Inverse Synthetic Aperture Radar Image Multi-Modal Zero-Shot Learning Based on the Scattering Center Model and Neighbor-Adapted Locally Linear Embedding
Abstract
:1. Introduction
- We extract the structure of targets from optical images and reduce the influence of color. Based on this structure, we use the GTD-based scattering centers model to generate the ISAR images of edges.
- By employing NALLE, we modify the factors affecting the amplitude of the scattering centers, which are ignored in the edges’ ISAR image. This adjustment makes the pseudo-ISAR images more similar to the real ISAR images, improving the accuracy of MZSL.
- We introduce a framework for generating ISAR images with optical images aiding in achieving MZSL. This framework avoids network-based methods, ensuring interpretability. The algorithms within this framework are changeable and highly flexible.
2. ISAR Signal Model
3. Proposed Method
3.1. The Framework of the Algorithm
3.2. Generate ISAR Images of Edges from Optical Images
3.3. Generate Pseudo-ISAR Images with NALLE
- Find the K nearest neighbors of in , denoted as .
- Reconstruct using these K neighbors. Calculate the matrix to obtain the weight that minimizes the reconstruction error .
- Locate the utilizing the mapping with , and reconstruct the ISAR image patch by applying the weight to the in .
3.4. MZSL with Pseudo-ISAR Images
4. Results
4.1. Experiments with Simulated Data
4.2. Experiments with Measured Data
5. Discussion
5.1. Experiments with Simulated Data
5.2. Experiments with Measured Data
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ISAR | Inverse Synthetic Aperture Radar |
RATR | Radar Automatic Target Recognition |
ZSL | Zero-Shot Learning |
MZSL | Multi-modal Zero-Shot Learning |
LLE | Local Linear Embedding |
NALLE | Neighbor-Adapted Local Linear Embedding |
GTD | Geometric Theory of Diffraction |
ASC | Attribute Scattering Center |
PCA | Principal Component Analysis |
References
- Li, J.; Xu, C.; Su, H.; Gao, L.; Wang, T. Deep learning for SAR ship detection: Past, present and future. Remote Sens. 2022, 14, 2712. [Google Scholar] [CrossRef]
- Yuan, H.; Li, H.; Zhang, Y.; Wei, C.; Gao, R. Complex-Valued Multiscale Vision Transformer on Space Target Recognition by ISAR Image Sequence. IEEE Geosci. Remote Sens. Lett. 2024, 21, 1–5. [Google Scholar] [CrossRef]
- Shao, S.; Liu, H.; Yan, J. Integration of Imaging and Recognition for Marine Targets in Fast-Changing Attitudes With Multistation Wideband Radars. IEEE Trans. Aerosp. Electron. Syst. 2024, 60, 1692–1710. [Google Scholar] [CrossRef]
- Larochelle, H.; Erhan, D.; Bengio, Y. Zero-data learning of new tasks. In Proceedings of the AAAI, Chicago, IL, USA, 13–17 July 2008; Volume 1, pp. 646–651. [Google Scholar]
- Lampert, C.H.; Nickisch, H.; Harmeling, S. Learning to detect unseen object classes by between-class attribute transfer. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 951–958. [Google Scholar]
- Wang, W.; Zheng, V.W.; Yu, H.; Miao, C. A Survey of Zero-Shot Learning: Settings, Methods, and Applications. ACM Trans. Intell. Syst. Technol. 2019, 10, 1–37. [Google Scholar] [CrossRef]
- Cao, W.; Wu, Y.; Sun, Y.; Zhang, H.; Ren, J.; Gu, D.; Wang, X. A review on multimodal zero-shot learning. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2023, 13, e1488. [Google Scholar] [CrossRef]
