Multi-Temporal Remote Sensing for Forest Conservation and Management: A Case Study of the Gran Chaco in Central Argentina
Abstract
:1. Introduction
- (a)
- Do forests with different management regimes, levels of degradation (structural alteration), and dominant species exhibit different spectral phenology (i.e., the study of seasonal changes in vegetation as observed through spectral indices)?
- (b)
- Which indices effectively differentiate forests with different levels of structural degradation?
2. Materials and Methods
2.1. Study Area
2.2. Definition and Selection of Sampling Sites
2.3. Remote Sensing Data
2.4. Field Data
2.5. Data Processing
RS Spectral Indices
2.6. Data Analysis
2.6.1. Phenological Analysis of RS Variables
2.6.2. Structural Alteration Index Across Forest Classes
2.6.3. Exploring the Relationship Between RS Ecological Variables and Field-Measured SAI Values
3. Results
3.1. Phenological Behavior of RS Variables Across Forest Classes
3.2. Structural Alteration Index Results Across Forest Classes
3.3. Relationship Between RS Variables and Field-Measured SAI Values
4. Discussion
4.1. RS Variables Across Sampled Sites
4.2. RS Ecological Variables Relationship with Field Integrity Values
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. State of the World’s Forests 2022; FAO: Rome, Italy, 2022. [Google Scholar]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Stuart Chapin, F.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, P.; Mo, K.; Dudley, N.; Shapiro, A.; Aguilar-Amuchastegui, N.; Ling, P.Y.; Anderson, C.; Marx, A. Deforestation Fronts: Drivers and Responses in a Changing World; World’s Wildlife Foundation: Gland, Switzerland, 2021. [Google Scholar]
- Ghazoul, J.; Burivalova, Z.; Garcia-Ulloa, J.; King, L.A. Conceptualizing Forest Degradation. Trends Ecol. Evol. 2015, 30, 622–632. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Good Practice Guidance for Land Use, Land-Use Change and Forestry; Institute for Global Environmental Strategies for the IPCC: Geneva, Switzerland, 2003; ISBN 4887880030. [Google Scholar]
- FAO. Assessing Forest Degradation: Towards the Development of Globally Applicable Guidelines; FAO: Rome, Italy, 2011. [Google Scholar]
- Colglazier, W. Sustainable Development Agenda: 2030. Science 2015, 349, 1048–1050. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; White, J.C.; Wulder, M.A.; Næsset, E. Remote Sensing in Forestry: Current Challenges, Considerations and Directions. Forestry 2024, 97, 11–37. [Google Scholar] [CrossRef]
- Carranza, M.L.; Hoyos, L.; Frate, L.; Acosta, A.T.R.; Cabido, M. Measuring Forest Fragmentation Using Multitemporal Forest Cover Maps: Forest Loss and Spatial Pattern Analysis in the Gran Chaco, Central Argentina. Landsc. Urban Plan. 2015, 143, 238–247. [Google Scholar] [CrossRef]
- Gao, Y.; Skutsch, M.; Paneque-Gálvez, J.; Ghilardi, A. Remote Sensing of Forest Degradation: A Review. Environ. Res. Lett. 2020, 15, 103001. [Google Scholar] [CrossRef]
- De Marzo, T.; Pflugmacher, D.; Baumann, M.; Lambin, E.F.; Gasparri, I.; Kuemmerle, T. Characterizing Forest Disturbances across the Argentine Dry Chaco Based on Landsat Time Series. Int. J. Appl. Earth Obs. Geoinf. 2021, 98, 102310. [Google Scholar] [CrossRef]
- Schneibel, A.; Frantz, D.; Röder, A.; Stellmes, M.; Fischer, K.; Hill, J. Using Annual Landsat Time Series for the Detection of Dry Forest Degradation Processes in South-Central Angola. Remote Sens. 2017, 9, 905. [Google Scholar] [CrossRef]
- Díaz-Delgado, R.; Lucas, R.; Hurford, C. The Roles of Remote Sensing in Nature Conservation; Springer: Cham, Switzerland, 2017; ISBN 978-3-319-64330-4. [Google Scholar]
- Lloyd, D. A Phenological Classification of Terrestrial Vegetation Cover Using Shortwave Vegetation Index Imagery. Int. J. Remote Sens. 1990, 11, 2269–2279. [Google Scholar] [CrossRef]
- Carranza, M.L.; Acosta, A.; Ricotta, C. Multitemporal Phenological Classification of Argentina. In Analysis of Multi-Temporal Remote Sensing Images; Buzzone, L., Smith, P., Eds.; World Scientific Publishing: Singapore, 2002; Volume 2, pp. 241–248. [Google Scholar]
- Gray, R.E.J.; Ewers, R.M. Monitoring Forest Phenology in a Changing World. Forests 2021, 12, 297. [Google Scholar] [CrossRef]
