Assessment of the Impacts of Different Carbon Sources and Sinks on Atmospheric CO2 Concentrations Based on GEOS-Chem
Abstract
:1. Introduction
2. Date and Methods
2.1. GEOS-Chem Model Description
2.2. Numerical Experiments
2.3. Model Evaluation
2.3.1. GOSAT Total Column CO2 (XCO2) Observations
- Screening the a priori values to exclude abnormal or missing data, ensuring the quality and reliability of the input data.
- Re-matching the valid priori values with the atmospheric pressure to ensure consistency between the model’s atmospheric conditions and the actual conditions.
- Interpolating horizontally to obtain simulated data that matches the longitude and latitude of the GOSAT data, allowing for spatial alignment between the simulated and observed datasets.
- Interpolating vertically to match the layers of the GOSAT data, ensuring that the simulated concentrations correspond to the same atmospheric levels as those measured by the satellite.
- Using the processed simulated data from the above steps in Equation (1) to compute the simulated XCO2, which is then compared with the GOSAT-observed values for validation purposes.
2.3.2. Surface CO2 Observations
- Horizontal interpolation was applied to match the latitude and longitude of the observation sites with the simulated data, ensuring spatial alignment between the simulated and observed datasets.
- Vertical interpolation was performed to match the elevation of the observation sites with the simulated data, ensuring consistency in the vertical layers for accurate comparison.
3. Results and Discussion
3.1. Simulation Verification Results
3.1.1. Verification Results of Satellite Observations
3.1.2. Verification Results of Surface Observation
3.2. Temporal and Spatial Characteristics of Global Simulated Atmospheric CO2 Concentration
3.3. Effects of Different CO2 Sources on Atmospheric CO2 Concentration
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Hauck, J.; Landschützer, P.; Le Quéré, C.; Li, H.; Luijkx, I.T.; Olsen, A.; et al. Global Carbon Budget 2024. Earth Syst. Sci. Data Discuss. 2024, 1–133. [Google Scholar] [CrossRef]
- Peylin, P.; Law, R.M.; Gurney, K.R.; Chevallier, F.; Jacobson, A.R.; Maki, T.; Niwa, Y.; Patra, P.K.; Peters, W.; Rayner, P.J.; et al. Global Atmospheric Carbon Budget: Results from an Ensemble of Atmospheric CO2 Inversions. Biogeosciences 2013, 10, 6699–6720. [Google Scholar] [CrossRef]
- Gaubert, B.; Stephens, B.B.; Basu, S.; Chevallier, F.; Deng, F.; Kort, E.A.; Patra, P.K.; Peters, W.; Rödenbeck, C.; Saeki, T.; et al. Global Atmospheric CO2 Inverse Models Converging on Neutral Tropical Land Exchange but Disagreeing on Fossil Fuel and Atmospheric Growth Rate. Biogeosciences 2019, 16, 117–134. [Google Scholar] [CrossRef] [PubMed]
- Kukkonen, J.; Olsson, T.; Schultz, D.M.; Baklanov, A.; Klein, T.; Miranda, A.I.; Monteiro, A.; Hirtl, M.; Tarvainen, V.; Boy, M.; et al. A Review of Operational, Regional-Scale, Chemical Weather Forecasting Models in Europe. Atmos. Chem. Phys. 2012, 12, 1–87. [Google Scholar] [CrossRef]
