Effects of Emission Variability on Atmospheric CO2 Concentrations in Mainland China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Description
2.2. Emissions
2.2.1. ODIAC
2.2.2. MEIC
2.2.3. EDGAR
2.3. Satellite Observations
2.4. Ground-Based CO2 Observations
3. Results and Discussion
3.1. Spatiotemporal Distribution of Emissions and Simulated XCO2
3.2. Comparisons with Satellite XCO2
3.3. Validation with Ground-Based Observations
3.4. The Impact of Emission Variability on XCO2
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
2018 | 2019 | 2020 | |
---|---|---|---|
Fossil CO2 emissions | 10 + 0.5 | 9.7 ± 0.5 | 9.3 ± 0.5 |
Land-use change emissions | 1.5 ± 0.7 | 1.8 ± 0.7 | 0.9 ± 0.7 |
Total emissions | 11.5 ± 0.9 | 11.5 ± 0.9 | 10.2 ± 0.8 |
Partitioning | |||
Ocean sink | 2.6 ± 0.6 | 2.6 ± 0.6 | 3.0 ± 0.4 |
Terrestrial sink | 3.5 ± 0.7 | 3.1 ± 1.2 | 2.9 ± 1.0 |
Annual CO2 fluxes | 5.4 | 5.8 | 4.3 |
Reference | [71] | [72] | [73] |
Flux Type | Inventory Name/Abbreviation | 2018 | 2019 | 2020 | Reference |
---|---|---|---|---|---|
Fossil fuel and cement manufacture | ODIAC | 10.11 | 10.17 | 9.7 | [49] |
EDGAR | 10.34 | 10.36 | 9.82 | [10,74,75,76] | |
Biomass burning | GFEDv4.1s | 1.67 | 2.06 | 1.81 | [41] |
Balanced biosphere | SiB3 | 0 | 0 | 0 | [43] |
Residual annual terrestrial exchange | TransCom climatology (fixed in 2006) | −5.29 | −5.29 | −5.29 | [44] |
Ocean exchange | Scaled ocean exchange (fixed in 2009) | −1.41 | −1.41 | −1.41 | [42] |
Shipping | CEDS | 0.236 | 0.23 | 0.23 | [45,77] |
Aviation | AEIC | 0.16 | 0.16 | 0.16 | [37,47] |
Chemical source | GEOS-Chem CO2 Chemical Source | 1.04–1.06 | 1.04–1.06 | 1.04–1.06 | [37] |
Total CO2 flux (chemical source not included) | Using ODIAC as FF flux | 5.476 | 5.92 | 5.2 | |
Using EDGAR as FF flux | 5.706 | 6.11 | 5.32 |
References
- Lan, X.; Tans, P.; Thoning, K.W. Trends in Globally-Averaged CO2 Determined from NOAA Global Monitoring Laboratory Measurements. Available online: https://gml.noaa.gov/ccgg/trends/gl_data.html (accessed on 1 December 2024).