- Silveira, E.M.O.; Radeloff, V.C.; Martinuzzi, S.; Martinez Pastur, G.J.; Bono, J.; Politi, N.; Lizarraga, L.; Rivera, L.O.; Ciuffoli, L.; Rosas, Y.M.; et al. Nationwide Native Forest Structure Maps for Argentina Based on Forest Inventory Data, SAR Sentinel-1 and Vegetation Metrics from Sentinel-2 Imagery. Remote Sens. Environ. 2023, 285, 113391. [Google Scholar] [CrossRef]
- De Marzo, T.; Gasparri, N.I.; Lambin, E.F.; Kuemmerle, T. Agents of Forest Disturbance in the Argentine Dry Chaco. Remote Sens. 2022, 14, 1758. [Google Scholar] [CrossRef]
- Bucher, E.H. Chaco and Caatinga—South American Arid Savannas, Woodlands and Thickets. In Ecology of Tropical Savannas; Huntley, B.J., Walker, B.H., Eds.; Springer: Berlin, Germany, 1982; pp. 48–79. [Google Scholar]
- Cabido, M.; Zeballos, S.R.; Zak, M.; Carranza, M.L.; Giorgis, M.A.; Cantero, J.J.; Acosta, A.T.R. Native Woody Vegetation in Central Argentina: Classification of Chaco and Espinal Forests. Appl. Veg. Sci. 2018, 21, 298–311. [Google Scholar] [CrossRef]
- Adamoli, J.; Sennhauser, E.; Acero, J.M.; Rescia, A. Stress and Disturbance: Vegetation Dynamics in the Dry Chaco Region of Argentina. J. Biogeogr. 1990, 17, 491–500. [Google Scholar] [CrossRef]
- Molina, S.I.; Valladares, G.R.; Gardner, S.; Cabido, M.R. The Effects of Logging and Grazing on the Insect Community Associated with a Semi-Arid Chaco Forest in Central Argentina. J. Arid. Environ. 1999, 42, 29–42. [Google Scholar] [CrossRef]
- Rueda, C.V.; Baldi, G.; Gasparri, I.; Jobbágy, E.G. Charcoal Production in the Argentine Dry Chaco: Where, How and Who? Energy Sustain. Dev. 2015, 27, 46–53. [Google Scholar] [CrossRef]
- Krapovickas, J.; Sacchi, L.V.; Hafner, R. Firewood Supply and Consumption in the Context of Agrarian Change: The Northern Argentine Chaco from 1990 to 2010. Int. J. Commons 2016, 10, 220–243. [Google Scholar] [CrossRef]
- Cagnolo, L.; Cabido, M.; Valladares, G. Plant Species Richness in the Chaco Serrano Woodland from Central Argentina: Ecological Traits and Habitat Fragmentation Effects. Biol. Conserv. 2006, 132, 510–519. [Google Scholar] [CrossRef]
- Macchi, L.; Grau, H.R.; Zelaya, P.V.; Marinaro, S. Trade-Offs between Land Use Intensity and Avian Biodiversity in the Dry Chaco of Argentina: A Tale of Two Gradients. Agric. Ecosyst. Environ. 2013, 174, 11–20. [Google Scholar] [CrossRef]
- Mastrangelo, M.E.; Gavin, M.C. Impacts of Agricultural Intensification on Avian Richness at Multiple Scales in Dry Chaco Forests. Biol. Conserv. 2014, 179, 63–71. [Google Scholar] [CrossRef]
- Torres, R.; Kuemmerle, T.; Zak, M.R. Changes in Agriculture-Biodiversity Trade-Offs in Relation to Landscape Context in the Argentine Chaco. Landsc. Ecol. 2021, 36, 703–719. [Google Scholar] [CrossRef]
- Alvarez Arnesi, E.; López, D.R.; Barberis, I.M. Relationship between Degradation and the Structural-Functional Complexity of Subtropical Xerophytic Forests in the Argentine Wet Chaco. Ecol. Manag. 2024, 562, 121957. [Google Scholar] [CrossRef]
- Frate, L.; Acosta, A.T.R.; Cabido, M.; Hoyos, L.; Carranza, M.L. Temporal Changes in Forest Contexts at Multiple Extents: Three Decades of Fragmentation in the Gran Chaco (1979–2010), Central Argentina. PLoS ONE 2015, 10, e0142855. [Google Scholar] [CrossRef]
- Marchesini, V.A.; Fernández, R.J.; Reynolds, J.F.; Sobrino, J.A.; Di Bella, C.M. Changes in Evapotranspiration and Phenology as Consequences of Shrub Removal in Dry Forests of Central Argentina. Ecohydrology 2015, 8, 1304–1311. [Google Scholar] [CrossRef]
- Giménez, R.; Mercau, J.; Nosetto, M.; Páez, R.; Jobbágy, E. The Ecohydrological Imprint of Deforestation in the Semiarid Chaco: Insights from the Last Forest Remnants of a Highly Cultivated Landscape. Hydrol. Process 2016, 30, 2603–2616. [Google Scholar] [CrossRef]
- Magliano, P.; Fernández, R.; Gimenez, R.; Marchesini, V.; Páez, R.A.; Jobbágy, E. Changes in Water Fluxes Partition in the Arid Chaco Caused by the Replacement of Forest by Pastures. Ecol. Austral 2016, 26, 95–106. [Google Scholar] [CrossRef]
- Boletta, P.E.; Ravelo, A.C.; Planchuelo, A.M.; Grilli, M. Assessing Deforestation in the Argentine Chaco. Ecol. Manag. 2006, 228, 108–114. [Google Scholar] [CrossRef]
- Verón, S.R.; Blanco, L.J.; Texeira, M.A.; Irisarri, J.G.N.; Paruelo, J.M. Desertification and Ecosystem Services Supply: The Case of the Arid Chaco of South America. J. Arid. Environ. 2018, 159, 66–74. [Google Scholar] [CrossRef]
- Abril, A.; Barttfeld, P.; Bucher, E.H. The Effect of Fire and Overgrazing Disturbes on Soil Carbon Balance in the Dry Chaco Forest. Ecol. Manag. 2005, 206, 399–405. [Google Scholar] [CrossRef]