- Deng, X.; Xu, J.; Gao, F.; Sun, X.; Xu, M. Deep-M2CDL: Deep Multi-Scale Multi-Modal Convolutional Dictionary Learning Network. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 2770–2787. [Google Scholar] [CrossRef]
- Ma, Y.; Pei, J.; Zhang, X.; Huo, W.; Zhang, Y.; Huang, Y.; Yang, J. An optical image-aided approach for zero-shot SAR image scene classification. In Proceedings of the 2023 IEEE Radar Conference (RadarConf23), San Antonio, TX, USA, 1–5 May 2023; pp. 1–6. [Google Scholar]
- Gui, R.; Xu, X.; Wang, L.; Yang, R.; Pu, F. A generalized zero-shot learning framework for PolSAR land cover classification. Remote Sens. 2018, 10, 1307. [Google Scholar] [CrossRef]
- Yan, K.; Sun, Y.; Li, W. Feature Generation-Aided Zero-Shot Fast SAR Target Recognition with Semantic Attributes. IEEE Geosci. Remote Sens. Lett. 2024, 21, 4006805. [Google Scholar] [CrossRef]
- Jain, A.; Mildenhall, B.; Barron, J.T.; Abbeel, P.; Poole, B. Zero-shot text-guided object generation with dream fields. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 867–876. [Google Scholar]
- Sun, X.; Gu, J.; Sun, H. Research progress of zero-shot learning. Appl. Intell. 2021, 51, 3600–3614. [Google Scholar] [CrossRef]
- Zhang, Z.; Saligrama, V. Zero-shot learning via joint latent similarity embedding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 6034–6042. [Google Scholar]
- Baek, D.; Oh, Y.; Ham, B. Exploiting a joint embedding space for generalized zero-shot semantic segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 9536–9545. [Google Scholar]
- Yan, C.; Chang, X.; Li, Z.; Guan, W.; Ge, Z.; Zhu, L.; Zheng, Q. Zeronas: Differentiable generative adversarial networks search for zero-shot learning. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 9733–9740. [Google Scholar] [CrossRef]
- Ni, J.; Zhang, S.; Xie, H. Dual adversarial semantics-consistent network for generalized zero-shot learning. Adv. Neural Inf. Process. Syst. 2019, 32, 6146–6157. [Google Scholar]
- Li, J.; Jing, M.; Lu, K.; Zhu, L.; Yang, Y.; Huang, Z. Alleviating feature confusion for generative zero-shot learning. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 1587–1595. [Google Scholar]
- Gao, R.; Hou, X.; Qin, J.; Chen, J.; Liu, L.; Zhu, F.; Zhang, Z.; Shao, L. Zero-VAE-GAN: Generating unseen features for generalized and transductive zero-shot learning. IEEE Trans. Image Process. 2020, 29, 3665–3680. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Wang, X.; Pourpanah, F. Dual VAEGAN: A generative model for generalized zero-shot learning. Appl. Soft Comput. 2021, 107, 107352. [Google Scholar] [CrossRef]
- Wei, Q.R.; Chen, C.Y.; He, M.; He, H.M. Zero-Shot SAR Target Recognition Based on Classification Assistance. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Gui, R.; Xu, X.; Yang, R.; Deng, K.; Hu, J. Generalized zero-shot domain adaptation for unsupervised cross-domain PolSAR image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 15, 270–283. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Q.; Shi, J.; Ying, S.; Wen, Z. Deep unfolding network with spatial alignment for multi-modal mri reconstruction. Med. Image Anal. 2025, 99, 103331. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Chen, P.; Hu, J. Super-Resolution SAR Image Reconstruction via Deep Unfolding Network and Modified VGG Network. In Proceedings of the 2023 9th International Conference on Computer and Communications (ICCC), Chengdu, China, 8–11 December 2023; pp. 1901–1905. [Google Scholar]
