Automatic Registration of Multi-Temporal 3D Models Based on Phase Congruency Method
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Areas
2.2. UAV Data Acquisition
3. Methodology
3.1. Feature Point Extraction
3.1.1. Phase Congruency (PC) Map Generation
3.1.2. Feature Detection
3.1.3. Feature Description
3.2. Feature Point Mapping
3.3. Feature Point Matching
3.4. Estimate 3D Transformation Model
3.5. Incorrect Point Removal
3.6. Analysis of Feature Points
3.6.1. Analysis of Feature Point Distribution
3.6.2. Analysis of Feature Point Positioning Accuracy
4. Experiment Results and Discussion
4.1. Quality Analysis of 3D Models
4.2. Distribution and Accuracy Analysis of Feature Points Matching
4.3. Accuracy Analysis of 3D Model Registration
4.3.1. Reliability Evaluation of Points
4.3.2. Reliability Evaluation of Geometric Registration Models
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pajares, G. Overview and Current Status of Remote Sensing Applications Based on Unmanned Aerial Vehicles (UAVs). Photogramm. Eng. Remote Sens. 2015, 81, 281–329. [Google Scholar] [CrossRef]
- Azmi, S.M.; Ahmad, B.; Ahmad, A. Accuracy assessment of topographic mapping using UAV image integrated with satellite images. In Proceedings of the 8th International Symposium of the Digital Earth (Isde8), Kuching, Sarawak, 26–29 August 2013; Volume 18. [Google Scholar] [CrossRef]
- Schonberger, J.L.; Frahm, J.-M. Structure-from-motion revisited. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4104–4113. [Google Scholar]
- Smith, M.W.; Vericat, D. From experimental plots to experimental landscapes: Topography, erosion and deposition in sub-humid badlands from structure-from-motion photogrammetry. Earth Surf. Process. Landf. 2015, 40, 1656–1671. [Google Scholar]
- Zhao, S.Z.; Kang, F.; Li, J.J.; Ma, C.B. Structural health monitoring and inspection of dams based on UAV photogrammetry with image 3D reconstruction. Autom. Constr. 2021, 130, 103832. [Google Scholar] [CrossRef]
- Remondino, F.; Barazzetti, L.; Nex, F.; Scaioni, M.; Sarazzi, D. UAV photogrammetry for mapping and 3D modeling: Current status and future perspectives. In Proceedings of the International Conference on Unmanned Aerial Vehicle in Geomatics (UAV-g), Zurich, Switzerland, 14–16 September 2011; pp. 25–31. [Google Scholar]
- Yang, Y.; Wang, X.; Jin, W.; Cao, J.; Cheng, B.; Zhou, S. Characteristics analysis of the reservoir landslides base on unmanned aerial vehicle (UAV) scanning technology at the Maoergai Hydropower Station, Southwest China. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Hangzhou, China, 17–19 July 2019; p. 012009. [Google Scholar]
- Sun, J.W.; Yuan, G.Q.; Song, L.Y.; Zhang, H.W. Unmanned Aerial Vehicles (UAVs) in Landslide Investigation and Monitoring: A Review. Drones 2024, 8, 30. [Google Scholar] [CrossRef]
- Sestras, P.; Bilasco, S.; Rosca, S.; Dudic, B.; Hysa, A.; Spalevic, V. Geodetic and UAV Monitoring in the Sustainable Management of Shallow Landslides and Erosion of a Susceptible Urban Environment. Remote Sens. 2021, 13, 385. [Google Scholar] [CrossRef]
- Chen, G.; Qiang, X.; Xiujun, D.; Yuanzhen, J.; Hao, N. Application of UAV photogrammetry technology in the emergency rescue of catastrophic geohazards. Bull. Surv. 2020, 6, 6–11, 73. [Google Scholar]
- Gonçalves, J.A.; Henriques, R. UAV photogrammetry for topographic monitoring of coastal areas. ISPRS J. Photogramm. Remote Sens. 2015, 104, 101–111. [Google Scholar] [CrossRef]