- Gasparri, N.I.; Grau, H.R. Deforestation and Fragmentation of Chaco Dry Forest in NW Argentina (1972–2007). For. Ecol. Manag. 2009, 258, 913–921. [Google Scholar] [CrossRef]
- Baumann, M.; Gasparri, I.; Piquer-Rodríguez, M.; Gavier Pizarro, G.; Griffiths, P.; Hostert, P.; Kuemmerle, T. Carbon Emissions from Agricultural Expansion and Intensification in the Chaco. Glob. Change Biol. 2017, 23, 1902–1916. [Google Scholar] [CrossRef] [PubMed]
- Barral, M.P.; Villarino, S.; Levers, C.; Baumann, M.; Kuemmerle, T.; Mastrangelo, M. Widespread and Major Losses in Multiple Ecosystem Services as a Result of Agricultural Expansion in the Argentine Chaco. J. Appl. Ecol. 2020, 57, 2485–2498. [Google Scholar] [CrossRef]
- Steinaker, D.F.; Jobbágy, E.G.; Martini, J.P.; Arroyo, D.N.; Pacheco, J.L.; Marchesini, V.A. Vegetation Composition and Structure Changes Following Roller-Chopping Deforestation in Central Argentina Woodlands. J. Arid. Environ. 2016, 133, 19–24. [Google Scholar] [CrossRef]
- Bigerna, M.; Bazylenko, A.; Torrella, S. Vegetation Phenology in the Argentinean Wet Chaco: Assessing Seasonality and Precipitation Dependence through NDVI—MODIS Time Series (2000–2018). Austral Ecol. 2022, 47, 629–640. [Google Scholar] [CrossRef]
- Gasparri, N.I.; Baldi, G. Regional Patterns and Controls of Biomass in Semiarid Woodlands: Lessons from the Northern Argentina Dry Chaco. Reg. Environ. Change 2013, 13, 1131–1144. [Google Scholar] [CrossRef]
- Blanco, L.J.; Paruelo, J.M.; Oesterheld, M.; Biurrun, F.N. Spatial and Temporal Patterns of Herbaceous Primary Production in Semi-arid Shrublands: A Remote Sensing Approach. J. Veg. Sci. 2016, 27, 716–727. [Google Scholar] [CrossRef]
- Paruelo, J.M.; Texeira, M.; Staiano, L.; Mastrángelo, M.; Amdan, L.; Gallego, F. An Integrative Index of Ecosystem Services Provision Based on Remotely Sensed Data. Ecol. Indic. 2016, 71, 145–154. [Google Scholar] [CrossRef]
- Barraza, V.; Grings, F.; Ferrazzoli, P.; Salvia, M.; Maas, M.; Rahmoune, R.; Vittucci, C.; Karszenbaum, H. Monitoring Vegetation Moisture Using Passive Microwave and Optical Indices in the Dry Chaco Forest, Argentina. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 421–430. [Google Scholar] [CrossRef]
- Cáceres, D.M. Accumulation by Dispossession and Socio-Environmental Conflicts Caused by the Expansion of Agribusiness in Argentina. J. Agrar. Change 2015, 15, 116–147. [Google Scholar] [CrossRef]
- Zak, M.R.; Cabido, M.; Cáceres, D.; Díaz, S. What Drives Accelerated Land Cover Change in Central Argentina? Synergistic Consequences of Climatic, Socioeconomic, and Technological Factors. Environ. Manag. 2008, 42, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Torrella, S.A.; Ginzburg, R.G.; Adámoli, J.M.; Galetto, L. Changes in Forest Structure and Tree Recruitment in Argentinean Chaco: Effects of Fragment Size and Landscape Forest Cover. Ecol. Manag. 2013, 307, 147–154. [Google Scholar] [CrossRef]
- Cabido, M.; Manzur, A.; Carranza, M.L.; Gonzalez Albarracin, C. La Vegetacion y El Medio Fisico Del Chaco Arido En La Provincia de Cordoba, Argentina Central. Phytocoenologia 1994, 24, 423–460. [Google Scholar] [CrossRef]
- Alaggia, F.G. Integridad Ecológica En Paisajes Boscosos Bajo Uso Agropecuario: Configuración a Distintas Escalas Espaciales y Degradación En Bosques Del Chaco Árido. Ph.D. Thesis, Universidad de Buenos Aires, Buenos Aires, Argentina, 2024. [Google Scholar]
- Zeballos, S.R.; Acosta, A.T.R.; Agüero, W.D.; Ahumada, R.J.; Almirón, M.G.; Argibay, D.S.; Arroyo, D.N.; Blanco, L.J.; Biurrun, F.N.; Cantero, J.J.; et al. Vegetation Types of the Arid Chaco in Central-Western Argentina. Veg. Classif. Surv. 2023, 4, 167–188. [Google Scholar] [CrossRef]
- Morello, J.; Protomastro, J.; Sancholuz, L. Estudio Macroecologico de Los Llanos de La Rioja. In Serie del Cincuentenario de la Administración de Parques Nacionales; APN, Administración de Parques Nacionales, Secretariat de Agricultura, Ganadería y Pesca, Ministerio de Economía: Buenos Aires, Argentina, 1985. [Google Scholar]
- Prado, D. What Is the Gran Chaco Vegetation in South America? I: A Review. Contribution to the Study of Flora and Vegetation of the Chaco. V. Candollea 1993, 48, 145–172. [Google Scholar]
- Cabido, M.; González, C.; Acosta, A.; Díaz, S. Vegetation Changes along a Precipitation Gradient in Central Argentina. Vegetatio 1993, 109, 5–14. [Google Scholar] [CrossRef]
