Enhancing Cross-Domain Remote Sensing Scene Classification by Multi-Source Subdomain Distribution Alignment Network
Abstract
:1. Introduction
- A novel network coined MSSDANet for RS cross-domain scene classification is proposed, which focuses on subdomain-level alignment. By capturing local similarities within the framework of MSDA, the method effectively mitigates global and local domain shifts across the target and multiple source domains.
- With a two-level feature extraction strategy, our network provides two specific components: common feature extraction and dual-domain feature extraction. The first ensures robust global alignment while the latter specializes in refining category-specific representations, which allows our method to effectively extract both global and fine-grained features.
- We propose the discriminant semantic transfer (DST) loss to force the model to extract semantic information across the target and multiple-source domain samples. Moreover, we develop a Class Correlation (CC) loss to tackle the confusion of different class features within the target domain.
- Empirically, we carry out extensive experiments on four benchmark RS scene datasets. The results show the feasibility of our method of solving MSDA problems. Note that MSSDANet is developed under an unsupervised setting, which is more suitable for the challenge of label scarcity in remote sensing data.
2. Related Work
3. Proposed Method
3.1. Network Structure of MSSDANet
- Common feature extractor
- 2.
- Dual-domain feature extractor
- 3.
- Dual-domain feature classifier
3.2. Loss Functions of MSSDANet
- Discriminant Semantic Transfer (DST) loss
- 2.
- Class Correlation (CC) loss
- 3.
- Source domain classification (CLS) loss
- 4.
- Local Maximum Mean Discrepancy (LMMD) loss
- 5.
- Overall loss function of MSSDANet
Algorithm 1. MSSDANet workflow. |
Input: target domain images, multiple-source domain images (from source-1 to source-N). Output: labeled target images. Set parameters: Num_epoch, Batch_size, Learing_rate, Temperature, Hyperparameters Load the pre-trained CNN network (EfficientNet-B3), which acts as the common feature extractor. for epoch to Num_epoch : the target domain data containing K categories. : the source-1 domain data containing K categories. Divide dataset samples into Num_batches batches of size Batch_size randomly for n = 1 to N Both and are fed into common feature extractor. Both and features are fed into their specific dual-domain feature extractor and classifier. Compute the Losses of Equations (3), (9)–(11). Minimize the loss function of Equation (13). Test the model using unlabeled target data. |
4. Experiment
4.1. Datasets
- UC Merced dataset
- 2.
- AID dataset
- 3.
- RESISC45 dataset
- 4.
- PatternNet dataset
- 5.
- New remote sensing (RS) domain adaptation datasets
4.2. Experimental Setup and Implementation Details
4.3. MSDA Experiments in the Two-Source Case
4.4. MSDA Experiments in the Three-Source Case
4.5. Ablation Study
4.6. The t-SNE Visualization of Domain Adaptation Results
4.7. Training Stability
4.8. Parameter Sensitivity
4.9. Extended Experiment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chi, M.; Plaza, A.; Benediktsson, J.A.; Sun, Z.; Shen, J.; Zhu, Y. Big Data for Remote Sensing: Challenges and Opportunities. Proc. IEEE 2016, 104, 2207–2219. [Google Scholar] [CrossRef]