- Yang, J.; Li, X.P.; Luo, L.; Zhao, L.W.; Wei, J.; Ma, T. New Supplementary Photography Methods after the Anomalous of Ground Control Points in UAV Structure-from-Motion Photogrammetry. Drones 2022, 6, 105. [Google Scholar] [CrossRef]
- Forlani, G.; Dall’Asta, E.; Diotri, F.; di Cella, U.M.; Roncella, R.; Santise, M. Quality Assessment of DSMs Produced from UAV Flights Georeferenced with On-Board RTK Positioning. Remote Sens. 2018, 10, 311. [Google Scholar] [CrossRef]
- Štroner, M.; Urban, R.; Reindl, T.; Seidl, J.; Brouček, J. Evaluation of the georeferencing accuracy of a photogrammetric model using a quadrocopter with onboard GNSS RTK. Sensors 2020, 20, 2318. [Google Scholar] [CrossRef]
- Taddia, Y.; Stecchi, F.; Pellegrinelli, A. Coastal Mapping Using DJI Phantom 4 RTK in Post-Processing Kinematic Mode. Drones 2020, 4, 9. [Google Scholar] [CrossRef]
- Shang, H.X.; Ju, G.H.; Li, G.L.; Li, Z.F.; Ren, C.F. An Automatic Geometric Registration Method for Multi Temporal 3D Models. Appl. Sci. 2022, 12, 11070. [Google Scholar] [CrossRef]
- Harris, C.; Stephens, M. A combined corner and edge detector. In Proceedings of the Alvey Vision Conference, Manchester, UK, 15–17 September 1988; pp. 10–5244. [Google Scholar]
- Rosten, E.; Drummond, T. Machine learning for high-speed corner detection. In Proceedings of the Computer Vision–ECCV 2006: 9th European Conference on Computer Vision, Graz, Austria, 7–13 May 2006; Proceedings, Part I 9. pp. 430–443. [Google Scholar]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar]
- Bay, H.; Tuytelaars, T.; Van Gool, L. SURF: Speeded up robust features. In Proceedings of the Computer Vision–ECCV 2006: 9th European Conference on Computer Vision, Graz, Austria, 7–13 May 2006; Proceedings, Part I 9. Springer: Berlin/Heidelberg, Germany, 2006; Volume 3951, pp. 404–417. [Google Scholar] [CrossRef]
- Sarlin, P.-E.; DeTone, D.; Malisiewicz, T.; Rabinovich, A. SuperGlue: Learning Feature Matching With Graph Neural Networks. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 4937–4946. [Google Scholar]
- Sun, J.; Shen, Z.; Wang, Y.; Bao, H.; Zhou, X. LoFTR: Detector-free local feature matching with transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 8922–8931. [Google Scholar]
- Morrone, M.C.; Owens, R.A. Feature detection from local energy. Pattern Recognit. Lett. 1987, 6, 303–313. [Google Scholar]
- Ye, Y.X.; Shan, J.; Bruzzone, L.; Shen, L. Robust Registration of Multimodal Remote Sensing Images Based on Structural Similarity. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2941–2958. [Google Scholar] [CrossRef]
- Ye, Y.X.; Shan, J.; Hao, S.Y.; Bruzzone, L.; Qin, Y. A local phase based invariant feature for remote sensing image matching. ISPRS J. Photogramm. Remote Sens. 2018, 142, 205–221. [Google Scholar] [CrossRef]
- Fan, J.W.; Wu, Y.; Li, M.; Liang, W.K.; Cao, Y.C. SAR and Optical Image Registration Using Nonlinear Diffusion and Phase Congruency Structural Descriptor. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5368–5379. [Google Scholar] [CrossRef]
- Li, J.; Hu, Q.; Ai, M. RIFT: Multi-modal image matching based on radiation-variation insensitive feature transform. IEEE Trans. Image Process. 2019, 29, 3296–3310. [Google Scholar]
- Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar]
- Torr, P.H.; Zisserman, A. MLESAC: A new robust estimator with application to estimating image geometry. Comput. Vis. Image Underst. 2000, 78, 138–156. [Google Scholar]