- Carranza, C.A.; Ledesma, M. Bases Para El Manejo de Sistemas Silvopastoriles. In Proceedings of the XIII Congreso Forestal Mundial, Buenos Aires, Argentina, 18–25 October 2009. [Google Scholar]
- Karlin, U.; Catalán, L.; Coirini, R.Y.; Zapata, R. Uso y Manejo Sustentable de Los Bosques Nativos Del Chaco Arido; Arturi, M.F., Frangi, J.L., Eds.; Ecología y Manejo de Bosques Nativos de Argentina, Universidad Nacional de La Plata: La Plata, Argentina, 2004. [Google Scholar]
- Conti, G.; Enrico, L.; Jaureguiberry, P.; Cuchietti, A.; Lipoma, M.L.; Cabrol, D. The Role of Functional Diversity in the Provision of Multiple Ecosystem Services: An Empirical Analysis in the Dry Chaco of Córdoba, Central Argentina. Ecosistemas 2018, 27, 60–74. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/20203005848 (accessed on 18 December 2024).
- Cavallero, L.; López, D.R.; Raffaele, E.; Aizen, M.A. Structural–Functional Approach to Identify Post-Disturbance Recovery Indicators in Forests from Northwestern Patagonia: A Tool to Prevent State Transitions. Ecol. Indic. 2015, 52, 85–95. [Google Scholar] [CrossRef]
- Bestelmeyer, B.T.; Ash, A.; Brown, J.R.; Densambuu, B.; Fernández-Giménez, M.; Johanson, J.; Levi, M.; Lopez, D.; Peinetti, R.; Rumpff, L.; et al. State and Transition Models: Theory, Applications, and Challenges. In Rangeland System; Springer: Berlin/Heidelberg, Germany, 2017; pp. 303–345. [Google Scholar]
- Drusch, M.; De Brito Ferreira, H.M.; Mandorlo, G. Sentinel-2 ESA’s Optical High-Resolution Mission for GMES Operational Services STRV-1D. Remote Sens. Environ ESA Commun. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Louis, J.; Pflug, B.; Main-Knorn, M.; Debaecker, V.; Mueller-Wilm, U.; Iannone, R.Q.; Giuseppe Cadau, E.; Boccia, V.; Gascon, F. Sentinel-2 Global Surface Reflectance Level-2a Product Generated with Sen2Cor. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; IEEE: New York, NY, USA, 2019; pp. 8522–8525. [Google Scholar]
- Barchuk, A.H.; Díaz, M.d.P. Vigor de Crecimiento y Supervivencia de Plantaciones de Aspidosperma Quebracho-Blanco y de Prosopis Chilensis En El Chaco Árido. Quebracho Rev. Cienc. For. 2000, 8, 17–29. [Google Scholar]
- Alaggia, F.G.; Cabello, M.J.; Carranza, C.; Cavallero, L.; Daniele, G.; Erro Velazquez, M.; Ledesma, M.; Lopez, D.R.; Mussat, E.; Navall, J.M.; et al. Manual de Indicadores para Monitoreo de Planes Prediales para el Manejo de Bosques con Ganadería Integrada (MBGI) Región Parque Chaqueño; Agency of Access to Public Information: Buenos Aires, Agentina, 2019; ISBN 9789878697383. [Google Scholar]
- Mueller-Dombois, D.; Ellenberg, H. Aims and Methods of Vegetation Ecology; John Willy & Sons: Hoboken, NJ, USA, 1974. [Google Scholar]
- López-Martínez, J.O.; Sanaphre-Villanueva, L.; Dupuy, J.M.; Hernández-Stefanoni, J.L.; Meave, J.A.; Gallardo-Cruz, J.A. β-Diversity of Functional Groups of Woody Plants in a Tropical Dry Forest in Yucatan. PLoS ONE 2013, 8, e73660. [Google Scholar] [CrossRef] [PubMed]
- Gareth, J.; Daniela, W.; Trevor, H.; Robert, T. An Introduction to Statistical Learning: With Applications in R.; Springer Science & Business Media: New York, NY, USA, 2017; ISBN 9781461471370. [Google Scholar]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; De Colstoun, E.B.; McMurtrey, J.E. Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Gao, B.-C. NDWI—A Normalized Difference Water for Remote Sensing of Vegetation Water from Space; Elsevier Science: Amsterdam, The Netherlands, 1996; Volume 7212. [Google Scholar]
- Escadafal, R. Remote Sensing of Soil Color: Principles and Applications. Remote Sens. Rev. 1993, 7, 261–279. [Google Scholar] [CrossRef]
- Nakagawa, S.; Schielzeth, H. A General and Simple Method for Obtaining R2 from Generalized Linear Mixed-effects Models. Methods Ecol. Evol. 2013, 4, 133–142. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.M.; Walker, S.C. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Kassambara, A. Package “rstatix” Title Pipe-Friendly Framework for Basic Statistical Tests; Comprehensive R Archive Network: Vienna, Austria, 2023. [Google Scholar]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous Inference in General Parametric Models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef] [PubMed]
- Lüdecke, D. Package “sjPlot” Title Data Visualization for Statistics in Social Science, R Package Version 2.8; R Foundation for Statistical Computing: Vienna, Austria, 2023.