- Wei, J.; Yang, G.; Wang, Z.; Liu, Y.; Liu, A.; Chen, X. Misalignment-Resistant Deep Unfolding Network for multi-modal MRI super-resolution and reconstruction. Knowl.-Based Syst. 2024, 296, 111866. [Google Scholar] [CrossRef]
- Schonfeld, E.; Ebrahimi, S.; Sinha, S.; Darrell, T.; Akata, Z. Generalized zero-and few-shot learning via aligned variational autoencoders. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 8247–8255. [Google Scholar]
- Chunhua, Z.; Weiwei, W.; Xuecheng, Z.; Xin, Z.; Mianzhi, C. Zero-shot identification for stealth target by inverse synthetic aperture imaging radar. Syst. Eng. Electron. 2023, 45, 3116–3121. [Google Scholar]
- Hurst, M.; Mittra, R. Scattering center analysis via Prony’s method. IEEE Trans. Antennas Propag. 1987, 35, 986–988. [Google Scholar] [CrossRef]
- Potter, L.C.; Chiang, D.M.; Carriere, R.; Gerry, M.J. A GTD-based parametric model for radar scattering. IEEE Trans. Antennas Propag. 1995, 43, 1058–1067. [Google Scholar] [CrossRef]
- Potter, L.C.; Moses, R.L. Attributed scattering centers for SAR ATR. IEEE Trans. Image Process. 1997, 6, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Knott, E.F.; Schaeffer, J.F.; Tulley, M.T. Radar Cross Section; SciTech Publishing: Raleigh, NC, USA, 2004; pp. 89–90. [Google Scholar]
- Ghasemi, M.; Sheikhi, A. Joint scattering center enumeration and parameter estimation in GTD model. IEEE Trans. Antennas Propag. 2020, 68, 4786–4798. [Google Scholar] [CrossRef]
- Liu, L.; Du, X.; Ghogho, M.; Hu, W.; McLernon, D. Precession missile feature extraction using sparse component analysis of radar measurements. EURASIP J. Adv. Signal Process. 2012, 2012, 24. [Google Scholar] [CrossRef]
- Huang, K.; He, S.Y.; Zhang, Y.H.; Yin, H.C.; Bian, Z.D.; Zhu, G.Q. Composite scattering analysis of the ship on a rough surface based on the forward parametric scattering center modeling method. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 2493–2497. [Google Scholar] [CrossRef]
- Roweis, S.T.; Saul, L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290, 2323–2326. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Su, F.; Jin, X.; Gao, J. Range profile similarity-oriented method for radar imaging of moving target under low signal-to-noise ratio environment. IET Radar Sonar Navig. 2022, 16, 1602–1615. [Google Scholar] [CrossRef]
- Richards, M.A. Fundamentals of Radar Signal Processing, 2nd ed.; Mcgraw-hill: New York, NY, USA, 2013; Volume 1, pp. 251–257. [Google Scholar]
- Ausherman, D.A.; Kozma, A.; Walker, J.L.; Jones, H.M.; Poggio, E.C. Developments in radar imaging. IEEE Trans. Aerosp. Electron. Syst. 1984, 4, 363–400. [Google Scholar] [CrossRef]
- Gerry, M.J.; Potter, L.C.; Gupta, I.J.; Van Der Merwe, A. A parametric model for synthetic aperture radar measurements. IEEE Trans. Antennas Propag. 1999, 47, 1179–1188. [Google Scholar] [CrossRef]