- Long, M.; Cao, Z.; Wang, J.; Jordan, M.I. Conditional adversarial domain adaptation. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montréal, QC, Canada, 3–8 December 2018; Volume 31, pp. 1647–1657. [Google Scholar]
- Shen, J.; Qu, Y.; Zhang, W.; Yu, Y. Wasserstein distance guided representation learning for domain adaptation. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, New Orleans, LA, USA, 2–7 February 2018; pp. 4058–4065. [Google Scholar]
- Zhang, M.; Zhao, X.; Li, W.; Zhang, Y.; Tao, R.; Du, Q. Cross-scene joint classification of multisource data with multilevel domain adaption network. IEEE Trans. Neural Netw. Learn. Syst. 2023, 35, 11514–11526. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Du, Z.; Zhang, Y.; Sha, F.; Li, W.; Hou, B. Multi-Step Unsupervised Domain Adaptation in Image and Feature Space for Synthetic Aperture Radar Image Terrain Classification. Remote Sens. 2024, 16, 1901. [Google Scholar] [CrossRef]
- Wang, B.; Lu, X.; Zheng, X.; Li, X. Semantic descriptions of high-resolution remote sensing images. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1274–1278. [Google Scholar] [CrossRef]
- Zheng, X.; Yuan, Y.; Lu, X. A deep scene representation for aerial scene classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4799–4809. [Google Scholar] [CrossRef]
- Yuan, Y.; Fang, J.; Lu, X.; Feng, Y. Remote sensing image scene classification using rearranged local features. IEEE Trans. Geosci. Remote Sens. 2018, 57, 1779–1792. [Google Scholar] [CrossRef]
- Longbotham, N.; Chaapel, C.; Bleiler, L.; Padwick, C.; Emery, W.J.; Pacifici, F. Very high resolution multiangle urban classification analysis. IEEE Trans. Geosci. Remote Sens. 2011, 50, 1155–1170. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Xue, X.; Jiang, Y.; Shen, Q. Deep learning for remote sensing image classification: A survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1264. [Google Scholar] [CrossRef]
- Song, J.; Gao, S.; Zhu, Y.; Ma, C. A survey of remote sensing image classification based on CNNs. Big Earth Data 2019, 3, 232–254. [Google Scholar] [CrossRef]
- Cheng, G.; Xie, X.; Han, J.; Guo, L.; Xia, G.S. Remote sensing image scene classification meets deep learning: Challenges, methods, benchmarks, and opportunities. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3735–3756. [Google Scholar] [CrossRef]
- Aleissaee, A.A.; Kumar, A.; Anwer, R.M.; Khan, S.; Cholakkal, H.; Xia, G.-S.; Khan, F.S. Transformers in Remote Sensing: A Survey. Remote Sens. 2023, 15, 1860. [Google Scholar] [CrossRef]
- Othman, E.; Bazi, Y.; Melgani, F.; Alhichri, H.; Alajlan, N.; Zuair, M. Domain adaptation network for cross-scene classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4441–4456. [Google Scholar]
- Sun, B.; Saenko, K. Deep CORAL: Correlation alignment for deep domain adaptation. In Proceedings; Part III 14, Proceedings of the Computer Vision–ECCV 2016 Workshops, Amsterdam, The Netherlands, 8–10 and 15–16 October 2016; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 443–450. [Google Scholar]
- Long, M.; Cao, Y.; Wang, J.; Jordan, M. Learning transferable features with deep adaptation networks. In Proceedings of the International Conference on Machine Learning, Lille, France, 7–9 July 2015; pp. 97–105. [Google Scholar]