- Bauska, T.K.; Joos, F.; Mix, A.C.; Roth, R.; Ahn, J.; Brook, E.J. Links between Atmospheric Carbon Dioxide, the Land Carbon Reservoir and Climate over the Past Millennium. Nat. Geosci. 2015, 8, 383–387. [Google Scholar] [CrossRef]
- Keenan, T.F.; Prentice, I.C.; Canadell, J.G.; Williams, C.A.; Wang, H.; Raupach, M.; Collatz, G.J. Recent Pause in the Growth Rate of Atmospheric CO2 Due to Enhanced Terrestrial Carbon Uptake. Nat. Commun. 2016, 7, 13428. [Google Scholar] [CrossRef]
- Zeng, N.; Han, P.; Liu, Z.; Liu, D.; Oda, T.; Martin, C.; Liu, Z.; Yao, B.; Sun, W.; Wang, P.; et al. Global to Local Impacts on Atmospheric CO2 from the COVID-19 Lockdown, Biosphere and Weather Variabilities. Environ. Res. Lett. 2022, 17, 015003. [Google Scholar] [CrossRef]
- Feng, L.; Palmer, P.I.; Yang, Y.; Yantosca, R.M.; Kawa, S.R.; Paris, J.-D.; Matsueda, H.; Machida, T. Evaluating a 3-D Transport Model of Atmospheric CO2; Using Ground-Based, Aircraft, and Space-Borne Data. Atmos. Chem. Phys. 2011, 11, 2789–2803. [Google Scholar] [CrossRef]
- Jalkanen, J.-P.; Brink, A.; Kalli, J.; Pettersson, H.; Kukkonen, J.; Stipa, T. A Modelling System for the Exhaust Emissions of Marine Traffic and Its Application in the Baltic Sea Area. Atmos. Chem. Phys. 2009, 9, 9209–9223. [Google Scholar] [CrossRef]
- Suntharalingam, P.; Spivakovsky, C.M.; Logan, J.A.; McElroy, M.B. Estimating the Distribution of Terrestrial CO2 Sources and Sinks from Atmospheric Measurements: Sensitivity to Configuration of the Observation Network. J. Geophys. Res. Atmos. 2003, 108, 1–22. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Z.; Cai, X.; Wang, D.; Liu, M. Investigating the Driving Factors of Carbon Emissions in China’s Transportation Industry from a Structural Adjustment Perspective. Atmos. Pollut. Res. 2024, 15, 102224. [Google Scholar] [CrossRef]
- Nassar, R.; Jones, D.B.A.; Suntharalingam, P.; Chen, J.M.; Andres, R.J.; Wecht, K.J.; Yantosca, R.M.; Kulawik, S.S.; Bowman, K.W.; Worden, J.R.; et al. Modeling Global Atmospheric CO2; with Improved Emission Inventories and CO2; Production from the Oxidation of Other Carbon Species. Geosci. Model Dev. 2010, 3, 689–716. [Google Scholar] [CrossRef]
- Randerson, J.T.; Thompson, M.V.; Conway, T.J.; Fung, I.Y.; Field, C.B. The Contribution of Terrestrial Sources and Sinks to Trends in the Seasonal Cycle of Atmospheric Carbon Dioxide. Glob. Biogeochem. Cycles 1997, 11, 535–560. [Google Scholar] [CrossRef]
- Suntharalingam, P.; Jacob, D.J.; Palmer, P.I.; Logan, J.A.; Yantosca, R.M.; Xiao, Y.; Evans, M.J.; Streets, D.G.; Vay, S.L.; Sachse, G.W. Improved Quantification of Chinese Carbon Fluxes Using CO2/CO Correlations in Asian Outflow. J. Geophys. Res. Atmos. 2004, 109, 1–13. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Koster, R.; Darmenov, A.S.; Silva, A.D. The Quick Fire Emissions Dataset (QFED): Documentation of Versions 2.1, 2.2 and 2.4. Volume 38; Technical Report Series on Global Modeling and Data Assimilation. 2015. Available online: https://www.semanticscholar.org/paper/The-Quick-Fire-Emissions-Dataset-(QFED)%3A-of-2.1%2C-on-Koster-Darmenov/f18b64dce3bc0f3384d0d8377b409597c5c665cb (accessed on 10 October 2023).
