Paddy Rice Mapping in Hainan Island Using Time-Series Sentinel-1 SAR Data and Deep Learning
Abstract
:1. Introduction
2. Study Area and Materials
2.1. Study Area
2.2. Data
2.2.1. SAR Data
2.2.2. Auxiliary Data
3. Methodology
3.1. Data Preprocessing
- Thermal noise removal was applied to all Sentinel-1 SAR data.
- Slice assembly was performed on consecutive slices when possible.
- Orbit files were applied to update the orbit state vectors in the abstract metadata.
- Radiometric calibration was conducted to generate radar backscatter bands ().
- A Refined Lee filter was used to suppress speckle noise.
- Multi-looking was applied to ensure square pixels.
- Orthorectification of the radar backscatter bands was performed using the Range Doppler Terrain Correction algorithm with SRTM DEM data (spatial resolution: )
- The backscatter coefficient (in dB) was computed from the orthorectified radar backscatter band using the equation .
- All Sentinel-1 SAR data were clipped and reprojected to a uniform UTM49N coordinate system, ensuring alignment with the study area extent.
3.2. RiceLSTM Model
3.3. RiceTS Model
- RiceLSTM layer (temporal feature extraction): The first stage of RiceTS employs RiceLSTM model as a layer to capture temporal dependencies in time-series SAR data. The workflow of the RiceLSTM layer follows that of the RiceLSTM model but generates a feature representation of size 65,536 .
- RiceMU layer (spatial feature extraction): The temporal feature output from the RiceLSTM layer is reshaped into a spatial format of and passed into the RiceMU layer. This step allows the spatial encoder–decoder network to further refine the feature representation and perform detailed segmentation of paddy rice regions.
3.4. Training Sample Generation
3.5. Validation Metrics
3.6. Experimental Settings
4. Results
4.1. The Backscatter Variations for Different Land Cover Types
4.2. Comparison Between RiceLSTM and RiceTS
4.3. Paddy Rice Distribution Map
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Year: 2020, Relative Orbit: 157 | ||||||||
---|---|---|---|---|---|---|---|---|
No. | Acquisition Date | Slice | No. | Acquisition Date | Slice | No. | Acquisition Date | Slice |
1 | 2020/1/6 | 1, 2 | 11 | 2020/5/5 | 1, 2 | 21 | 2020/9/2 | 1, 2 |
2 | 2020/1/18 | 1, 2 | 12 | 2020/5/17 | 1, 2 | 22 | 2020/9/14 | 1, 2 |
3 | 2020/1/30 | 1, 2 | 13 | 2020/5/29 | 1, 2 | 23 | 2020/9/26 | 1, 2 |
4 | 2020/2/11 | 1, 2 | 14 | 2020/6/10 | 1, 2 | 24 | 2020/10/8 | 1, 2 |
5 | 2020/2/23 | 1, 2 | 15 | 2020/6/22 | 1, 2 | 25 | 2020/10/20 | 1, 2 |
6 | 2020/3/6 | 1, 2 | 16 | 2020/7/4 | 1, 2 | 26 | 2020/11/1 | 1, 2 |
7 | 2020/3/18 | 1, 2 | 17 | 2020/7/16 | 1, 2 | 27 | 2020/11/13 | 1, 2 |
8 | 2020/3/30 | 1, 2 | 18 | 2020/7/28 | 1, 2 | 28 | 2020/11/25 | 1, 2 |
9 | 2020/4/11 | 1, 2 | 19 | 2020/8/9 | 1, 2 | 29 | 2020/12/7 | 1, 2 |
10 | 2020/4/23 | 1, 2 | 20 | 2020/8/21 | 1, 2 | 30 | 2020/12/19 | 1, 2 |
Year: 2020, Relative Orbit: 55 | ||||||||
No. | Acquisition Date | Slice | No. | Acquisition Date | Slice | No. | Acquisition Date | Slice |