- Long, M.; Zhu, H.; Wang, J.; Jordan, M.I. Deep transfer learning with joint adaptation networks. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 2208–2217. [Google Scholar]
- Zellinger, W.; Grubinger, T.; Lughofer, E.; Natschläger, T.; Saminger-Platz, S. Central moment discrepancy (CMD) for domain-invariant representation learning. arXiv 2017, arXiv:1702.08811. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Proceedings of the NIPS’14: Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; Volume 27. [Google Scholar]
- Ganin, Y.; Ustinova, E.; Ajakan, H.; Germain, P.; Larochelle, H.; Laviolette, F.; March, M.; Lempitsky, V. Domain-adversarial training of neural networks. J. Mach. Learn. Res. 2016, 17, 1–35. [Google Scholar]
- Zhang, X.; Zhuang, Y.; Zhang, T.; Li, C.; Chen, H. Masked Image Modeling Auxiliary Pseudo-Label Propagation with a Clustering Central Rectification Strategy for Cross-Scene Classification. Remote Sens. 2024, 16, 1983. [Google Scholar] [CrossRef]
- Xu, C.; Shu, J.; Zhu, G. Multi-Feature Dynamic Fusion Cross-Domain Scene Classification Model Based on Lie Group Space. Remote Sens. 2023, 15, 4790. [Google Scholar] [CrossRef]
- Zhu, P.; Zhang, X.; Han, X.; Cheng, X.; Gu, J.; Chen, P.; Jiao, L. Cross-domain classification based on frequency component adaptation for remote sensing images. Remote Sens. 2024, 16, 2134. [Google Scholar] [CrossRef]
- Zhao, S.; Li, B.; Xu, P.; Keutzer, K. Multi-source domain adaptation in the deep learning era: A systematic survey. arXiv 2020, arXiv:2002.12169. [Google Scholar]
- Zhu, Y.; Zhuang, F.; Wang, D. Aligning domain-specific distribution and classifier for cross-domain classification from multiple sources. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; pp. 5989–5996. [Google Scholar]
- Ren, C.X.; Liu, Y.H.; Zhang, X.W.; Huang, K.K. Multi-source unsupervised domain adaptation via pseudo target domain. IEEE Trans. Image Process. 2022, 31, 2122–2135. [Google Scholar]
- Gong, T.; Zheng, X.; Lu, X. Cross-domain scene classification by integrating multiple incomplete sources. IEEE Trans. Geosci. Remote Sens. 2020, 59, 10035–10046. [Google Scholar]
- Gretton, A.; Borgwardt, K.M.; Rasch, M.J.; Schölkopf, B.; Smola, A. A Kernel Two-Sample Test. J. Mach. Learn. Res. 2012, 13, 723–773. [Google Scholar]
- Yan, H.; Ding, Y.; Li, P.; Wang, Q.; Xu, Y.; Zuo, W. Mind the class weight bias: Weighted maximum mean discrepancy for unsupervised domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2017, Honolulu, HI, USA, 21–26 July 2017; pp. 945–954. [Google Scholar]
- Long, M.; Wang, J.; Ding, G.; Sun, J.; Yu, P.S. Transfer feature learning with joint distribution adaptation. In Proceedings of the IEEE International Conference on Computer Vision 2013, Sydney, Australia, 1–8 December 2013; pp. 2200–2207. [Google Scholar]
- Zhu, Y.; Zhuang, F.; Wang, J.; Ke, G.; Chen, J.; Bian, J.; Xiong, H.; He, Q. Deep subdomain adaptation network for image classification. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 1713–1722. [Google Scholar]
- Li, M.; Zhai, Y.M.; Luo, Y.W.; Ge, P.F.; Ren, C.X. Enhanced transport distance for unsupervised domain adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2020, Seattle, WA, USA, 14–19 June 2020; pp. 13933–13941. [Google Scholar]