- Manabe, S.; Wetherald, R.T. Thermal Equilibrium of the Atmosphere with a Given Distribution of Relative Humidity. J. Atmos. Sci. 1967, 24, 241–259. [Google Scholar] [CrossRef]
- Gunter, W.D.; Wong, S.; Cheel, D.B.; Sjostrom, G. Large CO2 Sinks: Their role in the mitigation of greenhouse gases from an international, national (Canadian) and provincial (Alberta) perspective. Appl. Energy 1998, 61, 209–227. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Bakker, D.C.E.; Hauck, J.; Landschützer, P.; Le Quéré, C.; Luijkx, I.T.; Peters, G.P.; et al. Global Carbon Budget 2023. Earth Syst. Sci. Data 2023, 15, 5301–5369. [Google Scholar] [CrossRef]
- Schimel, D. Carbon cycle conundrums. Proc. Natl. Acad. Sci. USA 2007, 104, 18353–18354. [Google Scholar] [CrossRef]
- Kou, X.; Zhang, M.; Peng, Z.; Wang, Y. Assessment of the biospheric contribution to surface atmospheric CO2 concentrations over East Asia with a regional chemical transport model. Adv. Atmos. Sci. 2015, 32, 287–300. [Google Scholar] [CrossRef]
- Fu, Y.; Liao, H.; Tian, X.; Gao, H.; Jia, B.; Han, R. Impact of Prior Terrestrial Carbon Fluxes on Simulations of Atmospheric CO2 Concentrations. J. Geophys. Res. Atmos. 2021, 126, e2021JD034794. [Google Scholar] [CrossRef]
- Andres, R.J.; Boden, T.A.; Higdon, D. A new evaluation of the uncertainty associated with CDIAC estimates of fossil fuel carbon dioxide emission. Tellus B Chem. Phys. Meteorol. 2014, 66, 23616. [Google Scholar] [CrossRef]
- Crippa, M.; Guizzardi, D.; Banja, M.; Solazzo, E.; Muntean, M.; Schaaf, E.; Pagani, F.; Monforti, F.; Olivier, J.; Quadrelli, R.; et al. CO2 Emissions of All World Countries; JRC/IEA/PBL 2022 Report; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar]
- Solazzo, E.; Crippa, M.; Guizzardi, D.; Muntean, M.; Choulga, M.; Janssens-Maenhout, G. Uncertainties in the Emissions Database for Global Atmospheric Research (EDGAR) emission inventory of greenhouse gases. Atmos. Chem. Phys. 2021, 21, 5655–5683. [Google Scholar] [CrossRef]
- Marland, G. China’s uncertain CO2 emissions. Nat. Clim. Change 2012, 2, 645–646. [Google Scholar] [CrossRef]
- Gregg, J.S.; Andres, R.J.; Marland, G. China: Emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production. Geophys. Res. Lett. 2008, 35, L08806. [Google Scholar] [CrossRef]
- Andres, R.J.; Boden, T.A.; Bréon, F.M.; Ciais, P.; Davis, S.; Erickson, D.; Gregg, J.S.; Jacobson, A.; Marland, G.; Miller, J.; et al. A synthesis of carbon dioxide emissions from fossil-fuel combustion. Biogeosciences 2012, 9, 1845–1871. [Google Scholar] [CrossRef]
- Liu, Z.; Deng, Z.; He, G.; Wang, H.; Zhang, X.; Lin, J.; Qi, Y.; Liang, X. Challenges and opportunities for carbon neutrality in China. Nat. Rev. Earth Environ. 2021, 3, 141–155. [Google Scholar] [CrossRef]
- Shan, Y.; Guan, D.; Zheng, H.; Ou, J.; Li, Y.; Meng, J.; Mi, Z.; Liu, Z.; Zhang, Q. China CO2 emission accounts 1997–2015. Sci. Data 2018, 5, 170201. [Google Scholar] [CrossRef]
- Guan, D.; Liu, Z.; Geng, Y.; Lindner, S.; Klaus, H. The gigatonne gap in China’s carbon dioxide inventories. Nat. Clim. Change 2012, 2, 672–675. [Google Scholar] [CrossRef]