31 | 2020/1/11 | 5, 6 | 41 | 2020/5/10 | 5, 6 | 51 | 2020/9/7 | 5, 6 |
32 | 2020/1/23 | 5, 6 | 42 | 2020/5/22 | 5, 6 | 52 | 2020/9/19 | 5, 6 |
33 | 2020/2/4 | 5, 6 | 43 | 2020/6/3 | 5, 6 | 53 | 2020/10/1 | 5, 6 |
34 | 2020/2/16 | 5, 6 | 44 | 2020/6/15 | 5, 6 | 54 | 2020/10/13 | 5, 6 |
35 | 2020/2/28 | 5, 6 | 45 | 2020/6/27 | 5, 6 | 55 | 2020/10/25 | 5, 6 |
36 | 2020/3/11 | 5, 6 | 46 | 2020/7/9 | 5, 6 | 56 | 2020/11/6 | 5, 6 |
37 | 2020/3/23 | 5, 6 | 47 | 2020/7/21 | 5, 6 | 57 | 2020/11/18 | 5, 6 |
38 | 2020/4/4 | 5, 6 | 48 | 2020/8/2 | 5, 6 | 58 | 2020/11/30 | 5, 6 |
39 | 2020/4/16 | 5, 6 | 49 | 2020/8/14 | 5, 6 | 59 | 2020/12/12 | 5, 6 |
40 | 2020/4/28 | 5, 6 | 50 | 2020/8/26 | 5, 6 | 60 | 2020/12/24 | 5, 6 |
Year: 2020, Relative Orbit: 84 | ||||||||
No. | Acquisition Date | Slice | No. | Acquisition Date | Slice | No. | Acquisition Date | Slice |
61 | 2020/1/1 | 1 | 71 | 2020/4/30 | 1 | 81 | 2020/8/28 | 1 |
62 | 2020/1/13 | 1 | 72 | 2020/5/12 | 1 | 82 | 2020/9/21 | 1 |
63 | 2020/1/25 | 1 | 73 | 2020/5/24 | 1 | 83 | 2020/10/3 | 1 |
64 | 2020/2/6 | 1 | 74 | 2020/6/5 | 1 | 84 | 2020/10/15 | 1 |
65 | 2020/2/18 | 1 | 75 | 2020/6/17 | 1 | 85 | 2020/10/27 | 1 |
66 | 2020/3/1 | 1 | 76 | 2020/6/29 | 1 | 86 | 2020/11/8 | 1 |
67 | 2020/3/13 | 1 | 77 | 2020/7/11 | 1 | 87 | 2020/11/20 | 1 |
68 | 2020/3/25 | 1 | 78 | 2020/7/23 | 1 | 88 | 2020/12/2 | 1 |
69 | 2020/4/6 | 1 | 79 | 2020/8/4 | 1 | 89 | 2020/12/14 | 1 |
70 | 2020/4/18 | 1 | 80 | 2020/8/16 | 1 | 90 | 2020/12/26 | 1 |
Year: 2023, Relative Orbit: 157 | ||||||||
No. | Acquisition Date | Slice | No. | Acquisition Date | Slice | No. | Acquisition Date | Slice |
1 | 2023/1/2 | 1, 2 | 11 | 2023/5/2 | 1, 2 | 21 | 2023/8/30 | 1, 2 |
2 | 2023/1/14 | 1, 2 | 12 | 2023/5/14 | 1, 2 | 22 | 2023/9/11 | 1, 2 |
3 | 2023/1/26 | 1, 2 | 13 | 2023/5/26 | 1, 2 | 23 | 2023/9/23 | 1, 2 |
4 | 2023/2/7 | 1, 2 | 14 | 2023/6/7 | 1, 2 | 24 | 2023/10/5 | 1, 2 |
5 | 2023/2/19 | 1, 2 | 15 | 2023/6/19 | 1 | 25 | 2023/10/17 | 1, 2 |
6 | 2023/3/3 | 1, 2 | 16 | 2023/7/1 | 1 | 26 | 2023/11/10 | 1, 2 |
7 | 2023/3/15 | 1, 2 | 17 | 2023/7/13 | 1 | 27 | 2023/11/22 | 1, 2 |
8 | 2023/3/27 | 1, 2 | 18 | 2023/7/25 | 1 | 28 | 2023/12/4 | 1, 2 |
9 | 2023/4/8 | 1, 2 | 19 | 2023/8/6 | 1 | 29 | 2023/12/16 | 1, 2 |
10 | 2023/4/20 | 1, 2 | 20 | 2023/8/18 | 1, 2 | 30 | 2023/12/28 | 1, 2 |
Year: 2023, Relative Orbit: 55 | ||||||||
No. | Acquisition Date | Slice | No. | Acquisition Date | Slice | No. | Acquisition Date | Slice |
31 | 2023/1/7 | 5, 6 | 41 | 2023/5/7 | 5, 6 | 46 | 2023/9/4 | 5, 6 |
32 | 2023/1/19 | 5, 6 | 42 | 2023/5/19 | 5, 6 | 47 | 2023/9/16 | 5, 6 |
33 | 2023/1/31 | 5, 6 | 43 | 2023/5/31 | 5, 6 | 48 | 2023/9/28 | 5, 6 |
34 | 2023/2/12 | 5, 6 | 5, 6 | 49 | 2023/10/10 | 5, 6 | ||
35 | 2023/2/24 | 5, 6 | 5, 6 | 50 | 2023/10/22 | 5, 6 | ||
36 | 2023/3/8 | 5, 6 | 44 | 2023/7/6 | 5, 6 | 51 | 2023/11/3 | 5, 6 |
37 | 2023/3/20 | 5, 6 | 5, 6 | 52 | 2023/11/15 | 5, 6 | ||
38 | 2023/4/1 | 5, 6 | 5, 6 | 53 | 2023/11/27 | 5, 6 | ||
39 | 2023/4/13 | 5, 6 | 5, 6 | 54 | 2023/12/9 | 5, 6 | ||
40 | 2023/4/25 | 5, 6 | 45 | 2023/8/23 | 5, 6 | 55 | 2023/12/21 | 5, 6 |