- Pan, Y.; Yao, T.; Li, Y.; Ngo, C.W.; Mei, T. Exploring category-agnostic clusters for open-set domain adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2020, Seattle, WA, USA, 14–19 June 2020; pp. 13864–13872. [Google Scholar]
- Hoffman, J.; Tzeng, E.; Park, T.; Zhu, J.Y.; Isola, P.; Saenko, K.; Efros, A.; Darrell, T. Cycada: Cycle-consistent adversarial domain adaptation. In Proceedings of the International Conference on Machine Learning 2018, Stockholm, Sweden, 10–15 July 2018; pp. 1989–1998. [Google Scholar]
- Tzeng, E.; Hoffman, J.; Saenko, K.; Darrell, T. Adversarial discriminative domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2017, Honolulu, HI, USA, 21–26 July 2017; pp. 2962–2971. [Google Scholar]
- Mirza, M. Conditional generative adversarial nets. arXiv 2014, arXiv:1411.1784. [Google Scholar]
- Rangwani, H.; Aithal, S.K.; Mishra, M.; Jain, A.; Radhakrishnan, V. A closer look at smoothness in domain adversarial training. In Proceedings of the International Conference on Machine Learning 2022, Baltimore, MD, USA, 17–23 July 2022; pp. 18378–18399. [Google Scholar]
- Pei, Z.; Cao, Z.; Long, M.; Wang, J. Multi-adversarial domain adaptation. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; pp. 3934–3941. [Google Scholar]
- Ganin, Y.; Lempitsky, V. Unsupervised Domain Adaptation by Backpropagation. In Proceedings of the 32nd International Conference on International Conference on Machine Learning-Volume 37; JMLR.org: Lille, France, 2015; pp. 1180–1189. [Google Scholar]
- Lu, X.; Gong, T.; Zheng, X. Multisource compensation network for remote sensing cross-domain scene classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2504–2515. [Google Scholar]
- Al Rahhal, M.M.; Bazi, Y.; Abdullah, T.; Mekhalfi, M.L.; AlHichri, H.; Zuair, M. Learning a multi-branch neural network from multiple sources for knowledge adaptation in remote sensing imagery. Remote Sens. 2018, 10, 1890. [Google Scholar] [CrossRef]
- Bashmal, L.; Bazi, Y.; AlHichri, H.; AlRahhal, M.M.; Ammour, N.; Alajlan, N. Siamese-GAN: Learning Invariant Representations for Aerial Vehicle Image Categorization. Remote Sens. 2018, 10, 351. [Google Scholar] [CrossRef]
- Lasloum, T.; Alhichri, H.; Bazi, Y.; Alajlan, N. SSDAN: Multi-Source Semi-Supervised Domain Adaptation Network for Remote Sensing Scene Classification. Remote Sens. 2021, 13, 3861. [Google Scholar] [CrossRef]
- Xie, S.; Zheng, Z.; Chen, L.; Chen, C. Learning semantic representations for unsupervised domain adaptation. In Proceedings of the International Conference on Machine Learning 2018, Stockholm, Sweden, 10–15 July 2018; pp. 5423–5432. [Google Scholar]
- Xanthopoulos, P.; Pardalos, P.M.; Trafalis, T.B. Linear discriminant analysis. In Robust Data Mining; Springer: Berlin/Heidelberg, Germany, 2013; pp. 27–33. [Google Scholar]
- Guo, C.; Pleiss, G.; Sun, Y.; Weinberger, K.Q. On calibration of modern neural networks. In Proceedings of the International Conference on Machine Learning 2017, Sydney, Australia, 6–11 August 2017; pp. 1321–1330. [Google Scholar]
- Jin, Y.; Wang, X.; Long, M.; Wang, J. Minimum Class Confusion for Versatile Domain Adaptation. In Proceedings of the European Conference on Computer Vision 2020, Glasgow, UK, 23–28 August 2020; pp. 464–480. [Google Scholar]