- Liu, Z.; Guan, D.; Wei, W.; Davis, S.J.; Ciais, P.; Bai, J.; Peng, S.; Zhang, Q.; Hubacek, K.; Marland, G.; et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature 2015, 524, 335–338. [Google Scholar] [CrossRef]
- Nassar, R.; Napier-Linton, L.; Gurney, K.R.; Andres, R.J.; Oda, T.; Vogel, F.R.; Deng, F. Improving the temporal and spatial distribution of CO2 emissions from global fossil fuel emission data sets. J. Geophys. Res. Atmos. 2013, 118, 917–933. [Google Scholar] [CrossRef]
- Gurney, K.R.; Law, R.M.; Denning, A.S.; Rayner, P.J.; Baker, D.; Bousquet, P.; Bruhwiler, L.; Chen, Y.-H.; Ciais, P.; Fan, S.; et al. TransCom 3 CO2 inversion intercomparison: 1. Annual mean control results and sensitivity to transport and prior flux information. Tellus B 2003, 55, 555–579. [Google Scholar] [CrossRef]
- O’Dell, C.W.; Eldering, A.; Wennberg, P.O.; Crisp, D.; Gunson, M.R.; Fisher, B.; Frankenberg, C.; Kiel, M.; Lindqvist, H.; Mandrake, L.; et al. Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm. Atmos. Meas. Tech. 2018, 11, 6539–6576. [Google Scholar] [CrossRef]
- Yokota, T.; Yoshida, Y.; Eguchi, N.; Ota, Y.; Tanaka, T.; Watanabe, H.; Maksyutov, S. Global Concentrations of CO2 and CH4 Retrieved from GOSAT: First Preliminary Results. SOLA 2009, 5, 160–163. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Yao, L.; Chen, X.; Cai, Z.; Yang, D.; Yin, Z.; Gu, S.; Tian, L.; Lu, N.; et al. The TanSat mission: Preliminary global observations. Sci. Bull. 2018, 63, 1200–1207. [Google Scholar] [CrossRef] [PubMed]
- Wunch, D.; Toon, G.C.; Blavier, J.-F.L.; Washenfelder, R.A.; Notholt, J.; Connor, B.J.; Griffith, D.W.T.; Sherlock, V.; Wennberg, P.O. The Total Carbon Column Observing Network. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 2087–2112. [Google Scholar] [CrossRef]
- Frey, M.; Sha, M.K.; Hase, F.; Kiel, M.; Blumenstock, T.; Harig, R.; Surawicz, G.; Deutscher, N.M.; Shiomi, K.; Franklin, J.E.; et al. Building the COllaborative Carbon Column Observing Network (COCCON): Long-term stability and ensemble performance of the EM27/SUN Fourier transform spectrometer. Atmos. Meas. Tech. 2019, 12, 1513–1530. [Google Scholar] [CrossRef]
- Jing, Y.; Shi, J.; Wang, T. Evaluation and comparison of atmospheric CO2 concentrations from models and satellite retrievals. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 2202–2205. [Google Scholar]
- Zhang, H.; Chen, B.; Xu, G.; Yan, J.; Che, M.; Chen, J.; Fang, S.; Lin, X.; Sun, S. Comparing simulated atmospheric carbon dioxide concentration with GOSAT retrievals. Sci. Bull. 2015, 60, 380–386. [Google Scholar] [CrossRef]
- Lei, L.; Guan, X.; Zeng, Z.; Zhang, B.; Ru, F.; Bu, R. A comparison of atmospheric CO2 concentration GOSAT-based observations and model simulations. Sci. China Earth Sci. 2014, 57, 1393–1402. [Google Scholar] [CrossRef]
- Li, R.; Zhang, M.; Chen, L.; Kou, X.; Skorokhod, A. CMAQ simulation of atmospheric CO2 concentration in East Asia: Comparison with GOSAT observations and ground measurements. Atmos. Environ. 2017, 160, 176–185. [Google Scholar] [CrossRef]
