E-WFF Net: An Efficient Remote Sensing Ship Detection Method Based on Weighted Fusion of Ship Features
Abstract
:1. Introduction
- (1)
- Rotation augmentation method: To increase the data volume during the sample training phase and address the variation of ship targets at different angles, this paper introduces a rotation augmentation method based on elliptical bounding boxes to improve the network’s training effectiveness.
- (2)
- Dynamic attention mechanism (DAT): This paper designs a dynamic attention mechanism (DAT) module, which can adaptively adjust based on the characteristics of the input data, helping the network to automatically focus on important feature information, such as ships, thereby significantly improving detection accuracy.
- (3)
- Residual weighted feature fusion method: The method increases the feature extraction branches and simplifies the feature fusion layers, further improving the efficiency of feature fusion. Additionally, the network uses learnable weights to dynamically determine the importance of different input features, optimizing the feature fusion process and enhancing the overall performance of the model.
2. Methods
2.1. Rotation Enhancement Based on Elliptical Bounding Box
2.2. DAT Module
2.3. Residual Weighted Feature Fusion Method
3. Experimental Results and Analysis
3.1. Datasets and Evaluation Metrics
3.2. Experimental Environment and Hyperparameters
3.3. Comparison with Other Algorithms
3.4. Ablation Experiment
4. Discussion
5. Conclusions
- (1)
- Strong dependency on training data: Although the HRSC2016 and DIOR datasets used in the experiments are representative, they are still limited by the diversity of these datasets. For ship detection in different maritime regions and weather conditions, the current method may perform poorly in handling some extreme or special cases. Future work could consider incorporating more diverse training data to enhance the model’s generalization ability.
- (2)
- Limited detection capability for small sample targets: Although data augmentation through elliptical rotation enhances the diversity of training samples, the detection accuracy for small ship targets may still be insufficient, especially for very small or distant ships. There may be issues with missed detections or false positives.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Zhang, L.; Wang, Y.; Feng, P.; He, R. ShipRSImageNet: A Large-Scale Fine-Grained Dataset for Ship Detection in High-Resolution Optical Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8458–8472. [Google Scholar] [CrossRef]
- Paladin, Z.; Bauk, S.; Mujalović, R.; Kapidani, N.; Lukšić, Ž. Blockchain Technology’s Effects on Big Data in Maritime Transportation. In Proceedings of the 2024 28th International Conference on Information Technology (IT), Zabljak, Montenegro, 21–24 February 2024; pp. 1–7. [Google Scholar] [CrossRef]
- Li, L.; Ren, K.; Yuan, Z.; Feng, C. A polarization HRRP target classification method based on one-dimensional convolutional attention neural network. In Proceedings of the IET International Radar Conference (IRC 2023), Chongqing, China, 21–23 November 2023; pp. 901–905. [Google Scholar] [CrossRef]
- You, G.; Zhu, Y. Target Detection Method of Remote Sensing Image Based on Deep Learning. In Proceedings of the 2020 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC), Fuzhou, China, 11–14 October 2020; pp. 1–2. [Google Scholar] [CrossRef]
- Song, J.; Gao, S.; Zhu, Y.; Ma, C. A survey of remote sensing image classification based on CNNs. Big Earth Data 2019, 3, 232–254. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [Google Scholar] [CrossRef]