- Yang, Y.; Newsam, S. Bag-of-visual-words and spatial extensions for land-use classification. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, CA, USA, 2–5 November 2010; Association for Computing Machinery: New York, NY, USA, 2010; pp. 270–279. [Google Scholar]
- Xia, G.S.; Hu, J.; Hu, F.; Shi, B.; Bai, X.; Zhong, Y.; Zhang, L.; Lu, X. AID: A benchmark data set for performance evaluation of aerial scene classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3965–3981. [Google Scholar]
- Cheng, G.; Han, J.; Lu, X. Remote sensing image scene classification: Benchmark and state of the art. Proc. IEEE 2017, 105, 1865–1883. [Google Scholar] [CrossRef]
- Zhou, W.; Newsam, S.; Li, C.; Shao, Z. PatternNet: A benchmark dataset for performance evaluation of remote sensing image retrieval. ISPRS J. Photogramm. Remote Sens. 2018, 145, 197–209. [Google Scholar]
- Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Saenko, K.; Kulis, B.; Fritz, M.; Darrell, T. Adapting Visual Category Models to New Domains. In Proceedings of the 11th European Conference on Computer Vision (ECCV 2010), Heraklion, Greece, 5–11 September 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 213–226. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June 2016; pp. 770–778. [Google Scholar]
- Zhao, H.; Zhang, S.; Wu, G.; Moura, J.M.F.; Costeira, J.P.; Gordon, G.J. Adversarial multiple source domain adaptation. In Proceedings of the NIPS’18: Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December 2018; Volume 31. [Google Scholar]
- Peng, X.; Bai, Q.; Xia, X.; Huang, Z.; Saenko, K.; Wang, B. Moment Matching for Multi-Source Domain Adaptation. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October 2019; pp. 1406–1415. [Google Scholar]
- Wen, J.; Greiner, R.; Schuurmans, D. Domain Aggregation Networks for Multi-Source Domain Adaptation. In Proceedings of the International Conference on Machine Learning (ICML), Virtual, 12–18 July 2020; pp. 10214–10224. [Google Scholar]
- Wang, H.; Xu, M.; Ni, B.; Zhang, W. Learning to Combine: Knowledge Aggregation for Multi-Source Domain Adaptation. In Proceedings of the 16th European Conference on Computer Vision (ECCV 2020), Glasgow, UK, 23–28 August 2020; Part VIII. Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 727–744. [Google Scholar]
- Park, G.Y.; Lee, S.W. Information-Theoretic Regularization for Multi-Source Domain Adaptation. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 11–17 October 2021; pp. 9214–9223. [Google Scholar]
- Li, R.; Jia, X.; He, J.; Chen, S.; Hu, Q. T-SVDNet: Exploring High-Order Prototypical Correlations for Multi-Source Domain Adaptation. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Virtual, 11–17 October 2021; pp. 9991–10000. [Google Scholar]
- Wu, K.; Jia, F.; Han, Y. Domain-specific feature elimination: Multi-source domain adaptation for image classification. Front. Comput. Sci. 2023, 17, 174705. [Google Scholar]
- Li, Y.; Wang, S.; Wang, B.; Hao, Z.; Chai, H. Transferable feature filtration network for multi-source domain adaptation. Knowl. Based Syst. 2023, 260, 110113. [Google Scholar]
- Liu, F.; Chen, D.; Guan, Z.; Zhou, X.; Zhu, J.; Ye, Q.; Fu, L.; Zhou, J. Remoteclip: A vision language foundation model for remote sensing. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5622216. [Google Scholar]
- Fang, Y.; Yap, P.T.; Lin, W.; Zhu, H.; Liu, M. Source-free unsupervised domain adaptation: A survey. Neural Netw. 2024, 174, 106230. [Google Scholar]