Year: 2023, Relative Orbit: 84 | ||||||||
No. | Acquisition Date | Slice | No. | Acquisition Date | Slice | No. | Acquisition Date | Slice |
56 | 2023/1/9 | 1 | 65 | 2023/5/9 | 1 | 75 | 2023/9/6 | 1 |
57 | 2023/1/21 | 1 | 66 | 2023/5/21 | 1 | 76 | 2023/9/18 | 1 |
1 | 67 | 2023/6/2 | 1 | 77 | 2023/9/30 | 1 | ||
58 | 2023/2/14 | 1 | 68 | 2023/6/14 | 1 | 78 | 2023/10/12 | 1 |
59 | 2023/2/26 | 1 | 69 | 2023/6/26 | 1 | 79 | 2023/10/24 | 1 |
60 | 2023/3/10 | 1 | 70 | 2023/7/8 | 1 | 80 | 2023/11/5 | 1 |
61 | 2023/3/22 | 1 | 71 | 2023/7/20 | 1 | 81 | 2023/11/17 | 1 |
62 | 2023/4/3 | 1 | 72 | 2023/8/1 | 1 | 82 | 2023/11/29 | 1 |
63 | 2023/4/15 | 1 | 73 | 2023/8/13 | 1 | 83 | 2023/12/11 | 1 |
64 | 2023/4/27 | 1 | 74 | 2023/8/25 | 1 | 84 | 2023/12/23 | 1 |
Model | Input Size | Reshaped Size | Ouput Size | Loss Function | Total Parameters | Estimated Total Size (MB) |
---|---|---|---|---|---|---|
RiceLSTM | 256 × 256 × 15 × 2 | 65,536 × 15 × 2 | 256 × 256 × 2 | CrossEntropyLoss | 134,402 | 1016.08 |
RiceLSTMWith Attention | 256 × 256 × 15 × 2 | 65,536 × 15 × 2 | 256 × 256 × 2 | CrossEntropyLoss | 151,042 | 2022.78 |
RiceMU | 256 × 256 × 15 × 2 | 256 × 256 × 30 | 256 × 256 × 2 | CrossEntropyLoss | 2,964,234 | 840.36 |
RiceTS | 256 × 256 × 15 × 2 | 65,536 × 15 × 2 | 256 × 256 × 2 | CrossEntropyLoss | 3,133,066 | 4520.43 |
References
- Singha, M.; Dong, J.; Zhang, G.; Xiao, X. High resolution paddy rice maps in cloud-prone Bangladesh and Northeast India using Sentinel-1 data. Sci. Data 2019, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Elert, E. Rice by the numbers: A good grain. Nature 2014, 514, S50–S51. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, B.; Ponce-Campos, G.; Zhang, M.; Chang, S.; Tian, F. Mapping up-to-Date Paddy Rice Extent at 10 M Resolution in China through the Integration of Optical and Synthetic Aperture Radar Images. Remote Sens. 2018, 10, 1200. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, H.; Wang, C.; Wei, S.; Zhang, B.; Wu, F.; Tang, Y. Paddy Rice Mapping in Thailand Using Time-Series Sentinel-1 Data and Deep Learning Model. Remote Sens. 2021, 13, 3994. [Google Scholar] [CrossRef]
- Bazzi, H.; Baghdadi, N.; El Hajj, M.; Zribi, M.; Dinh, H.T.M.; Ndikumana, E.; Courault, D.; Belhouchette, H. Mapping Paddy Rice Using Sentinel-1 SAR Time Series in Camargue, France. Remote Sens. 2019, 11, 887. [Google Scholar] [CrossRef]
- Yang, H.; Pan, B.; Li, N.; Wang, W.; Zhang, J.; Zhang, X. A systematic method for spatio-temporal phenology estimation of paddy rice using time series Sentinel-1 images. Remote Sens. Environ. 2021, 259, 112394. [Google Scholar] [CrossRef]
- Song, X.; Huang, W.; Hansen, M.C.; Potapov, P. An evaluation of Landsat, Sentinel-2, Sentinel-1 and MODIS data for crop type mapping. Sci. Remote Sens. 2021, 3, 100018. [Google Scholar] [CrossRef]
- Fan, X.; Wang, Z.; Zhang, H.; Liu, H.; Jiang, Z.; Liu, X. Large-Scale Rice Mapping Based on Google Earth Engine and Multi-Source Remote Sensing Images. J. Indian Soc. Remote Sens. 2023, 51, 93–102. [Google Scholar] [CrossRef]