- Naimi, B.; Hamm, N.A.S.; Groen, T.A.; Skidmore, A.K.; Toxopeus, A.G. Where Is Positional Uncertainty a Problem for Species Distribution Modelling? Ecography 2014, 37, 191–203. [Google Scholar] [CrossRef]
- Hernández-Stefanoni, J.L.; Gallardo-Cruz, J.A.; Meave, J.A.; Rocchini, D.; Bello-Pineda, J.; López-Martínez, J.O. Modeling (α- and β-Diversity in a Tropical Forest from Remotely Sensed and Spatial Data. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 359–368. [Google Scholar] [CrossRef]
- Legendre, P.; Legendre, L. Numerical Ecology, 2nd ed.; Elsevier Science: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Zuur, A.F.; Ieno, E.N.; Walker, N.; Saveliev, A.A.; Smith, G.M. Mixed Effects Models and Extensions in Ecology with R.; Springer: New York, NY, USA, 2009; ISBN 978-0-387-87457-9. [Google Scholar]
- Pebesma, E.; Bivand, R. Spatial Data Science, 1st ed.; Chapman and Hall/CRC: New York, NY, USA, 2023; ISBN 9780429459016. [Google Scholar]
- Hijmans, R.J.; Bivand, R.; Pebesma, E.; Sumner, M.D. Spatial Data Analysis; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Nagler, P.L.; Daughtry, C.S.T.; Goward, S.N. Plant Litter and Soil Reflectance. Remote Sens. Environ. 2000, 71, 207–215. [Google Scholar] [CrossRef]
- Karlin, M.S.; Karlin, U.O.; Coirini, R.O.; Reati, G.J.; Zapata, R.M. El Chaco Árido; Editorial de la Universidad de Córdoba: Córdoba, Argentina, 2013. [Google Scholar]
- Cabrera, H.M. Fisiología Ecológica En Plantas: Mecanismos y Respuestas a Estrés En Los Ecosistemas; Ediciones Universitarias de Valparaíso: Valparaíso, Chile, 2004. [Google Scholar]
- Asner, G.P.; Elmore, A.J.; Olander, L.P.; Martin, R.E.; Harris, A.T. Grazing System, Ecosystem Response, and Global Change. Annu. Rev. Environ. Resour. 2004, 29, 261–299. [Google Scholar] [CrossRef]
- Volante, J.N.; Alcaraz-Segura, D.; Mosciaro, M.J.; Viglizzo, E.F.; Paruelo, J.M. Ecosystem Functional Changes Associated with Land Clearing in NW Argentina. Agric. Ecosyst. Environ. 2012, 154, 12–22. [Google Scholar] [CrossRef]
- Malagnoux, M. Afforestation and Sustainable Forests as a Means to Combat Desertification Arid Land Forests of the World Global Environmental Perspectives. In Proceedings of the Afforestation and Sustainable Forests as a Means to Combat Desertification, Jerusalem, Israel, 16–19 April 2007. [Google Scholar]
- Walter, H.; Breckle, S.W. Ecological Systems of the Geobiosphere: Tropical and Subtropical Zonobiomes; Springer Science & Buisiness Media: Berlin/Heidelberg, Germany, 2013; Volume 2. [Google Scholar]
- Jobbágy, E.G.; Sala, O.E.; Paruelo, J.M. Patterns and Controls of Primary Production in the Patagonian Steppe: A Remote Sensing Approach. Ecology 2002, 83, 307–319. [Google Scholar] [CrossRef]
- Villagra, P.E.; Giordano, C.; Alvarez, J.A.; Cavagnaro, J.B.; Guevara, A.; Sartor, C.; Passera, C.B.; Greco, S. To Be a Plant in the Desert: Water Use Strategies and Water Stress Resistance in the Central Monte Desert from Argentina. Ecol. Austral 2011, 21, 29–42. [Google Scholar]
- Moglia, J.G.; López, C.R. Estrategia Adaptativa Del Leño Aspidosperma Quebracho Blanco. Madera Bosques 2016, 7, 13–25. [Google Scholar] [CrossRef]
- Chen, Z.; Li, S.; Wan, X.; Liu, S. Strategies of Tree Species to Adapt to Drought from Leaf Stomatal Regulation and Stem Embolism Resistance to Root Properties. Front. Plant Sci. 2022, 13, 926535. [Google Scholar] [CrossRef] [PubMed]
- Kühnhammer, K.; van Haren, J.; Kübert, A.; Bailey, K.; Dubbert, M.; Hu, J.; Ladd, S.N.; Meredith, L.K.; Werner, C.; Beyer, M. Deep Roots Mitigate Drought Impacts on Tropical Trees despite Limited Quantitative Contribution to Transpiration. Sci. Total Environ. 2023, 893, 164763. [Google Scholar] [CrossRef] [PubMed]
- López, D.R.; Cavallero, L.; Willems, P.; Bestelmeyer, B.T.; Brizuela, M.A. Degradation Influences Equilibrium and Non-equilibrium Dynamics in Rangelands: Implications in Resilience and Stability. Appl. Veg. Sci. 2022, 25, e12670. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel Algorithms for Remote Estimation of Vegetation Fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