- Guo, K.Y.; Qu, Q.Y.; Sheng, X.Q. Geometry reconstruction based on attributes of scattering centers by using time-frequency representations. IEEE Trans. Antennas Propag. 2015, 64, 708–720. [Google Scholar] [CrossRef]
- He, Y.; He, S.Y.; Zhang, Y.H.; Wen, G.J.; Yu, D.F.; Zhu, G.Q. A forward approach to establish parametric scattering center models for known complex radar targets applied to SAR ATR. IEEE Trans. Antennas Propag. 2014, 62, 6192–6205. [Google Scholar] [CrossRef]
- Canny, J. A Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, PAMI-8, 679–698. [Google Scholar] [CrossRef]
- Liu, J.; He, S.; Zhang, L.; Zhang, Y.; Zhu, G.; Yin, H.; Yan, H. An automatic and forward method to establish 3-D parametric scattering center models of complex targets for target recognition. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8701–8716. [Google Scholar] [CrossRef]
- Jin, X.; Su, F.; Li, H.; Xu, Z.; Deng, J. Automatic ISAR Ship Detection Using Triangle-Points Affine Transform Reconstruction Algorithm. Remote Sens. 2023, 15, 2507. [Google Scholar] [CrossRef]
- Boyd, S.P.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Jiang, W.; Wang, Y.; Li, Y.; Lin, Y.; Shen, W. Radar Target Characterization and Deep Learning in Radar Automatic Target Recognition: A Review. Remote Sens. 2023, 15, 3742. [Google Scholar] [CrossRef]
- Toizumi, T.; Sagi, K.; Senda, Y. Automatic association between SAR and optical images based on zero-shot learning. In Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 17–20. [Google Scholar]
- Song, Q.; Chen, H.; Xu, F.; Cui, T.J. EM simulation-aided zero-shot learning for SAR automatic target recognition. IEEE Geosci. Remote Sens. Lett. 2019, 17, 1092–1096. [Google Scholar] [CrossRef]
- Liu, B.; Xu, J.; Zeng, H.; Dong, Q.; Hu, Z. Semantic Space Analysis for Zero-Shot Learning on SAR Images. Remote Sens. 2024, 16, 2627. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, L.; Du, R.; Zhang, Z.; Zhou, W.; Sun, Y.; Cai, J.; Zhou, F. MSF-IOF: A Novel ISAR-and-optical Image Fusion Method Based on Features of Multi-sub-bands. IEEE Trans. Geosci. Remote Sens. 2024, 63, 5100717. [Google Scholar]
- Chen, G.; Zhang, S.; He, Q.; Sun, Z.; Zhang, X.; Zhao, L. Zero-Shot SAR Target Recognition Based on a Conditional Generative Network with Category Features from Simulated Images. Remote Sens. 2024, 16, 1930. [Google Scholar] [CrossRef]
- Song, Q.; Xu, F. Zero-shot learning of SAR target feature space with deep generative neural networks. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2245–2249. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Z.; Hu, Z.; Dong, Q. SAR-to-optical image translation with hierarchical latent features. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Z.; Jiang, W.; Liu, Y.; Liu, S.; Liu, L. From Coarse to Fine: ISAR Object View Interpolation via Flow Estimation and GAN. Authorea 2024, preprints. [Google Scholar] [CrossRef]
- Long, B.; Tang, P.; Wang, F.; Jin, Y.Q. 3-D Reconstruction of Space Target Based on Silhouettes Fused ISAR-Optical Images. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5213919. [Google Scholar] [CrossRef]
- Sarkar, S.; Das, S.; Chaudhuri, S.S. A multilevel color image thresholding scheme based on minimum cross entropy and differential evolution. Pattern Recognit. Lett. 2015, 54, 27–35. [Google Scholar] [CrossRef]