- Oda, T.; Maksyutov, S. A Very High-Resolution (1 Km × 1 Km) Global Fossil Fuel CO2; Emission Inventory Derived Using a Point Source Database and Satellite Observations of Nighttime Lights. Atmos. Chem. Phys. 2011, 11, 543–556. [Google Scholar] [CrossRef]
- Takahashi, T.; Sutherland, S.C.; Wanninkhof, R.; Sweeney, C.; Feely, R.A.; Chipman, D.W.; Hales, B.; Friederich, G.; Chavez, F.; Sabine, C.; et al. Climatological Mean and Decadal Change in Surface Ocean PCO2, and Net Sea–Air CO2 Flux over the Global Oceans. Deep Sea Res. Part II Top. Stud. Oceanogr. 2009, 56, 554–577. [Google Scholar] [CrossRef]
- Messerschmidt, J.; Parazoo, N.; Wunch, D.; Deutscher, N.M.; Roehl, C.; Warneke, T.; Wennberg, P.O. Evaluation of Seasonal Atmosphere–Biosphere Exchange Estimations with TCCON Measurements. Atmos. Chem. Phys. 2013, 13, 5103–5115. [Google Scholar] [CrossRef]
- Baker, D.F.; Law, R.M.; Gurney, K.R.; Rayner, P.; Peylin, P.; Denning, A.S.; Bousquet, P.; Bruhwiler, L.; Chen, Y.-H.; Ciais, P.; et al. TransCom 3 Inversion Intercomparison: Impact of Transport Model Errors on the Interannual Variability of Regional CO2 Fluxes, 1988–2003. Glob. Biogeochem. Cycles 2006, 20, GB1002. [Google Scholar] [CrossRef]
- Hoesly, R.M.; Smith, S.J.; Feng, L.; Klimont, Z.; Janssens-Maenhout, G.; Pitkanen, T.; Seibert, J.J.; Vu, L.; Andres, R.J.; Bolt, R.M.; et al. Historical (1750–2014) Anthropogenic Emissions of Reactive Gases and Aerosols from the Community Emissions Data System (CEDS). Geosci. Model Dev. 2018, 11, 369–408. [Google Scholar] [CrossRef]
- Olsen, S.C.; Brasseur, G.P.; Wuebbles, D.J.; Barrett, S.R.H.; Dang, H.; Eastham, S.D.; Jacobson, M.Z.; Khodayari, A.; Selkirk, H.; Sokolov, A.; et al. Comparison of Model Estimates of the Effects of Aviation Emissions on Atmospheric Ozone and Methane. Geophys. Res. Lett. 2013, 40, 6004–6009. [Google Scholar] [CrossRef]
- Fu, Y.; Liao, H.; Tian, X.; Gao, H.; Jia, B.; Han, R. Impact of Prior Terrestrial Carbon Fluxes on Simulations of Atmospheric CO2 Concentrations. J. Geophys. Res. Atmos. 2021, 126, e2021JD034794. [Google Scholar] [CrossRef]
- Reddington, C.L.; Conibear, L.; Robinson, S.; Knote, C.; Arnold, S.R.; Spracklen, D.V. Air Pollution from Forest and Vegetation Fires in Southeast Asia Disproportionately Impacts the Poor. Geohealth 2021, 5, e2021GH000418. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Beig, G.; Song, S.; Zhang, H.; Hu, J.; Ying, Q.; Liang, F.; Liu, Y.; Wang, H.; Lu, X.; et al. The Impact of Power Generation Emissions on Ambient PM2.5 Pollution and Human Health in China and India. Environ. Int. 2018, 121, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Kou, X.; Zhang, M.; Peng, Z.; Wang, Y. Assessment of the Biospheric Contribution to Surface Atmospheric CO2 Concentrations over East Asia with a Regional Chemical Transport Model. Adv. Atmos. Sci. 2015, 32, 287–300. [Google Scholar] [CrossRef]