- Ma, X.-Y.; Huang, W.-J.; Hu, N.; Xiao, W.; Hu, C.; Zhang, M.; Cao, C.; Zhao, J.-Y. Simulation of Anthropogenic CO2 Emissions in the Yangtze River Delta Based on Different Emission Inventories. Environ. Sci. 2023, 44, 2009–2021. [Google Scholar] [CrossRef]
- Zhang, S.; Tian, X. The impacts of modeling global CO2 concentrations with GEOS-Chem using different ocean carbon fluxes. Atmos. Ocean. Sci. Lett. 2019, 12, 343–348. [Google Scholar] [CrossRef]
- Su, M.; Shi, Y.; Yang, Y.; Guo, W. Impacts of different biomass burning emission inventories: Simulations of atmospheric CO2 concentrations based on GEOS-Chem. Sci. Total Environ. 2023, 876, 162825. [Google Scholar] [CrossRef] [PubMed]
- Ciais, P.; Rayner, P.; Chevallier, F.; Bousquet, P.; Logan, M.; Peylin, P.; Ramonet, M. Atmospheric inversions for estimating CO2 fluxes: Methods and perspectives. Clim. Change 2010, 103, 69–92. [Google Scholar] [CrossRef]
- Yang, D.; Liu, Y.; Feng, L.; Wang, J.; Yao, L.; Cai, Z.; Zhu, S.; Lu, N.; Lyu, D. The First Global Carbon Dioxide Flux Map Derived from TanSat Measurements. Adv. Atmos. Sci. 2021, 38, 1433–1443. [Google Scholar] [CrossRef]
- Kong, Y.; Zheng, B.; Zhang, Q.; He, K. Global and regional carbon budget for 2015–2020 inferred from OCO-2 based on an ensemble Kalman filter coupled with GEOS-Chem. Atmos. Chem. Phys. 2022, 22, 10769–10788. [Google Scholar] [CrossRef]
- Suntharalingam, P.; Jacob, D.J.; Palmer, P.I.; Logan, J.A.; Yantosca, R.M.; Xiao, Y.; Evans, M.J.; Streets, D.G.; Vay, S.L.; Sachse, G.W. Improved quantification of Chinese carbon fluxes using CO2/CO correlations in Asian outflow. J. Geophys. Res. Atmos. 2004, 109, D18S18. [Google Scholar] [CrossRef]
- Nassar, R.; Jones, D.B.A.; Suntharalingam, P.; Chen, J.M.; Andres, R.J.; Wecht, K.J.; Yantosca, R.M.; Kulawik, S.S.; Bowman, K.W.; Worden, J.R.; et al. Modeling global atmospheric CO2 with improved emission inventories and CO2 production from the oxidation of other carbon species. Geosci. Model Dev. 2010, 3, 689–716. [Google Scholar] [CrossRef]
- Oda, T.; Maksyutov, S. A very high-resolution (1 km × 1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights. Atmos. Chem. Phys. 2011, 11, 543–556. [Google Scholar] [CrossRef]
- Zheng, B.; Tong, D.; Li, M.; Liu, F.; Hong, C.; Geng, G.; Li, H.; Li, X.; Peng, L.; Qi, J.; et al. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos. Chem. Phys. 2018, 18, 14095–14111. [Google Scholar] [CrossRef]
- Li, M.; Liu, H.; Geng, G.; Hong, C.; Liu, F.; Song, Y.; Tong, D.; Zheng, B.; Cui, H.; Man, H.; et al. Anthropogenic emission inventories in China: A review. Natl. Sci. Rev. 2017, 4, 834–866. [Google Scholar] [CrossRef]
- van der Werf, G.R.; Randerson, J.T.; Giglio, L.; van Leeuwen, T.T.; Chen, Y.; Rogers, B.M.; Mu, M.; van Marle, M.J.E.; Morton, D.C.; Collatz, G.J.; et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 2017, 9, 697–720. [Google Scholar] [CrossRef]