- Lu, S.; Lu, F.; You, W.; Wang, Z.; Liu, Y.; Omasa, K. A Robust Vegetation Index for Remotely Assessing Chlorophyll Content of Dorsiventral Leaves across Several Species in Different Seasons. Plant Methods 2018, 14, 15. [Google Scholar] [CrossRef]
- Ramírez-Juidias, E.; Amaro-Mellado, J.-L.; Antón, D. Wavelet Analysis of a Sentinel-2 Time Series to Detect Land Use Changes in Agriculture in the Vega Alta of the Guadalquivir River: Cantillana Case Study (Seville). Remote Sens. 2023, 15, 5225. [Google Scholar] [CrossRef]
- Vieira, A.S.; do Valle Junior, R.F.; Rodrigues, V.S.; da Silva Quinaia, T.L.; Mendes, R.G.; Valera, C.A.; Fernandes, L.F.S.; Pacheco, F.A.L. Estimating Water Erosion from the Brightness Index of Orbital Images: A Framework for the Prognosis of Degraded Pastures. Sci. Total Environ. 2021, 776, 146019. [Google Scholar] [CrossRef]
- Araujo, H.F.P.; Canassa, N.F.; Machado, C.C.C.; Tabarelli, M. Human Disturbance Is the Major Driver of Vegetation Changes in the Caatinga Dry Forest Region. Sci. Rep. 2023, 13, 18440. [Google Scholar] [CrossRef]
- Ferraina, A.; Baldi, G.; de Abelleyra, D.; Grosfeld, J.; Verón, S. An Insight into the Patterns and Controls of the Structure of South America n Chaco Woodlands. Land Degrad. Dev. 2022, 33, 723–738. [Google Scholar] [CrossRef]
- Guzmán, L.; Díaz, R.F.; Ricarte, A. Estimación Del Índice de Cosecha y Cálculo de La Receptividad Caprina a Escala de Potrer. In Proceedings of the III Congreso Argentino de Producción Caprina, Catamarca, Argentina, 29 December 2021; Volume 23, pp. 1–59. [Google Scholar]
- Riera, C.; Barrionuevo, N. The Difusion of Mechanized Irrigation in Córdoba (1997–2011). Rev. De. Geogr. 2015, 18, 115–137. [Google Scholar]
- Brown, T.P.; Hoylman, Z.H.; Conrad, E.; Holden, Z.; Jencso, K.; Jolly, W.M. Decoupling between Soil Moisture and Biomass Drives Seasonal Variations in Live Fuel Moisture across Co-Occurring Plant Functional Types. Fire Ecol. 2022, 18, 14. [Google Scholar] [CrossRef]
- Piñeiro, G.; Oesterheld, M.; Paruelo, J.M. Seasonal Variation in Aboveground Production and Radiation-Use Efficiency of Temperate Rangelands Estimated through Remote Sensing. Ecosystems 2006, 9, 357–373. [Google Scholar] [CrossRef]
- Sala, O.E.; Parton, W.J.; Joyce, L.A.; Lauenroth, W.K. Primary Production of the Central Grassland Region of the United States. Ecology 1988, 69, 40–45. [Google Scholar] [CrossRef]
- Oesterheld, M.; Sala, O.E.; McNaughton, S.J. Effect of Animal Husbandry on Herbivore-Carrying Capacity at a Regional Scale. Nature 1992, 365, 234–236. [Google Scholar] [CrossRef] [PubMed]
- Sala, E.; Ballesteros, E.; Dendrinos, P.; Di Franco, A.; Ferretti, F.; Foley, D.; Fraschetti, S.; Friedlander, A.; Garrabou, J.; Güçlüsoy, H.; et al. The Structure of Mediterranean Rocky Reef Ecosystems across Environmental and Human Gradients, and Conservation Implications. PLoS ONE 2012, 7, e32742. [Google Scholar] [CrossRef]
- Paruelo, J.M.; Piñeiro, G.; Baldi, G.; Baeza, S.; Lezama, F.; Altesor, A.; Oesterheld, M. Carbon Stocks and Fluxes in Rangelands of the Río de La Plata Basin. Rangel. Ecol. Manag. 2010, 63, 94–108. [Google Scholar] [CrossRef]
- Guzmán, L.M.; Villagra, P.E.; Quiroga, R.E.; Pereyra, D.I.; Pelliza, M.E.; Ricarte, A.R.; Blanco, L.J. In Search of Sustainable Livestock Management in the Dry Chaco: Effect of Different Shrub-Removal Practices on Vegetation. Rangel. J. 2023, 44, 193–202. [Google Scholar] [CrossRef]
- Giordano, C.V.; Guevara, A.; Boccalandro, H.E.; Sartor, C.; Villagra, P.E. Water Status, Drought Responses, and Growth of Prosopis Flexuosa Trees with Different Access to the Water Table in a Warm South American Desert. Plant Ecol. 2011, 212, 1123–1134. [Google Scholar] [CrossRef]
- Guevara, A.; Pancotto, V.; Mastrantonio, L.; Giordano, C.V. Fine Roots of Prosopis Flexuosa Trees in the Field. Plant and Soil Variables That Control Their Growth and Depth Distribution. Plant Ecol. 2018, 219, 1399–1412. [Google Scholar] [CrossRef]