- Jing, Y.; Wang, T.; Zhang, P.; Chen, L.; Xu, N.; Ma, Y. Global Atmospheric CO2 Concentrations Simulated by GEOS-Chem: Comparison with GOSAT, Carbon Tracker and Ground-Based Measurements. Atmosphere 2018, 9, 175. [Google Scholar] [CrossRef]
- Wunch, D.; Toon, G.C.; Blavier, J.-F.L.; Washenfelder, R.A.; Notholt, J.; Connor, B.J.; Griffith, D.W.T.; Sherlock, V.; Wennberg, P.O. The Total Carbon Column Observing Network. Philos. Trans. R. Soc. A 2011, 369, 2087–2112. [Google Scholar] [CrossRef]
- Karbasi, S.; Malakooti, H.; Rahnama, M.; Azadi, M. Study of Mid-Latitude Retrieval XCO2 Greenhouse Gas: Validation of Satellite-Based Shortwave Infrared Spectroscopy with Ground-Based TCCON Observations. Sci. Total Environ. 2022, 836, 155513. [Google Scholar] [CrossRef]
- Cogan, A.J.; Boesch, H.; Parker, R.J.; Feng, L.; Palmer, P.I.; Blavier, J.-F.L.; Deutscher, N.M.; Macatangay, R.; Notholt, J.; Roehl, C.; et al. Atmospheric Carbon Dioxide Retrieved from the Greenhouse Gases Observing SATellite (GOSAT): Comparison with Ground-based TCCON Observations and GEOS-Chem Model Calculations. J. Geophys. Res. Atmos. 2012, 117, D21301. [Google Scholar] [CrossRef]
- Lindqvist, H.; O’Dell, C.W.; Basu, S.; Boesch, H.; Chevallier, F.; Deutscher, N.; Feng, L.; Fisher, B.; Hase, F.; Inoue, M.; et al. Does GOSAT Capture the True Seasonal Cycle of Carbon Dioxide? Atmos. Chem. Phys. 2015, 15, 13023–13040. [Google Scholar] [CrossRef]
- Morino, I.; Uchino, O.; Inoue, M.; Yoshida, Y.; Yokota, T.; Wennberg, P.O.; Toon, G.C.; Wunch, D.; Roehl, C.M.; Notholt, J.; et al. Preliminary Validation of Column-Averaged Volume Mixing Ratios of Carbon Dioxide and Methane Retrieved from GOSAT Short-Wavelength Infrared Spectra. Atmos. Meas. Tech. 2010, 3, 1061–1076. [Google Scholar] [CrossRef]
- Connor, B.J.; Boesch, H.; Toon, G.; Sen, B.; Miller, C.; Crisp, D. Orbiting Carbon Observatory: Inverse Method and Prospective Error Analysis. J. Geophys. Res. Atmos. 2008, 113, D05305. [Google Scholar] [CrossRef]
- Masarie, K.A.; Peters, W.; Jacobson, A.R.; Tans, P.P. ObsPack: A Framework for the Preparation, Delivery, and Attribution of Atmospheric Greenhouse Gas Measurements. Earth Syst. Sci. Data 2014, 6, 375–384. [Google Scholar] [CrossRef]
- Fu, Y.; Liao, H.; Tian, X.-J.; Gao, H.; Cai, Z.-N.; Han, R. Sensitivity of the Simulated CO2 Concentration to Inter-Annual Variations of Its Sources and Sinks over East Asia. Adv. Clim. Change Res. 2019, 10, 250–263. [Google Scholar] [CrossRef]
- Li, R.; Zhang, M.; Chen, L.; Kou, X.; Skorokhod, A. CMAQ Simulation of Atmospheric CO2 Concentration in East Asia: Comparison with GOSAT Observations and Ground Measurements. Atmos. Environ. 2017, 160, 176–185. [Google Scholar] [CrossRef]
- Chen, Z.H.; Zhu, J.; Zeng, N. Improved Simulation of Regional CO2; Surface Concentrations Using GEOS-Chem and Fluxes from VEGAS. Atmos. Chem. Phys. 2013, 13, 7607–7618. [Google Scholar] [CrossRef]