- Varghese, R.; Sambath, M. A Comprehensive Review on Two-Stage Object Detection Algorithms. In Proceedings of the 2023 International Conference on Quantum Technologies, Communications, Computing, Hardware and Embedded Systems Security (iQ-CCHESS), Kottayam, India, 15–16 September 2023; pp. 1–7. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recongnition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 779–788. [Google Scholar]
- Shao, Z.; Wang, L.; Wang, Z.; Du, W.; Wu, W. Saliency-Aware Convolution Neural Network for Ship Detection in Surveillance Video. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 781–794. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, D. Ship target detection based on YOLOv3 algorithm. In Proceedings of the 2023 International Conference on Computers, Information Processing and Advanced Education, CIPAE, Ottawa, ON, Canada, 26–28 August 2023; pp. 721–725. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Zhang, Y.; Li, W.; Guo, P.; Liu, J.; Hu, Q. Ship-YOLOv5: Ship Target Detection Based on Enhanced Feature Fusion. In Proceedings of the 2024 5th International Conference on Computing, Networks and Internet of Things, Tokyo, Japan, 24–26 May 2024. [Google Scholar]
- Jocher, G.; Chaurasia, A.; Stoken, A.; Borovec, J.; Kwon, Y.; Fang, J.; Michael, K.; Montes, D.; Nadar, J.; Skalski, P.; et al. ultralytics/yolov5: v6. 1-tensorrt, tensorflow edge tpu and openvino export and inference. Zenodo 2022. [Google Scholar] [CrossRef]
- Wu, X.; He, X.; Tian, S.; Wang, B.; Lin, W. Review of ship target detection based on SAR images. In Proceedings of the 2023 7th International Conference on Transportation Information and Safety (ICTIS), Xi’an, China, 4–6 August 2023; pp. 2106–2112. [Google Scholar] [CrossRef]
- Wu, K.; Zhang, Z.; Chen, Z.; Liu, G. Object-Enhanced YOLO Networks for Synthetic Aperture Radar Ship Detection. Remote Sens. 2024, 16, 1001. [Google Scholar] [CrossRef]
- Cao, H.; Wu, J. A detection method for ship based on the improved YOLOv7-tiny. In Proceedings of the SPIE—The International Society for Optical Engineering, San Diego, CA, USA, 20–22 August 2024; p. 13178. [Google Scholar] [CrossRef]
- Wang, C.; Bochkovskiy, A.; Liao, H.M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 7464–7475. [Google Scholar]
- Zhang, J. Ship target detection based on CBAM-YOLOv8. In Proceedings of the SPIE—The International Society for Optical Engineering, San Diego, CA, USA, 20–22 August 2024; p. 13071. [Google Scholar] [CrossRef]
- Varghese, R.; Sambath, M. YOLOv8: A Novel Object Detection Algorithm with Enhanced Performance and Robustness. In Proceedings of the 2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS), Chennai, India, 18–19 April 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Qiao, S. ALF-YOLO: Enhanced YOLOv8 based on multiscale attention feature fusion for ship detection. Ocean. Eng. 2024, 308, 118233. [Google Scholar] [CrossRef]
- Li, P.; Zheng, J.; Li, P.; Long, H.; Li, M.; Gao, L. Tomato Maturity Detection and Counting Model Based on MHSA-YOLOv8. Sensors 2023, 23, 6701. [Google Scholar] [CrossRef]
- Guo, L.; Wang, Y.; Guo, M.; Zhou, X. YOLO-IRS: Infrared Ship Detection Algorithm Based on Self-Attention Mechanism and KAN in Complex Marine Background. Remote Sens. 2024, 17, 20. [Google Scholar] [CrossRef]
- Deshmukh, P.; Satyanarayana, G.S.R.; Majhi, S.; Sahoo, U.K.; Das, S.K. Swin transformer based vehicle detection in undisciplined traffic environment. Expert Syst. Appl. 2023, 213 Pt B, 118992. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, C.; Qu, H.; Xie, G. A Novel Effective Vehicle Detection Method Based on Swin Transformer in Hazy Scenes. Mathematics 2022, 10, 2199. [Google Scholar] [CrossRef]