- Waleed, M.; Mubeen, M.; Ahmad, A.; Habib-Ur-Rahman, M.; Amin, A.; Farid, H.U.; Hussain, S.; Ali, M.; Qaisrani, S.A.; Nasim, W.; et al. Evaluating the efficiency of coarser to finer resolution multispectral satellites in mapping paddy rice fields using GEE implementation. Sci. Rep. 2022, 12, 13210. [Google Scholar] [CrossRef]
- Xia, L.; Zhao, F.; Chen, J.; Yu, L.; Lu, M.; Yu, Q.; Liang, S.; Fan, L.; Sun, X.; Wu, S.; et al. A full resolution deep learning network for paddy rice mapping using Landsat data. ISPRS J. Photogramm. Remote Sens. 2022, 194, 91–107. [Google Scholar] [CrossRef]
- Hu, J.; Chen, Y.; Cai, Z.; Wei, H.; Zhang, X.; Zhou, W.; Wang, C.; You, L.; Xu, B. Mapping Diverse Paddy Rice Cropping Patterns in South China Using Harmonized Landsat and Sentinel-2 Data. Remote Sens. 2023, 15, 1034. [Google Scholar] [CrossRef]
- Crisóstomo De Castro Filho, H.; Abílio De Carvalho Júnior, O.; Ferreira De Carvalho, O.L.; Pozzobon de Bem, P.; dos Santos de Moura, R.; Olino de Albuquerque, A.; Rosa Silva, C.; Guimaraes Ferreira, P.H.; Fontes Guimarães, R.; Trancoso Gomes, R.A. Rice Crop Detection Using LSTM, Bi-LSTM, and Machine Learning Models from Sentinel-1 Time Series. Remote Sens. 2020, 12, 2655. [Google Scholar] [CrossRef]
- Ribbes, F.; Le Toan, T. Rice field mapping and monitoring with RADARSAT data. Int. J. Remote Sens. 1999, 20, 745–765. [Google Scholar] [CrossRef]
- Shen, G.; Nie, C. Mapping Rice Area Using Sentinel-1 SAR Data and Deep Learning. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, R.; Zhu, X.; Pan, B.; Fu, Y.; Zheng, Y.; Chen, X.; Peng, Q.; Yuan, W. Sample-free automated mapping of double-season rice in China using Sentinel-1 SAR imagery. Front. Environ. Sci. 2023, 11, 1207882. [Google Scholar] [CrossRef]
- Dong, Y.; Sun, G.; Pang, Y. Monitoring of rice crop using ENVISAT ASAR data. Sci. China Ser. D Earth Sci. 2006, 49, 755–763. [Google Scholar] [CrossRef]
- Chen, J.; Lin, H.; Pei, Z. Application of ENVISAT ASAR Data in Mapping Rice Crop Growth in Southern China. IEEE Geosci. Remote Sens. Lett. 2007, 4, 431–435. [Google Scholar] [CrossRef]
- Yang, S.; Shen, S.; Li, B.; Le Toan, T.; He, W. Rice Mapping and Monitoring Using ENVISAT ASAR Data. IEEE Trans. Geosci. Remote Sens. 2008, 5, 108–112. [Google Scholar] [CrossRef]
- Bouvet, A.; Le Toan, T.; Nguyen, L.D. Monitoring of the Rice Cropping System in the Mekong Delta Using ENVISAT/ASAR Dual Polarization Data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 517–526. [Google Scholar] [CrossRef]
- Bouvet, A.; Thuy, L.T. Use of ENVISAT/ASAR wide-swath data for timely rice fields mapping in the Mekong River Delta. Remote Sens. Environ. 2011, 115, 1090–1101. [Google Scholar] [CrossRef]
- Duy, B.N.; Clauss, K.; Cao, S.; Naeimi, V.; Kuenzer, C.; Wagner, W. Mapping Rice Seasonality in the Mekong Delta with Multi-Year Envisat ASAR WSM Data. Remote Sens. 2015, 7, 15868–15893. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C.; Wu, J.; Qi, J.; Salas, W.A. Mapping paddy rice with multitemporal ALOS/PALSAR imagery in southeast China. Int. J. Remote Sens. 2009, 30, 6301–6315. [Google Scholar] [CrossRef]