- Almalki, R.; Khaki, M.; Saco, P.M.; Rodriguez, J.F. Monitoring and Mapping Vegetation Cover Changes in Arid and Semi-Arid Areas Using Remote Sensing Technology: A Review. Remote Sens. 2022, 14, 5143. [Google Scholar] [CrossRef]
Forest Class/ Structure-Physiognomy | Landscape | Land Use History | N° Sites | CL |
---|---|---|---|---|
Mature forest of Neltuma flexuosa and/or Aspidosperma quebracho blanco. Common name: Mature forests on foothills | Foothills | Natural protected areas with limited logging or livestock grazing for at least five decades. | 7 | 1 |
Mature forest of Neltuma flexuosa and/or Aspidosperma quebracho blanco. Common name: Mature forests on plains | Plains | Scarce logging or livestock grazing for at least five decades. | 2 | 2 |
Closed forest with emergent trees of Neltuma flexuosa and/or Aspidosperma quebracho blanco, with understory dominated by Mimozyganthus carinatus. Common name: Closed forests on foothills | Foothills | Low to moderate livestock forestry pressure. Selective felling of large (e.g., >40 cm diameter at breast height), with intervals of more than 20 years. Annual stocking rate lower ** than 1 * Cow Equivalent (CE)/20 hectares, grazing in autumn–winter. Seasonal supplement, small plots (e.g., <3% of the farm area) with megathermal pastures. | 6 | 3 |
Closed forest with emergent trees of Neltuma flexuosa and/or Aspidosperma quebracho blanco, with understory dominated by Mimozyganthus carinatus. Common name: Closed forests on plains | Plains | Low to moderate livestock forestry pressure. Selective felling of large trees (e.g., >40 cm diameter at breast height), with intervals of more than 20 years. Annual stocking rate lower ** than 1 * CE/20 ha., grazing in autumn–winter. Seasonal supplement, small plots (e.g., <3% of the farm area) with megathermal. | 4 | 4 |
Closed forest of Neltuma flexuosa, Larrea divaricata, Mimozyganthus carinatus, and/or Parkinsonia praecox. Common name: Low closed forest | Foothills and plains | No mature trees remained, no resting periods or forest management. Low logging for firewood extraction. Stocking rate moderate to high (e.g., 1 CE/5 ha). Some time with fires. | 10 | 5 |
Low closed forest of Neltuma flexuosa, Aspidosperma quebracho blanco, Larrea divaricata, Mimozyganthus carinatus, and/or Celtis ehrenbergiana. Common name: Shrublands | Foothills and plains | Fires or total logging of trees have occurred, followed by a high post-fire stoking rate. Moderate to heavy logging, moderate to high stocking rate of cows and/or goats (e.g., more than 1 CE/2–4 ha, sustained for more than a decade). | 10 | 6 |
Open forest of Neltuma flexuosa, Mimozyganthus carinatus, and/or Celtis ehrenbergiana. Common name: Savannas | Foothills and plains | Heavy logging and high stocking rate of cows and/or goats over the past decades, with mechanical shrub removal and/or partial felling of the woody layer every 3 to 5 years (e.g., 50 to 70% of shrub cover is removed). Carrying capacity is declining due to reduced productivity caused by chronic degradation. | 6 | 7 |
Natural grassland and implanted pastures with Tricloris sp. and/or Cencrus ciliaris. Isolated individuals of Neltuma flexuosa and Aspidosperma quebracho blanco. Common name: Grasslands with trees | Foothills and plains | Sites cleared totally or partially for grassland productivity and/or to establish megathermal grass pastures. High livestock density with significant anthropic input (e.g., rolling every 3 to 5 years with interplanting, removing more than 80% of woody cover). Livestock stocking rate 1 CE/ha. | 4 | 8 |
TOTAL | 49 |
Field Sampling Scheme | Forest Variable |
---|---|
Central straight line (transect) 250 m | -Woody sp. cover (total; for each species and for each vegetation layer: low < 2 m, medium 2–8 m, and high >8 m) and the derived horizontal heterogeneity index. |