- Huang, Y.; Xiong, W.; Zhang, H.; Zhang, W. Defect detection of color woven fabrics based on U-shaped Swin Transformer autoencoder. Laser Optoelectron. Prog. 2023, 60, 1215001. [Google Scholar]
- Law, H.; Deng, J. CornerNet: Detecting Objects as Paired Keypoints. Int. J. Comput. Vis. 2018, 128, 642–656. [Google Scholar] [CrossRef]
- Xia, Z.; Pan, X.; Song, S.; Li, L.E.; Huang, G. Vision Transformer with Deformable Attention. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 4784–4793. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Eckle, K.; Schmidt-Hieber, J. A comparison of deep networks with ReLU activation function and linear spline-type methods. Neural Netw. Off. J. Int. Neural Netw. Soc. 2018, 110, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Chen, Q.; Yan, S. Network in Network. arXiv 2013, arXiv:1312.4400. [Google Scholar]
- Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and Efficient Object Detection. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 10778–10787. [Google Scholar] [CrossRef]
- Liu, Z.; Yuan, L.; Weng, L.; Yang, Y. A High Resolution Optical Satellite Image Dataset for Ship Recognition and Some New Baselines. In Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods, Porto, Portugal, 24–26 February 2017. [Google Scholar]
- Li, K.; Wan, G.; Cheng, G.; Meng, L.; Han, J. Object Detection in Optical Remote Sensing Images: A Survey and A New Benchmark. arXiv 2019, arXiv:1909.00133. [Google Scholar] [CrossRef]
- Duan, K.; Bai, S.; Xie, L.; Qi, H.; Huang, Q.; Tian, Q. CenterNet: Keypoint Triplets for Object Detection. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 6568–6577. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv 2019, arXiv:1905.11946. [Google Scholar]
- Zheng, J.; Sun, S.; Zhao, S. Fast ship detection based on lightweight YOLOv5 network. IET Image Process. 2022, 16, 1585–1593. [Google Scholar] [CrossRef]
- Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications. arXiv 2022, arXiv:2209.02976. [Google Scholar]
- Liu, Y.; Wang, X. SAR Ship Detection Based on Improved YOLOv7-Tiny. In Proceedings of the 2022 IEEE 8th International Conference on Computer and Communications (ICCC), Chengdu, China, 9–12 December 2022; pp. 2166–2170. [Google Scholar] [CrossRef]
- Wang, A.; Chen, H.; Liu, L.; Chen, K.; Lin, Z.; Han, J.; Ding, G. YOLOv10: Real-Time End-to-End Object Detection. arXiv 2024, arXiv:2405.14458. [Google Scholar]
- Zhang, F.; Wang, X.; Zhou, S.; Wang, Y.; Hou, Y. Arbitrary-Oriented Ship Detection Through Center-Head Point Extraction. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5612414. [Google Scholar] [CrossRef]
- Zhao, W.; Syafrudin, M.; Fitriyani, N.L. CRAS-YOLO: A Novel Multi-Category Vessel Detection and Classification Model Based on YOLOv5s Algorithm. IEEE Access 2023, 11, 11463–11478. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Wang, C.; Liao, H.M.; Yeh, I.; Wu, Y.; Chen, P.; Hsieh, J. CSPNet: A New Backbone that can Enhance Learning Capability of CNN. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 14–19 June 2020; pp. 1571–1580. [Google Scholar]
- Ding, X.; Zhang, X.; Ma, N.; Han, J.; Ding, G.; Sun, J. RepVGG: Making VGG-style ConvNets Great Again. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 13728–13737. [Google Scholar]
- Newell, A.; Yang, K.; Deng, J. Stacked Hourglass Networks for Human Pose Estimation. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016. [Google Scholar]
- Weng, K.; Chu, X.; Xu, X.; Huang, J.; Wei, X. EfficientRep: An Efficient Repvgg-style ConvNets with Hardware-aware Neural Network Design. arXiv 2023, arXiv:2302.00386. [Google Scholar]
- Cheng, S.; Zhu, Y.; Wu, S. Deep learning based efficient ship detection from drone-captured images for maritime surveillance. Ocean. Eng. 2023, 285 Pt 2, 115440. [Google Scholar] [CrossRef]