- Takahashi, T.; Sutherland, S.C.; Wanninkhof, R.; Sweeney, C.; Feely, R.A.; Chipman, D.W.; Hales, B.; Friederich, G.; Chavez, F.; Sabine, C.; et al. Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2009, 56, 554–577. [Google Scholar] [CrossRef]
- Messerschmidt, J.; Parazoo, N.; Wunch, D.; Deutscher, N.M.; Roehl, C.; Warneke, T.; Wennberg, P.O. Evaluation of seasonal atmosphere–biosphere exchange estimations with TCCON measurements. Atmos. Chem. Phys. 2013, 13, 5103–5115. [Google Scholar] [CrossRef]
- Baker, D.F.; Law, R.M.; Gurney, K.R.; Rayner, P.; Peylin, P.; Denning, A.S.; Bousquet, P.; Bruhwiler, L.; Chen, Y.H.; Ciais, P.; et al. TransCom 3 inversion intercomparison: Impact of transport model errors on the interannual variability of regional CO2 fluxes, 1988–2003. Glob. Biogeochem. Cycles 2006, 20, GB1002. [Google Scholar] [CrossRef]
- Hoesly, R.M.; Smith, S.J.; Feng, L.; Klimont, Z.; Janssens-Maenhout, G.; Pitkanen, T.; Seibert, J.J.; Vu, L.; Andres, R.J.; Bolt, R.M.; et al. Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geosci. Model Dev. 2018, 11, 369–408. [Google Scholar] [CrossRef]
- Simone, N.W.; Stettler, M.E.J.; Barrett, S.R.H. Rapid estimation of global civil aviation emissions with uncertainty quantification. Transp. Res. Part D Transp. Environ. 2013, 25, 33–41. [Google Scholar] [CrossRef]
- Olsen, S.C.; Brasseur, G.P.; Wuebbles, D.J.; Barrett, S.R.H.; Dang, H.; Eastham, S.D.; Jacobson, M.Z.; Khodayari, A.; Selkirk, H.; Sokolov, A.; et al. Comparison of model estimates of the effects of aviation emissions on atmospheric ozone and methane. Geophys. Res. Lett. 2013, 40, 6004–6009. [Google Scholar] [CrossRef]
- Reddington, C.L.; Conibear, L.; Robinson, S.; Knote, C.; Arnold, S.R.; Spracklen, D.V. Air Pollution from Forest and Vegetation Fires in Southeast Asia Disproportionately Impacts the Poor. GeoHealth 2021, 5, e2021GH000418. [Google Scholar] [CrossRef] [PubMed]
- Oda, T.; Maksyutov, S. ODIAC Fossil Fuel CO2 Emissions Dataset (Version Name: ODIAC2022); Center for Global Environmental Research, National Institute for Environmental Studies: Tsukuba, Japan, 2015. [Google Scholar] [CrossRef]
- Oda, T.; Maksyutov, S.; Andres, R.J. The Open-source Data Inventory for Anthropogenic CO2, version 2016 (ODIAC2016): A global monthly fossil fuel CO2 gridded emissions data product for tracer transport simulations and surface flux inversions. Earth Syst. Sci. Data 2018, 10, 87–107. [Google Scholar] [CrossRef]
- Wheeler, D.; Ummel, K. Calculating CARMA: Global Estimation of CO2 Emissions from the Power Sector; Working Papers; Center for Global Development: Washington, DC, USA, 2008. [Google Scholar] [CrossRef]
- Raupach, M.R.; Rayner, P.J.; Paget, M. Regional variations in spatial structure of nightlights, population density and fossil-fuel CO2 emissions. Energy Policy 2010, 38, 4756–4764. [Google Scholar] [CrossRef]
- Han, P.; Zeng, N.; Oda, T.; Lin, X.; Crippa, M.; Guan, D.; Janssens-Maenhout, G.; Ma, X.; Liu, Z.; Shan, Y.; et al. Evaluating China’s fossil-fuel CO2 emissions from a comprehensive dataset of nine inventories. Atmos. Chem. Phys. 2020, 20, 11371–11385. [Google Scholar] [CrossRef]