- Li, K.; Brisco, B.; Yun, S.; Touzi, R. Polarimetric decomposition with RADARSAT-2 for rice mapping and monitoring. Can. J. Remote Sens. 2012, 38, 169–179. [Google Scholar] [CrossRef]
- Hoang, H.K.; Bernier, M.; Duchesne, S.; Tran, Y.M. Rice Mapping Using RADARSAT-2 Dual- and Quad-Pol Data in a Complex Land-Use Watershed: Cau River Basin (Vietnam). IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3082–3096. [Google Scholar] [CrossRef]
- Koppe, W.; Gnyp, M.L.; Hütt, C.; Yao, Y.; Miao, Y.; Chen, X.; Bareth, G. Rice monitoring with multi-temporal and dual-polarimetric TerraSAR-X data. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 568–576. [Google Scholar] [CrossRef]
- Lopez-Sanchez, J.M.; David Ballester-Berman, J.; Hajnsek, I. First Results of Rice Monitoring Practices in Spain by Means of Time Series of TerraSAR-X Dual-Pol Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 412–422. [Google Scholar] [CrossRef]
- Pei, Z.; Zhang, S.; Guo, L.; Mcnairn, H.; Shang, J.; Jiao, X. Rice identification and change detection using TerraSAR-X data. Can. J. Remote Sens. 2011, 37, 151–156. [Google Scholar] [CrossRef]
- Shen, G.; Fu, W.; Guo, H.; Liao, J. Water body mapping using long time series Sentinel-1 SAR data in Poyang Lake. Water 2022, 14, 1902. [Google Scholar] [CrossRef]
- Clauss, K.; Ottinger, M.; Kuenzer, C. Mapping rice areas with Sentinel-1 time series and superpixel segmentation. Int. J. Remote Sens. 2018, 39, 1399–1420. [Google Scholar] [CrossRef]
- N, K.; Salma, S.; Dodamani, B.M. Identifying Rice Crop Flooding Patterns Using Sentinel-1 SAR Data. J. Indian Soc. Remote Sens. 2022, 50, 1569–1584. [Google Scholar] [CrossRef]
- Li, H.; Fu, D.; Huang, C.; Su, F.; Liu, Q.; Liu, G.; Wu, S. An Approach to High-Resolution Rice Paddy Mapping Using Time-Series Sentinel-1 SAR Data in the Mun River Basin, Thailand. Remote Sens. 2020, 12, 3959. [Google Scholar] [CrossRef]
- Chang, L.; Chen, Y.T.; Wang, J.H.; Chang, Y.L. Rice-Field Mapping with Sentinel-1A SAR Time-Series Data. Remote Sens. 2021, 13, 103. [Google Scholar] [CrossRef]
- Zhu, A.; Zhao, F.; Pan, H.; Liu, J. Mapping Rice Paddy Distribution Using Remote Sensing by Coupling Deep Learning with Phenological Characteristics. Remote Sens. 2021, 13, 1360. [Google Scholar] [CrossRef]
- He, Z.; Li, S. Research progress on radar remote sensing for rice growth monitoring. J. Remote Sens. 2023, 27, 2363–2382. [Google Scholar] [CrossRef]
- Gao, X.; Chi, H.; Huang, J.; Ling, F.; Han, Y.; Jia, X.; Li, Y.; Huang, D.; Dong, J. Review of paddy rice mapping with remote sensing technology. Natl. Remote Sens. Bull. 2024, 28, 2144–2169. [Google Scholar] [CrossRef]
- Wei, P.; Chai, D.; Lin, T.; Tang, C.; Du, M.; Huang, J. Large-scale rice mapping under different years based on time-series Sentinel-1 images using deep semantic segmentation model. ISPRS J. Photogramm. Remote Sens. 2021, 174, 198–214. [Google Scholar] [CrossRef]
- Zhao, R.; Li, Y.; Ma, M. Mapping Paddy Rice with Satellite Remote Sensing: A Review. Sustainability 2021, 13, 503. [Google Scholar] [CrossRef]