- Deryugina, T.; Heutel, G.; Miller, N.H.; Molitor, D.; Reif, J. The Mortality and Medical Costs of Air Pollution: Evidence from Changes in Wind Direction. Am. Econ. Rev. 2019, 109, 4178–4219. [Google Scholar] [CrossRef]
- Xie, Y.; He, Y.; Ye, Y.; Liu, C. Employ Mathematical Modeling to Summarize, Analyze, And Predict the Relationship Between Carbon Dioxide and Temperature, Location, And Other Factors. Acad. J. Sci. Technol. 2024, 11, 13–20. [Google Scholar] [CrossRef]
- Liu, B.; Guan, Y.; Shan, Y.; Cui, C.; Hubacek, K. Emission Growth and Drivers in Mainland Southeast Asian Countries. J. Environ. Manag. 2023, 329, 117034. [Google Scholar] [CrossRef]
- Forkel, M.; Carvalhais, N.; Rödenbeck, C.; Keeling, R.; Heimann, M.; Thonicke, K.; Zaehle, S.; Reichstein, M. Enhanced Seasonal CO2 Exchange Caused by Amplified Plant Productivity in Northern Ecosystems. Science 2016, 351, 696–699. [Google Scholar] [CrossRef]
- Lin, X.; Rogers, B.M.; Sweeney, C.; Chevallier, F.; Arshinov, M.; Dlugokencky, E.; Machida, T.; Sasakawa, M.; Tans, P.; Keppel-Aleks, G. Siberian and Temperate Ecosystems Shape Northern Hemisphere Atmospheric CO2 Seasonal Amplification. Proc. Natl. Acad. Sci. USA 2020, 117, 21079–21087. [Google Scholar] [CrossRef] [PubMed]
- Keeling, C.D.; Whorf, T.P. Atmospheric CO₂ Concentrations (1958–2003): Mauna Loa Observatory, Hawaii; CDIAC Datasets; ORNL Environmental Sciences Division: Oak Ridge, TN, USA, 2004; pp. 34–56.
- Liu, J.; Baskaran, L.; Bowman, K.; Schimel, D.; Bloom, A.A.; Parazoo, N.C.; Oda, T.; Carroll, D.; Menemenlis, D.; Joiner, J.; et al. CMS-Flux NBE 2020: A global dataset of net biosphere exchange (2001–2020) derived from satellite observations and the NASA Carbon Monitoring System. Earth Syst. Sci. Data 2021, 13, 299–330. [Google Scholar] [CrossRef]
- Le Quéré, C.; Jackson, R.B.; Jones, M.W.; Smith, A.J.P.; Abernethy, S.; Andrew, R.M.; De-Gol, A.J.; Willis, D.R.; Shan, Y.; Canadell, J.G.; et al. Temporary Reduction in Daily Global CO2 Emissions during the COVID-19 Forced Confinement. Nat. Clim. Chang. 2020, 10, 647–653. [Google Scholar] [CrossRef]
- Rayner, P.J.; Raupach, M.R.; Paget, M.; Peylin, P.; Koffi, E. A New Global Gridded Data Set of CO2 Emissions from Fossil Fuel Combustion: Methodology and Evaluation. J. Geophys. Res. Atmos. 2010, 115, D19306. [Google Scholar] [CrossRef]
- Chen, J.; Li, C.; Ristovski, Z.; Milic, A.; Gu, Y.; Islam, M.S.; Wang, S.; Hao, J.; Zhang, H.; He, C.; et al. A Review of Biomass Burning: Emissions and Impacts on Air Quality, Health and Climate in China. Sci. Total Environ. 2017, 579, 1000–1034. [Google Scholar] [CrossRef]
- Ji, X.; Long, X. A Review of the Ecological and Socioeconomic Effects of Biofuel and Energy Policy Recommendations. Renew. Sustain. Energy Rev. 2016, 61, 41–52. [Google Scholar] [CrossRef]
