiv 2023, arXiv:1706.03762. [Google Scholar]
- Buslaev, A.; Iglovikov, V.I.; Khvedchenya, E.; Parinov, A.; Druzhinin, M.; Kalinin, A.A. Albumentations: Fast and Flexible Image Augmentations. Information 2020, 11, 125. [Google Scholar] [CrossRef]
- Johnson, J.; Alahi, A.; Fei-Fei, L. Perceptual Losses for Real-Time Style Transfer and Super-Resolution. arXiv 2016, arXiv:1603.08155. [Google Scholar] [CrossRef]
- Fakhri, F.; Gkanatsios, I. Quantitative Evaluation of Flood Extent Detection Using Attention U-Net Case Studies from Eastern South Wales Australia in March 2021 and July 2022. Sci. Rep. 2025, 15, 12377. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiong, J.; Li, X.; Li, Y.; Liu, J. A SAR-Based Flood Mapping Approach: Application of SAR-SIFT Registration and Modified DeepLabV3 Segmentation in Flood Hazard Assessment. Geocarto Int. 2025, 40, 2512188. [Google Scholar] [CrossRef]
- Ghosh, B.; Garg, S.; Motagh, M.; Martinis, S. Automatic Flood Detection from Sentinel-1 Data Using a Nested UNet Model and a NASA Benchmark Dataset. PFG-J. Photogramm. Remote Sens. Geoinf. Sci. 2024, 92, 1–18. [Google Scholar] [CrossRef]
- Zhang, Z.; Giezendanner, J.; Mukherjee, R.; Tellman, B.; Melancon, A.; Purri, M.; Gurung, I.; Lall, U.; Barnard, K.; Molthan, A. Assessing Inundation Semantic Segmentation Models Trained on High- versus Low-Resolution Labels Using FloodPlanet, a Manually Labeled Multi-Sourced High-Resolution Flood Dataset. J. Remote Sens. 2025, 5, 0575. [Google Scholar] [CrossRef]
- Yamazaki, D.; Ikeshima, D.; Sosa, J.; Bates, P.D.; Allen, G.H.; Pavelsky, T.M. MERIT Hydro: A High-Resolution Global Hydrography Map Based on Latest Topography Dataset. Water Resour. Res. 2019, 55, 5053–5073. [Google Scholar] [CrossRef]
- Lehner, B.; Grill, G. Global River Hydrography and Network Routing: Baseline Data and New Approaches to Study the World’s Large River Systems. Hydrol. Process. 2013, 27, 2171–2186. [Google Scholar] [CrossRef]
- Carbonneau, P.E. S1-to-S2-Style-Transfer: A Model and Demo Script to Predict Sentinel 2 Images Based on Sentinel 1 Inputs. Available online: https://github.com/PCarbonneauDurham/S1-to-S2-Style-transfer (accessed on 29 August 2025).









| Water | Rivers | Lakes | Gravel Bars | |
|---|---|---|---|---|
| With cloud-free B8 | 0.91 | 0.87 | 0.89 | 0.75 |
| Without cloud-free B8 | 0.85 | 0.84 | 0.81 | 0.71 |
| Water | Rivers | Lakes | Gravel Bars | |
|---|---|---|---|---|
| With cloud-free B8 | 0.89 | 0.88 | 0.80 | 0.76 |
| Without cloud-free B8 | 0.86 | 0.86 | 0.62 | 0.72 |
| Sentinel-2 cloud-free image bands 8, 4, and 3 | 0.46 | 0.42 | 0.53 | 0.46 |
| Precision | Recall | F1 | IoU | Kappa | |
|---|---|---|---|---|---|
| With cloud-free B8 | 0.97 | 0.95 | 0.96 | 0.93 | 0.95 |
| Without cloud-free B8 | 0.80 | 0.79 | 0.76 | 0.70 | 0.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carbonneau, P.E. Style Transfer from Sentinel-1 to Sentinel-2 for Fluvial Scenes with Multi-Modal and Multi-Temporal Image Fusion. Remote Sens. 2025, 17, 3445. https://doi.org/10.3390/rs17203445
Carbonneau PE. Style Transfer from Sentinel-1 to Sentinel-2 for Fluvial Scenes with Multi-Modal and Multi-Temporal Image Fusion. Remote Sensing. 2025; 17(20):3445. https://doi.org/10.3390/rs17203445
Chicago/Turabian StyleCarbonneau, Patrice E. 2025. "Style Transfer from Sentinel-1 to Sentinel-2 for Fluvial Scenes with Multi-Modal and Multi-Temporal Image Fusion" Remote Sensing 17, no. 20: 3445. https://doi.org/10.3390/rs17203445
APA StyleCarbonneau, P. E. (2025). Style Transfer from Sentinel-1 to Sentinel-2 for Fluvial Scenes with Multi-Modal and Multi-Temporal Image Fusion. Remote Sensing, 17(20), 3445. https://doi.org/10.3390/rs17203445