- Xu, S.; Zhu, X.; Chen, J.; Zhu, X.; Duan, M.; Qiu, B.; Wan, L.; Tan, X.; Xu, Y.N.; Cao, R. A robust index to extract paddy fields in cloudy regions from SAR time series. Remote Sens. Environ. 2023, 285, 113374. [Google Scholar] [CrossRef]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef]
- Ma, X.; Huang, Z.; Zhu, S.; Fang, W.; Wu, Y. Rice Planting Area Identification Based on Multi-Temporal Sentinel-1 SAR Images and an Attention U-Net Model. Remote Sens. 2022, 14, 4573. [Google Scholar] [CrossRef]
- Li, Q.; Tian, J.; Tian, Q. Deep Learning Application for Crop Classification via Multi-Temporal Remote Sensing Images. Agriculture 2023, 13, 906. [Google Scholar] [CrossRef]
- Ndikumana, E.; Ho Tong Minh, D.; Baghdadi, N.; Courault, D.; Hossard, L. Deep Recurrent Neural Network for Agricultural Classification using multitemporal SAR Sentinel-1 for Camargue, France. Remote Sens. 2018, 10, 1217. [Google Scholar] [CrossRef]
- Wu, M.; Alkhaleefah, M.; Chang, L.; Chang, Y.; Shie, M.; Liu, S.; Chang, W. Recurrent Deep Learning for Rice Fields Detection from SAR Images. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 1548–1551. [Google Scholar] [CrossRef]
- Jo, H.W.; Lee, S.; Park, E.; Lim, C.H.; Song, C.; Lee, H.; Ko, Y.; Cha, S.; Yoon, H.; Lee, W.K. Deep Learning Applications on Multitemporal SAR (Sentinel-1) Image Classification Using Confined Labeled Data: The Case of Detecting Rice Paddy in South Korea. IEEE Trans. Geosci. Remote Sens. 2020, 58, 7589–7601. [Google Scholar] [CrossRef]
- Zhou, Y.; Luo, J.; Feng, L.; Yang, Y.; Chen, Y.; Wu, W. Long-short-term-memory-based crop classification using high-resolution optical images and multi-temporal SAR data. GISci. Remote Sens. 2019, 56, 1170–1191. [Google Scholar] [CrossRef]
- Thorp, K.R.; Drajat, D. Deep machine learning with Sentinel satellite data to map paddy rice production stages across West Java, Indonesia. Remote Sens. Environ. 2021, 265, 112679. [Google Scholar] [CrossRef]
- Lin, Z.; Zhong, R.; Xiong, X.; Guo, C.; Xu, J.; Zhu, Y.; Xu, J.; Ying, Y.; Ting, K.C.; Huang, J.; et al. Large-Scale Rice Mapping Using Multi-Task Spatiotemporal Deep Learning and Sentinel-1 SAR Time Series. Remote Sens. 2022, 14, 699. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, H.; Xu, L.; Wang, C.; Li, L. Rice Mapping Using a BiLSTM-Attention Model from Multitemporal Sentinel-1 Data. Agriculture 2021, 11, 977. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, H.; Ge, J.; Wang, C.; Li, L.; Xu, L. Rice Mapping in a Subtropical Hilly Region Based on Sentinel-1 Time Series Feature Analysis and the Dual Branch BiLSTM Model. Remote Sens. 2022, 14, 3213. [Google Scholar] [CrossRef]
- He, X.; Zhou, Y.; Zhao, J.; Zhang, D.; Yao, R.; Xue, Y. Swin Transformer Embedding UNet for Remote Sensing Image Semantic Segmentation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4408715. [Google Scholar] [CrossRef]
- Xie, Y.; Xu, L.; Zhang, H.; Song, M.; Ge, J.; Wu, F. Tropical Rice Mapping Using Time-Series SAR Images and ESF-Seg Model in Hainan, China, from 2019 to 2023. Remote Sens. 2025, 17, 209. [Google Scholar] [CrossRef]