- Li, J.; Yu, Z.; Du, Z.; Zhu, L.; Shen, H.T. A comprehensive survey on source-free domain adaptation. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 5743–5762. [Google Scholar]
- Zhou, K.; Liu, Z.; Qiao, Y.; Xiang, T.; Loy, C.C. Domain generalization: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 4396–4415. [Google Scholar]
Methods | A, N → M | A, M → N | M, N → A | Average |
---|---|---|---|---|
ADDA [35] | 0.6752 | 0.7303 | 0.8131 | 0.7395 |
RevGrad [39] | 0.6406 | 0.6859 | 0.7879 | 0.7048 |
MB-Net [41] | 0.7235 | 0.7525 | 0.7758 | 0.7503 |
MSCN [40] | 0.8401 | 0.7955 | 0.9159 | 0.8505 |
Siamese-GAN [42] | 0.7833 | 0.7936 | 0.8728 | 0.8166 |
SSDAN [43] | 0.9715 | 0.9186 | 0.9165 | 0.9355 |
MSSDANet (ours) | 0.9958 | 0.8929 | 0.9839 | 0.9575 |
Methods | A, M, N → P | A, P, N → M | P, M, N → A | A, M, P → N | Average |
---|---|---|---|---|---|
ADDA [35] | 0.6899 | 0.6039 | 0.6239 | 0.6508 | 0.6421 |
RevGrad [39] | 0.7875 | 0.6637 | 0.6283 | 0.6735 | 0.6883 |
MB-Net [41] | 0.7838 | 0.7309 | 0.6872 | 0.7196 | 0.7304 |
MSCN [40] | 0.8391 | 0.8383 | 0.7908 | 0.8150 | 0.8197 |
Siamese-GAN [42] | 0.8450 | 0.8142 | 0.7717 | 0.8085 | 0.8092 |
SSDAN [43] | 0.9754 | 0.9856 | 0.9309 | 0.8527 | 0.9389 |
MSSDANet (ours) | 0.9808 | 0.9975 | 0.9756 | 0.8681 | 0.9555 |
A, M, P → N | ||||
---|---|---|---|---|
√ | 74.36% | |||
√ | √ | √ | 82.79% | |
√ | √ | √ | 82.32% | |
√ | √ | √ | 85.76% | |
√ | √ | √ | √ | 86.81% |
Methods | A, W → D | W, D → A | A, D → W | Average | Params (M) | FLOPs (G) |
---|---|---|---|---|---|---|
ResNet50 [54] | 0.9930 | 0.6250 | 0.9670 | 0.7395 | 25.56 | 4.09 |
MDAN [55] | 0.9960 | 0.6602 | 0.9783 | 0.8781 | - | - |
M3SDA [56] | 1.0000 | 0.6856 | 0.9906 | 0.8921 | 28.54 | 13.52 |
MFSAN [25] | 0.9950 | 0.7089 | 0.9850 | 0.9023 | - | - |
DARN [57] | 0.9987 | 0.6631 | 0.9864 | 0.8827 | - | - |
Ltc-MSDA [58] | 0.9962 | 0.6895 | 0.9953 | 0.8937 | - | - |
MIAN [59] | 0.9948 | 0.7465 | 0.9849 | 0.9087 | - | - |
T-SVDNet [60] | 0.9940 | 0.7410 | 0.9960 | 0.9100 | 28.82 | 13.38 |
DSFE [61] | 0.9940 | 0.7320 | 0.9880 | 0.9050 | 28.04 | 13.20 |
TFFN [62] | 1.0000 | 0.7400 | 0.9900 | 0.9100 | 28.10 | 13.08 |
MSSDANet (Ours) | 0.9980 | 0.7568 | 0.9836 | 0.9128 | 27.93 | 8.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Shu, Z.; Feng, Y.; Liu, R.; Cao, Q.; Li, D.; Wang, L. Enhancing Cross-Domain Remote Sensing Scene Classification by Multi-Source Subdomain Distribution Alignment Network. Remote Sens. 2025, 17, 1302. https://doi.org/10.3390/rs17071302
Wang Y, Shu Z, Feng Y, Liu R, Cao Q, Li D, Wang L. Enhancing Cross-Domain Remote Sensing Scene Classification by Multi-Source Subdomain Distribution Alignment Network. Remote Sensing. 2025; 17(7):1302. https://doi.org/10.3390/rs17071302
Chicago/Turabian StyleWang, Yong, Zhehao Shu, Yinzhi Feng, Rui Liu, Qiusheng Cao, Danping Li, and Lei Wang. 2025. "Enhancing Cross-Domain Remote Sensing Scene Classification by Multi-Source Subdomain Distribution Alignment Network" Remote Sensing 17, no. 7: 1302. https://doi.org/10.3390/rs17071302
APA StyleWang, Y., Shu, Z., Feng, Y., Liu, R., Cao, Q., Li, D., & Wang, L. (2025). Enhancing Cross-Domain Remote Sensing Scene Classification by Multi-Source Subdomain Distribution Alignment Network. Remote Sensing, 17(7), 1302. https://doi.org/10.3390/rs17071302