Configuration | Setting |
---|---|
Hardware | CPU: Intel i9-10900K |
GPU: NVIDIA GeForce RTX 3060 | |
Software | PyCharm 2021 + Python 3.7.0 + CUDA 11.4 + Pytorch 1.10.1 |
Parameters | Batch size: 8 |
Learning rate: 0.01 | |
Epoch: 300 | |
Input size: (640,640) | |
Optimizer: SGD | |
Mosaic: True |
Model | Backbone | P (%) | R (%) | F1 (%) | mAP (%) | FPS | Training Time (h) |
---|---|---|---|---|---|---|---|
Center Net | ResNet50 [45] | 47.8 | 45.7 | 46.7 | 55.8 | 63.17 | 5.97 |
Efficient Net | Efficient Net0 [38] | 62.7 | 71.3 | 66.7 | 77.6 | 44.11 | 5.63 |
YOLOv5s | CSPDarknet53 [46] | 91.3 | 90.2 | 90.7 | 94.0 | 111.11 | 4.94 |
YOLOv6 | CSPDarknet53 [46] | 89.1 | 81.0 | 84.9 | 91.2 | 77.70 | 5.71 |
YOLOv7-Tiny | Darknet53 [14] | 89.7 | 85.3 | 87.4 | 92.9 | 96.75 | 5.14 |
YOLOv10n | Darknet53 [14] | 94.3 | 86.0 | 89.9 | 95.0 | 160,00 | 4.83 |
B-RSD Net | RepVGG [47] | 90.1 | 84.5 | 87.2 | 89.9 | 163.57 | 4.36 |
CHPDet | Hourglass104 [48] | 89.6 | 91.7 | 90.6 | 90.6 | 167.58 | 4.19 |
CRAS-YOLO | CSPDarknet53 [46] | 90.5 | 89.6 | 90.1 | 94.2 | 170.64 | 4.15 |
YOLOv8s | Efficient Rep [49] | 90.9 | 92.8 | 91.8 | 95.1 | 169.44 | 4.21 |
E-WFF Net | Efficient Rep [49] | 93.7 | 90.3 | 92.0 | 96.1 | 175.90 | 4.17 |
Model | P (%) | R (%) | F1(%) | mAP (%) | FPS |
---|---|---|---|---|---|
Efficient Net | 61.8 | 70.3 | 65.78 | 76.5 | 107.7 |
YOLOv5s | 91.5 | 89.9 | 90.69 | 93.9 | 117.67 |
YOLOv5-ODconvNeXt [50] | 91.9 | 91.5 | 91.70 | 94.2 | 116.25 |
YOLOv6 | 77.8 | 79.4 | 78.59 | 80.8 | 94.30 |
YOLOv7-Tiny | 87.1 | 88.6 | 87.84 | 89.8 | 118.04 |
YOLOv8s | 90.3 | 91.0 | 90.65 | 94.1 | 112.70 |
YOLOv10n | 91.9 | 90.5 | 91.19 | 93.8 | 108.26 |
B-RSD Net | 85.6 | 82.7 | 84.13 | 86.6 | 90.60 |
CHPDet | 88.4 | 91.3 | 89.83 | 89.8 | 104.81 |
CRAS-YOLO | 86.3 | 87.6 | 86.95 | 90.1 | 112.74 |
E-WFF Net | 92.7 | 90.8 | 91.74 | 94.3 | 118.64 |
Model | P (%) | R (%) | F1 (%) | mAP (%) | FPS |
---|---|---|---|---|---|
Center Net | 45.2 | 43.5 | 44.33 | 53.9 | 61.46 |
Efficient Net | 60.3 | 68.4 | 64.10 | 75.9 | 47.23 |
YOLOv5s | 89.1 | 88.9 | 89.00 | 92.3 | 103.76 |
YOLOv6 | 85.6 | 80.7 | 83.08 | 89.6 | 75.50 |
YOLOv7-Tiny | 87.2 | 82.0 | 84.52 | 90.0 | 93.52 |
YOLOv10n | 92.5 | 84.4 | 88.26 | 92.2 | 151.39 |
B-RSD Net | 87.8 | 80.6 | 84.05 | 87.7 | 132.13 |
CHPDet | 87.3 | 89.1 | 88.19 | 88.2 | 167.98 |
CRAS-YOLO | 88.2 | 86.2 | 87.19 | 91.1 | 172.02 |
YOLOv8s | 89.4 | 91.7 | 90.54 | 93.1 | 168.45 |
E-WFF Net | 91.9 | 88.6 | 90.22 | 93.3 | 170.93 |
Module | Elliptical Rotation Enhancement | DAT Module | Residual Weighted Feature Fusion Method | Parameter (M) | mAP (%) | FPS |
---|---|---|---|---|---|---|
YOLOv8s | 3.01 | 95.1 | 164.44 | |||
Ours | ✓ | 3.01 | 95.5 | 164.81 | ||
✓ | 4.01 | 95.7 | 165.84 | |||
✓ | ✓ | 2.03 | 95.5 | 174.52 | ||
✓ | ✓ | 4.01 | 95.9 | 164.93 | ||
✓ | ✓ | ✓ | 3.03 | 96.1 | 175.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Xie, G.; Zhang, Z. E-WFF Net: An Efficient Remote Sensing Ship Detection Method Based on Weighted Fusion of Ship Features. Remote Sens. 2025, 17, 985. https://doi.org/10.3390/rs17060985
Wang Q, Xie G, Zhang Z. E-WFF Net: An Efficient Remote Sensing Ship Detection Method Based on Weighted Fusion of Ship Features. Remote Sensing. 2025; 17(6):985. https://doi.org/10.3390/rs17060985
Chicago/Turabian StyleWang, Qianchen, Guangqi Xie, and Zhiqi Zhang. 2025. "E-WFF Net: An Efficient Remote Sensing Ship Detection Method Based on Weighted Fusion of Ship Features" Remote Sensing 17, no. 6: 985. https://doi.org/10.3390/rs17060985
APA StyleWang, Q., Xie, G., & Zhang, Z. (2025). E-WFF Net: An Efficient Remote Sensing Ship Detection Method Based on Weighted Fusion of Ship Features. Remote Sensing, 17(6), 985. https://doi.org/10.3390/rs17060985