- Wunch, D.; Wennberg, P.O.; Osterman, G.; Fisher, B.; Naylor, B.; Roehl, C.M.; O’Dell, C.; Mandrake, L.; Viatte, C.; Kiel, M.; et al. Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) XCO2 measurements with TCCON. Atmos. Meas. Tech. 2017, 10, 2209–2238. [Google Scholar] [CrossRef]
- Labzovskii, L.D.; Jeong, S.-J.; Parazoo, N.C. Working towards confident spaceborne monitoring of carbon emissions from cities using Orbiting Carbon Observatory-2. Remote Sens. Environ. 2019, 233, 111359. [Google Scholar] [CrossRef]
- Kiel, M.; O’Dell, C.W.; Fisher, B.; Eldering, A.; Nassar, R.; MacDonald, C.G.; Wennberg, P.O. How bias correction goes wrong: Measurement of XCO2 affected by erroneous surface pressure estimates. Atmos. Meas. Tech. 2019, 12, 2241–2259. [Google Scholar] [CrossRef]
- Connor, B.J.; Boesch, H.; Toon, G.; Sen, B.; Miller, C.; Crisp, D. Orbiting Carbon Observatory: Inverse method and prospective error analysis. J. Geophys. Res. Atmos. 2008, 113, D05305. [Google Scholar] [CrossRef]
- Buschmann, M.; Deutscher, N.M.; Sherlock, V.; Palm, M.; Warneke, T.; Notholt, J. Retrieval of xCO2 from ground-based mid-infrared (NDACC) solar absorption spectra and comparison to TCCON. Atmos. Meas. Tech. 2016, 9, 577–585. [Google Scholar] [CrossRef]
- Laughner, J.L.; Toon, G.C.; Mendonca, J.; Petri, C.; Roche, S.; Wunch, D.; Blavier, J.F.; Griffith, D.W.T.; Heikkinen, P.; Keeling, R.F.; et al. The Total Carbon Column Observing Network’s GGG2020 data version. Earth Syst. Sci. Data 2024, 16, 2197–2260. [Google Scholar] [CrossRef]
- Morino, I.; Velasco, V.A.; Hori, A.; Uchino, O.; Griffith, D.W.T. TCCON Data from Burgos, Ilocos Norte (PH), Release GGG2020.R0; CaltechDATA: Pasadena, CA, USA, 2022. [Google Scholar] [CrossRef]
- Liu, C.; Wang, W.; Sun, Y.; Shan, C. TCCON Data from Hefei (PRC), Release GGG2020.R1; CaltechDATA: Pasadena, CA, USA, 2023. [Google Scholar] [CrossRef]
- Shiomi, K.; Kawakami, S.; Ohyama, H.; Arai, K.; Okumura, H.; Ikegami, H.; Usami, M. TCCON Data from Saga (JP), Release GGG2020.R0; CaltechDATA: Pasadena, CA, USA, 2022. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, P.; Kumps, N.; Hermans, C.; Nan, W. TCCON Data from Xianghe, China, Release GGG2020.R0; CaltechDATA: Pasadena, CA, USA, 2022. [Google Scholar] [CrossRef]
- Lan, X.; Mund, J.W.; Crotwell, A.M.; Thoning, K.W.; Moglia, E.; Madronich, M.; Baugh, K.; Petron, G.; Crotwell, M.J.; Neff, D.; et al. Atmospheric Carbon Dioxide Dry Air Mole Fractions from the NOAA GML Carbon Cycle Cooperative Global Air Sampling Network, 1968–2023; National Oceanic and Atmospheric Administration, Global Monitoring Laboratory (NOAA/GML): Boulder, CO, USA, 2024; Version: 2024-07-30. [CrossRef]
- Fu, Y.; Liao, H.; Tian, X.-J.; Gao, H.; Cai, Z.-N.; Han, R. Sensitivity of the simulated CO2 concentration to inter-annual variations of its sources and sinks over East Asia. Adv. Clim. Change Res. 2019, 10, 250–263. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Lv, Z.; Shi, Y.; Zang, S.; Sun, L. Spatial and Temporal Variations of Atmospheric CO2 Concentration in China and Its Influencing Factors. Atmosphere 2020, 11, 231. [Google Scholar] [CrossRef]