-Bare soil cover (m). | |
-Maximum height of the woody species (m; measurement carried out every 5 m, and the derived vertical heterogeneity index. | |
Plot woody species seedling density (2 m2; 50 plots along the 250 m transect). | -Woody species seedling density (seedlings*ha−1). |
Initial straight line (transect) 20 m | -Composite litter sample (comprising 10 sub-samples taken every 2 m). |
Plot 2500 m2 | -Tree density (trees*ha−1). |
-Basal area (m2*ha−1). |
Acronym | Name | Formula | Proxy | Reference |
---|---|---|---|---|
MCARISent | Modified Chlorophyll Absorption in Reflectance Index | Leaf chlorophyll content | [67] | |
NDWIGao | Normalized Difference Water Index | Leaf water content | [68] | |
BI2 | Brightness Index 2 | Presence of bare surfaces | [69] |
BI2 | MCARISent | NDWIGao | ||||
---|---|---|---|---|---|---|
Predictors | Estimates | CI | Estimates | CI | Estimates | CI |
Interc. | 1925.15 *** | 1859.50–1990.80 | 151.35 *** | 142.83–159.87 | 0.19 *** | 0.16–0.21 |
CL 2 | −24.74 | −163.98–114.51 | 0.49 | −17.58–18.55 | 0.15 *** | 0.09–0.21 |
CL 3 | 29.02 | −67.60–125.65 | 1.88 | −10.66–14.42 | −0.00 | −0.04–0.04 |
CL 4 | 203.88 *** | 95.04–312.72 | 22.71 ** | 8.60–36.83 | 0.04 | −0.00–0.09 |
CL 5 | 243.49 *** | 157.91–329.07 | 15.57 ** | 4.47–26.67 | 0.03 | −0.01–0.07 |
CL6 | 335.22 *** | 249.63–420.81 | 19.02 *** | 7.91–30.12 | −0.06 ** | −0.10–−0.02 |
CL 7 | 1516.11 *** | 1419.49–1612.74 | 38.47 *** | 25.94–51.01 | −0.05 * | −0.09–−0.01 |
CL8 | 1510.42 *** | 1401.56–1619.28 | 23.59 ** | 9.46–37.71 | −0.10 *** | −0.14–−0.05 |
Random Effects | ||||||
σ2 | 33,259.42 | 1316.25 | 0.00 | |||
τ00 | 93,595.66 ID_transect:Month | 1561.27 ID_transect:Month | 0.02 ID_transect:Month | |||
ICC | 0.74 | 0.54 | 0.91 | |||
N | 49 ID_transect | 49 ID_transect | 49 ID_transect | |||
12 Month | 12 Month | 12 Month | ||||
Observ | 33,157 | 33073 | 33120 | |||
Marg R2/Cond R2 | 0.706/0.923 | 0.047/0.564 | 0.126/0.923 |
Landscape | RS ind | R2 adj | Sigma | Statistic | p | logLik | AIC | AIC Null | Nobs | p-Value Shapiro-Wilk |
---|---|---|---|---|---|---|---|---|---|---|
Plains | BI2 | 0.71 | 349.35 | 36.99 | 1.80 × 10−8 | −216.6 | 441.341 | 483 | 30 | 0.97 |
MCARISent | 0.15 | 17.75 | 6.25 | 0.018 | −127.8 | 261.679 | 265 | 30 | 0.16 | |
NDWIGao | 0.71 | 0.047 | 73.58 | 2.50 × 10−9 | 50.04 | −94.083 | −57 | 30 | 0.38 | |
Foothills | BI2 | 0.54 | 87.4 | 22.25 | 0.0002 | −110.8 | 227.68 | 241 | 19 | 0.43 |
MCARISent | 0.39 | 6.66 | 6.87 | 0.01 | −61.35 | 130.7 | 138 | 19 | 0.36 | |
NDWIGao | 0.52 | 0.03 | 20.15 | 0.00032 | 38.52 | −71.04 | −58 | 19 | 0.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alaggia, F.G.; Innangi, M.; Cavallero, L.; López, D.R.; Pontieri, F.; Marzialetti, F.; Riera-Tatché, R.; Gamba, P.; Carranza, M.L. Multi-Temporal Remote Sensing for Forest Conservation and Management: A Case Study of the Gran Chaco in Central Argentina. Remote Sens. 2025, 17, 748. https://doi.org/10.3390/rs17050748
Alaggia FG, Innangi M, Cavallero L, López DR, Pontieri F, Marzialetti F, Riera-Tatché R, Gamba P, Carranza ML. Multi-Temporal Remote Sensing for Forest Conservation and Management: A Case Study of the Gran Chaco in Central Argentina. Remote Sensing. 2025; 17(5):748. https://doi.org/10.3390/rs17050748
Chicago/Turabian StyleAlaggia, Francisco G., Michele Innangi, Laura Cavallero, Dardo Rubén López, Federica Pontieri, Flavio Marzialetti, Ramon Riera-Tatché, Paolo Gamba, and Maria Laura Carranza. 2025. "Multi-Temporal Remote Sensing for Forest Conservation and Management: A Case Study of the Gran Chaco in Central Argentina" Remote Sensing 17, no. 5: 748. https://doi.org/10.3390/rs17050748
APA StyleAlaggia, F. G., Innangi, M., Cavallero, L., López, D. R., Pontieri, F., Marzialetti, F., Riera-Tatché, R., Gamba, P., & Carranza, M. L. (2025). Multi-Temporal Remote Sensing for Forest Conservation and Management: A Case Study of the Gran Chaco in Central Argentina. Remote Sensing, 17(5), 748. https://doi.org/10.3390/rs17050748