- Callahan, R.P.; Riebe, C.S.; Sklar, L.S.; Pasquet, S.; Ferrier, K.L.; Hahm, W.J.; Taylor, N.J.; Grana, D.; Flinchum, B.A.; Hayes, J.L.; et al. Forest Vulnerability to Drought Controlled by Bedrock Composition. Nat. Geosci. 2022, 15, 714–719. [Google Scholar] [CrossRef]
- Suggitt, A.J.; Wilson, R.J.; Isaac, N.J.B.; Beale, C.M.; Auffret, A.G.; August, T.; Bennie, J.J.; Crick, H.Q.P.; Duffield, S.; Fox, R.; et al. Extinction Risk from Climate Change Is Reduced by Microclimatic Buffering. Nat. Clim. Chang. 2018, 8, 713–717. [Google Scholar] [CrossRef]
- Field, R.D.; van der Werf, G.R.; Shen, S.S.P. Human Amplification of Drought-Induced Biomass Burning in Indonesia since 1960. Nat. Geosci. 2009, 2, 185–188. [Google Scholar] [CrossRef]
- Andreae, M.O.; Merlet, P. Emission of Trace Gases and Aerosols from Biomass Burning. Glob. Biogeochem. Cycles 2001, 15, 955–966. [Google Scholar] [CrossRef]
- Philip, S.; Johnson, M.S.; Potter, C.; Genovesse, V.; Baker, D.F.; Haynes, K.D.; Henze, D.K.; Liu, J.; Poulter, B. Prior Biosphere Model Impact on Global Terrestrial CO2; Fluxes Estimated from OCO-2 Retrievals. Atmos. Chem. Phys. 2019, 19, 13267–13287. [Google Scholar] [CrossRef]
- Reichstein, M.; Bahn, M.; Ciais, P.; Frank, D.; Mahecha, M.D.; Seneviratne, S.I.; Zscheischler, J.; Beer, C.; Buchmann, N.; Frank, D.C.; et al. Climate Extremes and the Carbon Cycle. Nature 2013, 500, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Peng, S.; Chang, J.; Ciais, P.; Dumas, P.; Lin, X.; Piao, S. Inventory of Methane Emissions from Livestock in China from 1980 to 2013. Atmos. Environ. 2018, 184, 69–76. [Google Scholar] [CrossRef]
- Smettem, K.R.J.; Waring, R.H.; Callow, J.N.; Wilson, M.; Mu, Q. Satellite-derived Estimates of Forest Leaf Area Index in Southwest Western Australia Are Not Tightly Coupled to Interannual Variations in Rainfall: Implications for Groundwater Decline in a Drying Climate. Glob. Chang. Biol. 2013, 19, 2401–2412. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, M.; Zhang, Y.; Zeng, X.; Xiao, X. Response of Tropical Terrestrial Gross Primary Production to the Super El Niño Event in 2015. J. Geophys. Res. Biogeosci. 2018, 123, 3193–3203. [Google Scholar] [CrossRef]
- Lee, D.S.; Fahey, D.W.; Skowron, A.; Allen, M.R.; Burkhardt, U.; Chen, Q.; Doherty, S.J.; Freeman, S.; Forster, P.M.; Fuglestvedt, J.; et al. The Contribution of Global Aviation to Anthropogenic Climate Forcing for 2000 to 2018. Atmos. Environ. 2021, 244, 117834. [Google Scholar] [CrossRef]
- Corbett, J.J.; Winebrake, J.J.; Green, E.H.; Kasibhatla, P.; Eyring, V.; Lauer, A. Mortality from Ship Emissions: A Global Assessment. Environ. Sci. Technol. 2007, 41, 8512–8518. [Google Scholar] [CrossRef]
- Qiu, G.; Pattey, E. Estimating PM10 Emissions from Spring Wheat Harvest Using an Atmospheric Tracer Technique. Atmos. Environ. 2008, 42, 8315–8321. [Google Scholar] [CrossRef]