- Mustafa, F.; Bu, L.; Wang, Q.; Ali, M.A.; Bilal, M.; Shahzaman, M.; Qiu, Z. Multi-Year Comparison of CO2 Concentration from NOAA Carbon Tracker Reanalysis Model with Data from GOSAT and OCO-2 over Asia. Remote Sens. 2020, 12, 2498. [Google Scholar] [CrossRef]
- Spearman, C. The proof and measurement of association between two things. Am. J. Psychol. 1904, 15, 72–101. [Google Scholar] [CrossRef]
- Oda, T.; Feng, L.; Palmer, P.; Baker, D.; Ott, L. Assumptions about prior fossil fuel inventories impact our ability to estimate posterior net CO2 fluxes that are needed for verifying national inventories. Environ. Res. Lett. 2023, 18, 124030. [Google Scholar] [CrossRef]
- Friedlingstein, P.; Jones, M.W.; O’Sullivan, M.; Andrew, R.M.; Hauck, J.; Peters, G.P.; Peters, W.; Pongratz, J.; Sitch, S.; Le Quéré, C.; et al. Global Carbon Budget 2019. Earth Syst. Sci. Data 2019, 11, 1783–1838. [Google Scholar] [CrossRef]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Hauck, J.; Olsen, A.; Peters, G.P.; Peters, W.; Pongratz, J.; Sitch, S.; et al. Global Carbon Budget 2020. Earth Syst. Sci. Data 2020, 12, 3269–3340. [Google Scholar] [CrossRef]
- Friedlingstein, P.; Jones, M.W.; O’Sullivan, M.; Andrew, R.M.; Bakker, D.C.E.; Hauck, J.; Le Quéré, C.; Peters, G.P.; Peters, W.; Pongratz, J.; et al. Global Carbon Budget 2021. Earth Syst. Sci. Data 2022, 14, 1917–2005. [Google Scholar] [CrossRef]
- Olivier, J.; Peters, J. Trend in Global CO2 and GHG Emissions—2019 Report; PBL Report; PBL Netherlands Environmental Assessment Agency: The Hague, The Netherlands, 2019. [Google Scholar]
- Olivier, J.; Peters, J. Trend in Global CO2 and GHG Emissions—2020 Report; PBL Report; PBL Netherlands Environmental Assessment Agency: The Hague, The Netherlands, 2020. [Google Scholar]
- Olivier, J.; Peters, J. Trend in Global CO2 and GHG Emissions—2021 Report; PBL Report; PBL Netherlands Environmental Assessment Agency: The Hague, The Netherlands, 2021. [Google Scholar]
- O’Rourke, P.R.; Smith, S.J.; Mott, A.; Ahsan, H.; McDuffie, E.E.; Crippa, M.; Klimont, Z.; McDonald, B.; Wang, S.; Nicholson, M.B.; et al. CEDS v_2021_04_21; Release Emission Data (v_2021_02_05); Zenodo: Geneva, Switzerland, 2021. [Google Scholar] [CrossRef]
Mean of XCO2 (ppm) | The Mean of Highest 10% XCO2 (ppm) | The Mean of Lowest 10% XCO2 (ppm) | Bias (ppm) | MAE (ppm) | RMSE (ppm) | Correlation Coefficient | ||
---|---|---|---|---|---|---|---|---|
MAM | Obs_OCO-2 | 414.50 | 417.51 | 411.51 | ||||
Sim_ODIAC | 413.79 | 415.88 | 411.81 | 0.72 | 1.22 | 1.66 | 0.52 | |
Sim_EDGAR | 414.26 | 416.39 | 412.24 | 0.24 | 1.09 | 1.51 | 0.52 | |
Sim_MEIC | 413.61 | 415.67 | 411.65 | 0.89 | 1.30 | 1.74 | 0.52 | |
JJA | Obs_OCO-2 | 410.73 | 415.40 | 404.80 | ||||
Sim_ODIAC | 410.06 | 413.73 | 405.29 | 0.67 | 1.42 | 1.86 | 0.83 | |
Sim_EDGAR | 410.59 | 414.26 | 405.82 | 0.14 | 1.29 | 1.74 | 0.83 | |
Sim_MEIC | 409.84 | 413.54 | 405.01 | 0.88 | 1.51 | 1.93 | 0.83 | |