- Teimouri, N.; Dyrmann, M.; Jørgensen, R.N. A Novel Spatio-Temporal FCN-LSTM Network for Recognizing Various Crop Types Using Multi-Temporal Radar Images. Remote Sens. 2019, 11, 990. [Google Scholar] [CrossRef]
- Chang, Y.L.; Tatini, N.B.; Chen, T.H.; Wu, M.C.; Chuah, J.H.; Chen, Y.T.; Chang, L. Convlstm Neural Network for Rice Field Classification from Sentinel-1A Sar Images. In Proceedings of the IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 5047–5050. [Google Scholar] [CrossRef]
- Yang, L.; Huang, R.; Huang, J.; Lin, T.; Wang, L.; Mijiti, R.; Wei, P.; Tang, C.; Shao, J.; Li, Q.; et al. Semantic Segmentation Based on Temporal Features: Learning of Temporal–Spatial Information From Time-Series SAR Images for Paddy Rice Mapping. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4403216. [Google Scholar] [CrossRef]
- Wei, S.; Zhang, H.; Wang, C.; Xu, L.; Wu, F.; Zhang, B. Large-Scale Rice Mapping of Thailand using Sentinel-1 Multi-Temporal SAR Data. In Proceedings of the 2019 SAR in Big Data Era (BIGSARDATA), Beijing, China, 5–6 August 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Ehiemere, C.I.; Okeke, F.I.; Ehiemere, N.D. Time-series Sentinel-1A SAR remote sensing of rice planting methods in Ebonyi State, Nigeria. Sci. Afr. 2023, 22, e01929. [Google Scholar] [CrossRef]
- Pan, B.; Zheng, Y.; Shen, R.; Ye, T.; Zhao, W.; Dong, J.; Ma, H.; Yuan, W. High Resolution Distribution Dataset of Double-Season Paddy Rice in China. Remote Sens. 2021, 13, 4609. [Google Scholar] [CrossRef]
- Shen, R.; Pan, B.; Peng, Q.; Dong, J.; Chen, X.; Zhang, X.; Ye, T.; Huang, J.; Yuan, W. High-resolution distribution maps of single-season rice in China from 2017 to 2022. Earth Syst. Sci. Data 2023, 15, 3203–3222. [Google Scholar] [CrossRef]
- You, N.; Dong, J.; Huang, J.; Du, G.; Zhang, G.; He, Y.; Yang, T.; Di, Y.; Xiao, X. The 10-m crop type maps in Northeast China during 2017–2019. Sci. Data 2021, 8, 41. [Google Scholar] [CrossRef]
- Sun, L.; Yang, T.; Lou, Y.; Shi, Q.; Zhang, L. Paddy Rice Mapping Based on Phenology Matching and Cultivation Pattern Analysis Combining Multi-Source Data in Guangdong, China. J. Remote Sens. 2024, 4, 0152. [Google Scholar] [CrossRef]
- Han, J.; Zhang, Z.; Luo, Y.; Cao, J.; Zhang, L.; Zhuang, H.; Cheng, F.; Zhang, J.; Tao, F. Annual paddy rice planting area and cropping intensity datasets and their dynamics in the Asian monsoon region from 2000 to 2020. Agric. Syst. 2022, 200, 103437. [Google Scholar] [CrossRef]
- Tan, S.; Wu, B.; Zhang, X. Mapping Paddy Rice in the Hainan Province Using both Google Earth Engine and Remote Sensing Images. J. Geo-Inf. Sci. 2019, 21, 937–947. [Google Scholar]
- Wang, C.; Xing, Z.; Lu, J.; Cao, F.; Sun, J.; Chai, X.; Liu, X.; Xiong, X. Research on Remote Sensing Intelligent Extraction Method of Tropical Rice Planting Area based on Deep Learning: A Case Study of Haikou City, Hainan Province. Remote Sens. Technol. Appl. 2024, 39, 1106–1114. [Google Scholar]