- Viana, M.; Hammingh, P.; Colette, A.; Querol, X.; Degraeuwe, B.; de Vlieger, I.; van Aardenne, J. Impact of Maritime Transport Emissions on Coastal Air Quality in Europe. Atmos. Environ. 2014, 90, 96–105. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, B.; Fan, L.; Lu, Z. Aeromagnetic Anomaly Detection under Low SNR Conditions Using Multiscale Wavelet Energy Accumulation. In Proceedings of the 2020 IEEE 20th International Conference on Communication Technology (ICCT), Nanning, China, 28–31 October 2020; pp. 1641–1644. [Google Scholar] [CrossRef]
- Brasseur, G.P.; Gupta, M.; Anderson, B.E.; Balasubramanian, S.; Barrett, S.; Duda, D.; Fleming, G.; Forster, P.M.; Fuglestvedt, J.; Gettelman, A.; et al. Impact of Aviation on Climate: FAA’s Aviation Climate Change Research Initiative (ACCRI) Phase II. Bull. Am. Meteorol. Soc. 2016, 97, 561–583. [Google Scholar] [CrossRef]
- Landschützer, P.; Gruber, N.; Bakker, D.C.E.; Schuster, U. Recent Variability of the Global Ocean Carbon Sink. Glob. Biogeochem. Cycles 2014, 28, 927–949. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis; IPCC: Geneva, Switzerland, 2021; pp. 131–142. [Google Scholar]
- Bates, N.; Astor, Y.; Church, M.; Currie, K.; Dore, J.; Gonaález-Dávila, M.; Lorenzoni, L.; Muller-Karger, F.; Olafsson, J.; Santa-Casiano, M. A Time-Series View of Changing Ocean Chemistry due to Ocean Uptake of Anthropogenic CO2 and Ocean Acidification. Oceanography 2014, 27, 126–141. [Google Scholar] [CrossRef]
- Kok, J.F.; Adebiyi, A.A.; Albani, S.; Balkanski, Y.; Checa-Garcia, R.; Chin, M.; Colarco, P.R.; Hamilton, D.S.; Huang, Y.; Ito, A.; et al. Improved Representation of the Global Dust Cycle Using Observational Constraints on Dust Properties and Abundance. Atmos. Chem. Phys. 2021, 21, 8127–8167. [Google Scholar] [CrossRef]
- Bastin, J.-F.; Finegold, Y.; Garcia, C.; Mollicone, D.; Rezende, M.; Routh, D.; Zohner, C.M.; Crowther, T.W. The Global Tree Restoration Potential. Science 2019, 365, 76–79. [Google Scholar] [CrossRef]
Flux Type | Inventory Name Abbreviation | Description | Spatial | Temporal | References |
---|---|---|---|---|---|
Biomass Burning | QFED | Quick Fire Emissions Database for 2006–2010 | 0.1° × 0.1° | Daily | [16] |
Fossil Fuel | ODIAC | Open-source Data Inventory for Atmospheric CO2 for 2006–2010 | 1° × 1° | Monthly | [17] |
Ocean Exchange | Scaled ocean exchange | Scaled ocean exchange for 2006–2010 | 4° × 5° | Monthly | [18] |
Balanced Biosphere | SIB3 | Balanced Net Ecosystem Production (NEP) CO2 for 2006–2010 | 1° × 1.25° | 3-hourly | [19] |
Net Terrestrial Exchange | TransCom climatology | TransCom net terrestrial biospheric CO2 fixed in 2000 | 1° × 1° | Fixed | [20] |
Ship | CEDS | Community Emissions Data System for 2006–2010 | 0.5° × 0.5° | Monthly | [21] |
Aviation | AEIC | Aircraft Emissions Inventory Code fixed in 2005 | 1° × 1° | Monthly | [22] |