SON | Obs_OCO-2 | 411.45 | 415.18 | 407.88 | ||||
Sim_ODIAC | 410.32 | 412.68 | 407.97 | 1.13 | 1.54 | 1.99 | 0.60 | |
Sim_EDGAR | 410.88 | 413.56 | 408.53 | 0.56 | 1.28 | 1.73 | 0.60 | |
Sim_MEIC | 410.06 | 412.35 | 407.70 | 1.39 | 1.70 | 2.15 | 0.60 | |
DJF | Obs_OCO-2 | 413.04 | 416.71 | 410.38 | ||||
Sim_ODIAC | 412.32 | 414.86 | 410.38 | 0.72 | 1.36 | 1.82 | 0.53 | |
Sim_EDGAR | 412.80 | 415.58 | 410.74 | 0.25 | 1.24 | 1.68 | 0.55 | |
Sim_MEIC | 412.11 | 414.54 | 410.21 | 0.93 | 1.45 | 1.91 | 0.53 |
Sites Name | Lat (°N) | Lon (°E) | Alt (m) | Emission Inventories | Std_r | Bias (ppm) | Correlation Coefficient |
---|---|---|---|---|---|---|---|
Xianghe | 39.80 | 116.96 | / | ODIAC | 0.98 | −0.063 | 0.855 |
EDGAR | 0.98 | −0.150 | 0.871 | ||||
MEIC | 0.95 | −0.577 | 0.873 | ||||
Hefei | 31.90 | 117.17 | / | ODIAC | 1.15 | −0.555 | 0.812 |
EDGAR | 1.16 | 0.063 | 0.817 | ||||
MEIC | 1.14 | −0.605 | 0.7966 | ||||
Burgos | 18.53 | 120.65 | / | ODIAC | 0.87 | −0.989 | 0.967 |
EDGAR | 0.93 | −0.704 | 0.968 | ||||
MEIC | 0.85 | −1.009 | 0.9656 | ||||
Saga | 33.24 | 130.29 | / | ODIAC | 0.96 | −0.673 | 0.937 |
EDGAR | 1.00 | −0.244 | 0.947 | ||||
MEIC | 0.95 | −0.704 | 0.930 | ||||
gsn | 33.28 | 126.15 | 78 | ODIAC | 0.880 | 2.209 | 0.713 |
EDGAR | 0.921 | 1.498 | 0.725 | ||||
MEIC | 0.862 | 2.604 | 0.711 | ||||
lln | 23.46 | 120.86 | 2867 | ODIAC | 0.525 | 3.616 | 0.518 |
EDGAR | 0.565 | 3.300 | 0.514 | ||||
MEIC | 0.509 | 3.770 | 0.519 | ||||
tap | 36.73 | 126.13 | 21 | ODIAC | 0.712 | 2.611 | 0.513 |
EDGAR | 0.721 | 0.942 | 0.518 | ||||
MEIC | 0.713 | 2.936 | 0.514 | ||||
uld | 37.48 | 130.90 | 231 | ODIAC | 1.050 | 2.016 | 0.810 |
EDGAR | 1.081 | 1.379 | 0.815 | ||||
MEIC | 1.045 | 2.340 | 0.808 | ||||
uum | 44.45 | 111.10 | 1012 | ODIAC | 0.816 | 2.188 | 0.886 |
EDGAR | 0.815 | 1.802 | 0.890 | ||||
MEIC | 0.816 | 2.330 | 0.886 | ||||
yon | 24.47 | 123.01 | 50 | ODIAC | 1.106 | 0.984 | 0.801 |
EDGAR | 0.976 | 0.379 | 0.804 | ||||
MEIC | 0.877 | 1.268 | 0.797 | ||||
wlg | 36.27 | 100.92 | 3815 | ODIAC | 0.920 | −2.461 | 0.689 |
EDGAR | 1.169 | −3.194 | 0.685 | ||||
MEIC | 1.124 | −2.423 | 0.678 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, W.; Li, X.; Li, S.; Cheng, T.; Guo, Y.; Fang, W. Effects of Emission Variability on Atmospheric CO2 Concentrations in Mainland China. Remote Sens. 2025, 17, 814. https://doi.org/10.3390/rs17050814
Lu W, Li X, Li S, Cheng T, Guo Y, Fang W. Effects of Emission Variability on Atmospheric CO2 Concentrations in Mainland China. Remote Sensing. 2025; 17(5):814. https://doi.org/10.3390/rs17050814
Chicago/Turabian StyleLu, Wenjing, Xiaoying Li, Shenshen Li, Tianhai Cheng, Yuhang Guo, and Weifang Fang. 2025. "Effects of Emission Variability on Atmospheric CO2 Concentrations in Mainland China" Remote Sensing 17, no. 5: 814. https://doi.org/10.3390/rs17050814
APA StyleLu, W., Li, X., Li, S., Cheng, T., Guo, Y., & Fang, W. (2025). Effects of Emission Variability on Atmospheric CO2 Concentrations in Mainland China. Remote Sensing, 17(5), 814. https://doi.org/10.3390/rs17050814