- Wang, B.; Chen, X.M.; Zhong, M.Q.; Zou, H.P.; Qian, K.; Liu, S.J. Spatiotemporal Change of Rice Growth Period in Hainan and Its Response to Climate Warming. Chin. J. Trop. Crop. 2017, 38, 415–420. [Google Scholar] [CrossRef]
- Graves, A.; Schmidhuber, J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 2005, 18, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Marjani, M.; Mahdianpari, M.; Mohammadimanesh, F. CNN-BiLSTM: A Novel Deep Learning Model for Near-Real-Time Daily Wildfire Spread Prediction. Remote Sens. 2024, 16, 1467. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.U.; Polosukhin, I. Attention is all you need. In Proceedings of the 31st Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; Volume 9351. [Google Scholar] [CrossRef]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4510–4520. [Google Scholar] [CrossRef]
- Statistical Bureau of Hainan Province; Survey Office of National Bureau of Statistics in Hainan. Hainan Statistical Yearbook (2020); China Statistics Press: Beijing, China, 2021. [Google Scholar]
- Huang, D.; Xu, L.; Zou, S.; Liu, B.; Li, H.; Pu, L.; Chi, H. Mapping Paddy Rice in Rice–Wetland Coexistence Zone by Integrating Sentinel-1 and Sentinel-2 Data. Agriculture 2024, 14, 345. [Google Scholar] [CrossRef]
- Mullissa, A.; Vollrath, A.; Odongo-Braun, C.; Slagter, B.; Balling, J.; Gou, Y.; Gorelick, N.; Reiche, J. Sentinel-1 SAR Backscatter Analysis Ready Data Preparation in Google Earth Engine. Remote Sens. 2021, 13, 1954. [Google Scholar] [CrossRef]
- Jamali, A.; Mahdianpari, M. Swin Transformer and Deep Convolutional Neural Networks for Coastal Wetland Classification Using Sentinel-1, Sentinel-2, and LiDAR Data. Remote Sens. 2022, 14, 359. [Google Scholar] [CrossRef]
Model | Accuracy | Precision | Recall | F1 Score | Kappa |
---|---|---|---|---|---|
RiceLSTM (Early) | 0.8971 | 0.8636 | 0.8142 | 0.8382 | 0.7628 |
RiceLSTM (Late) | 0.9067 | 0.8650 | 0.8472 | 0.8560 | 0.7870 |
RiceLSTM With Attention (Early) | 0.9182 | 0.8839 | 0.8635 | 0.8735 | 0.8131 |
RiceLSTM With Attention (Late) | 0.9245 | 0.8809 | 0.8898 | 0.8853 | 0.8291 |
RiceMU (Early) | 0.9642 | 0.7787 | 0.9517 | 0.8566 | 0.8364 |
RiceMU (Late) | 0.9604 | 0.7474 | 0.9812 | 0.8484 | 0.8264 |
RiceTS (Early) | 0.9656 | 0.7512 | 0.9285 | 0.8305 | 0.8116 |
RiceTS (Late) | 0.9808 | 0.8465 | 0.9812 | 0.9088 | 0.8982 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, G.; Liao, J. Paddy Rice Mapping in Hainan Island Using Time-Series Sentinel-1 SAR Data and Deep Learning. Remote Sens. 2025, 17, 1033. https://doi.org/10.3390/rs17061033
Shen G, Liao J. Paddy Rice Mapping in Hainan Island Using Time-Series Sentinel-1 SAR Data and Deep Learning. Remote Sensing. 2025; 17(6):1033. https://doi.org/10.3390/rs17061033
Chicago/Turabian StyleShen, Guozhuang, and Jingjuan Liao. 2025. "Paddy Rice Mapping in Hainan Island Using Time-Series Sentinel-1 SAR Data and Deep Learning" Remote Sensing 17, no. 6: 1033. https://doi.org/10.3390/rs17061033
APA StyleShen, G., & Liao, J. (2025). Paddy Rice Mapping in Hainan Island Using Time-Series Sentinel-1 SAR Data and Deep Learning. Remote Sensing, 17(6), 1033. https://doi.org/10.3390/rs17061033