Chemical Source | CO2 Chemical Source | CO2 chemical production from carbon species oxidation fixed in 2004 | 2° × 2.5° | Monthly | [12] |
Flux Type | Inventory Name Abbreviation | Experiments 1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
BASE | no_FF | no_BB | no_BalB | no_NTE | no_S | no_A | no_O | no_CS | ||
Fossil Fuel | FF | + | − | + | + | + | + | + | + | + |
Biomass Burning | BB | + | + | − | + | + | + | + | + | + |
Balanced Biosphere | BalB | + | + | + | − | + | + | + | + | + |
Net Terrestrial Exchange | NTE | + | + | + | + | − | + | + | + | + |
Ship | S | + | + | + | + | + | − | + | + | + |
Aviation | A | + | + | + | + | + | + | − | + | + |
Ocean Exchange | O | + | + | + | + | + | + | + | − | + |
Chemical Source | CS | + | + | + | + | + | + | + | + | − |
Time | Sample Size | Simulated Mean (ppm) | Observed Mean (ppm) | Simulated Standard Deviation (ppm) | Observed Standard Deviation (ppm) | RMSE (ppm) | Correlation Coefficient |
---|---|---|---|---|---|---|---|
Jan | 6407 | 385.48 | 387.24 | 1.36 | 1.84 | 2.15 | 0.74 |
Feb | 5456 | 386.03 | 387.63 | 1.59 | 1.92 | 1.98 | 0.80 |
Mar | 8285 | 386.86 | 388.27 | 1.88 | 2.11 | 1.78 | 0.86 |
Apr | 8583 | 387.83 | 389.27 | 2.00 | 2.34 | 1.81 | 0.89 |
May | 9396 | 387.88 | 389.52 | 1.74 | 2.39 | 2.07 | 0.86 |
Jun | 10,609 | 386.94 | 388.90 | 1.32 | 1.74 | 2.39 | 0.62 |
Jul | 11,704 | 385.47 | 387.57 | 2.04 | 2.07 | 2.48 | 0.80 |
Aug | 14,258 | 385.30 | 387.36 | 1.64 | 1.84 | 2.34 | 0.81 |
Sep | 14,166 | 385.44 | 387.51 | 1.16 | 1.33 | 2.33 | 0.64 |
Oct | 14,369 | 385.97 | 388.10 | 0.58 | 1.14 | 2.36 | 0.44 |
Nov | 13,207 | 386.30 | 388.39 | 0.42 | 1.03 | 2.32 | 0.28 |
Dec | 8796 | 386.70 | 388.78 | 0.91 | 1.40 | 2.35 | 0.64 |
Yr | 125,236 | 386.26 | 388.18 | 1.67 | 1.89 | 2.25 | 0.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, G.; Zhou, J.; Shi, Y.; Yang, Y.; Su, M.; Wu, W.; Zhou, Z. Assessment of the Impacts of Different Carbon Sources and Sinks on Atmospheric CO2 Concentrations Based on GEOS-Chem. Remote Sens. 2025, 17, 1009. https://doi.org/10.3390/rs17061009
Qu G, Zhou J, Shi Y, Yang Y, Su M, Wu W, Zhou Z. Assessment of the Impacts of Different Carbon Sources and Sinks on Atmospheric CO2 Concentrations Based on GEOS-Chem. Remote Sensing. 2025; 17(6):1009. https://doi.org/10.3390/rs17061009
Chicago/Turabian StyleQu, Ge, Jia Zhou, Yusheng Shi, Yongliang Yang, Mengqian Su, Wen Wu, and Zhitao Zhou. 2025. "Assessment of the Impacts of Different Carbon Sources and Sinks on Atmospheric CO2 Concentrations Based on GEOS-Chem" Remote Sensing 17, no. 6: 1009. https://doi.org/10.3390/rs17061009
APA StyleQu, G., Zhou, J., Shi, Y., Yang, Y., Su, M., Wu, W., & Zhou, Z. (2025). Assessment of the Impacts of Different Carbon Sources and Sinks on Atmospheric CO2 Concentrations Based on GEOS-Chem. Remote Sensing, 17(6), 1009. https://doi.org/10.3390/rs17061009