- Jagalingam, P.; Hegde, A.V. A review of quality metrics for fused image. Aquat. Procedia 2015, 4, 133–142. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
Scattering Geometries | |
---|---|
1 | Flat plate; Corner reflector |
1/2 | Singly curved surface |
0 | Point scatterer; Doubly curved surface, Straight edge specular |
−1/2 | Curved edge diffraction |
−1 | Cone diffraction |
Methods | Target 1 | Target 2 | Target 3 (Unseen Class) | Overall |
---|---|---|---|---|
Algorithm 1 | 0.936 ± 0.130 | 0.976 ± 0.021 | 0.731 ± 0.278 | 0.881 ± 0.082 |
Algorithm 2 | 0.985 ± 0.012 | 0.983 ± 0.020 | 0.432 ± 0.372 | 0.800 ± 0.118 |
Algorithm 3 | 0.979 ± 0.021 | 0.972 ± 0.032 | 0.779 ± 0.137 | 0.910 ± 0.037 |
Algorithm 4 | 0.973 ± 0.013 | 0.945 ± 0.032 | 0.831 ± 0.101 | 0.917 ± 0.031 |
Proposed method | 0.984 ± 0.013 | 0.954 ± 0.025 | 0.896 ± 0.068 | 0.945 ± 0.023 |
Supervised | 0.995 ± 0.006 | 0.984 ± 0.015 | 0.981 ± 0.009 | 0.987 ± 0.008 |
Methods | PSNR (dB)↑ | RMSE↓ | CE↓ | SSIM↑ |
---|---|---|---|---|
Algorithm 1 | 16.8 | 36.9 | 0.249 | 0.770 |
Algorithm 2 | 16.7 | 37.3 | 0.141 | 0.709 |
Algorithm 3 | 19.1 | 28.6 | 0.178 | 0.738 |
Algorithm 4 | 19.5 | 27.3 | 0.253 | 0.709 |
Proposed method | 19.9 | 26.1 | 0.165 | 0.778 |
Methods | Barque | Geared Bulk Carrier | Gearless Bulk Carrier (Unseen Class) | Overall |
---|---|---|---|---|
Algorithm 1 | 0.985 ± 0.015 | 0.969 ± 0.023 | 0.719 ± 0.095 | 0.827 ± 0.060 |
Algorithm 2 | 0.961 ± 0.037 | 0.983 ± 0.012 | 0.632 ± 0.056 | 0.772 ± 0.032 |
Algorithm 3 | 0.981 ± 0.014 | 0.963 ± 0.019 | 0.737 ± 0.085 | 0.835 ± 0.054 |
Algorithm 4 | 0.989 ± 0.014 | 0.983 ± 0.012 | 0.801 ± 0.075 | 0.878 ± 0.041 |
Proposed method | 0.987 ± 0.016 | 0.983 ± 0.012 | 0.852 ± 0.034 | 0.908 ± 0.017 |
Supervised | 0.983 ± 0.016 | 0.983 ± 0.012 | 0.952 ± 0.014 | 0.965 ± 0.010 |
Methods | PSNR (dB)↑ | RMSE↓ | CE↓ | SSIM↑ |
---|---|---|---|---|
Algorithm 1 | 18.1 | 32.0 | 0.216 | 0.766 |
Algorithm 2 | 18.1 | 31.9 | 0.192 | 0.757 |
Algorithm 3 | 19.6 | 27.0 | 0.157 | 0.749 |
Algorithm 4 | 19.8 | 26.3 | 0.167 | 0.736 |
Proposed method | 19.8 | 26.3 | 0.105 | 0.767 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, X.; Li, H.; Xu, X.; Xu, Z.; Su, F. Inverse Synthetic Aperture Radar Image Multi-Modal Zero-Shot Learning Based on the Scattering Center Model and Neighbor-Adapted Locally Linear Embedding. Remote Sens. 2025, 17, 725. https://doi.org/10.3390/rs17040725
Jin X, Li H, Xu X, Xu Z, Su F. Inverse Synthetic Aperture Radar Image Multi-Modal Zero-Shot Learning Based on the Scattering Center Model and Neighbor-Adapted Locally Linear Embedding. Remote Sensing. 2025; 17(4):725. https://doi.org/10.3390/rs17040725
Chicago/Turabian StyleJin, Xinfei, Hongxu Li, Xinbo Xu, Zihan Xu, and Fulin Su. 2025. "Inverse Synthetic Aperture Radar Image Multi-Modal Zero-Shot Learning Based on the Scattering Center Model and Neighbor-Adapted Locally Linear Embedding" Remote Sensing 17, no. 4: 725. https://doi.org/10.3390/rs17040725
APA StyleJin, X., Li, H., Xu, X., Xu, Z., & Su, F. (2025). Inverse Synthetic Aperture Radar Image Multi-Modal Zero-Shot Learning Based on the Scattering Center Model and Neighbor-Adapted Locally Linear Embedding. Remote Sensing, 17(4), 725. https://doi.org/10.3390/rs17040725