- Wu, Y.; Ma, W.; Gong, M.; Su, L.; Jiao, L. A novel point-matching algorithm based on fast sample consensus for image registration. IEEE Geosci. Remote Sens. Lett. 2014, 12, 43–47. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, L.; Yang, F.; Hu, N.; Liang, L. Evaluation of the coordination between eco-environment and socioeconomy under the “Ecological County Strategy” in western China: A case study of Meixian. Ecol. Indic. 2021, 125, 107585. [Google Scholar] [CrossRef]
- Wan, W.; Yan, C. Research progress of eco-environmental degradation in Alxa Plateau. J. Earth Environ. 2018, 9, 109–122. [Google Scholar]
- Kovesi, P. Phase congruency detects corners and edges. In Proceedings of the Australian Pattern Recognition Society Conference: DICTA, Sydney, Australia, 10–12 December 2003. [Google Scholar]
- Wang, F.; Han, J. Iris recognition based on 2D Log-Gabor filtering. J. Syst. Simul. 2008, 20, 11-1808. [Google Scholar]
- Mikolajczyk, K.; Schmid, C. A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1615–1630. [Google Scholar] [CrossRef]
- Fischer, S.; Šroubek, F.; Perrinet, L.; Redondo, R.; Cristóbal, G. Self-invertible 2D log-Gabor wavelets. Int. J. Comput. Vis. 2007, 75, 231–246. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, Y.; Wan, Y.; Liu, X.; Guo, H. Heterologous images matching considering anisotropic weighted moment and absolute phase orientation. Geomat. Inf. Sci. Wuhan Univ. 2021, 46, 1727–1736. [Google Scholar]
- Zeng, W.; Tao, B.J.G. Non-linear adjustment model of three-dimensional coordinate transformation. Geomat. Inf. Sci. Wuhan Univ. 2003, 28, 566–568. [Google Scholar]
UAV Platform | Hovering Time (min) | Camera | Focal Length (mm) | Sensor Size (pixel) |
---|---|---|---|---|
FEIMA D2000 | 60 | SONY ILCE-7RM4 | 25 | 9504 × 6336 |
DJI M300 RTK | 55 | DJI Zenmuse P1 | 35 | 4096 × 2730 |
DJI Mavic 2 Pro | 20 | Hasselblad L1D-20c | 10 | 5742 × 3648 |
Model Type | Transformation | Degrees of Freedom | Geometric Characteristics Preserved |
---|---|---|---|
three parameters (3P) | translation | 3 | orientation |
six parameters (6P) | rigid | 6 | lengths |
seven parameters (7P) | similarity | 7 | angles |
nine parameters (9P) | affine | 9 | parallelism |
Study Area | Match Method | Feature Points | Corresponding Points | Correct Points | Davg (m) | K | Computational Efficiency (s) |
---|---|---|---|---|---|---|---|
S1 | SIFT | 26,833 | 8506 | 7248 | 0.260 | 0.701 | 0.099 |
PC | 72,501 | 42,225 | 20,116 | 0.132 | 0.795 | 3.232 | |
S2 | SIFT | 16,784 | 2996 | 79 | 8.417 | 0.709 | 0.116 |
PC | 20,122 | 3369 | 637 | 2.149 | 0.903 | 3.893 |
POS | MM | SIFT | PC | ||||
---|---|---|---|---|---|---|---|
Corresponding Points | Correct Points | Corresponding Points | Correct Points | ||||
ME (m) | X | −0.432 | 0.008 | −0.003 | −1.821 × 10−5 | −2.346 × 10−5 | −1.920 × 10−5 |
Y | −0.130 | 0.045 | 0.003 | −6.091 × 10−6 | 5.936 × 10−7 | 1.802 × 10−7 | |
Z | 0.736 | 0.001 | 2.786 × 10−4 | −2.182 × 10−5 | −1.921 × 10−5 | −2.478 × 10−5 | |
Overall | 0.863 | 0.046 | 0.005 | 2.906 × 10−5 | 3.033 × 10−5 | 3.135 × 10−5 | |
RMSE (m) | X | 0.433 | 0.022 | 0.022 | 0.009 | 0.022 | 0.016 |
Y | 0.196 | 0.156 | 0.120 | 0.102 | 0.149 | 0.109 | |
Z | 0.737 | 0.016 | 0.010 | 0.009 | 0.016 | 0.010 | |
Overall | 0.877 | 0.159 | 0.122 | 0.102 | 0.152 | 0.110 |
POS | MM | SIFT | PC | ||||
---|---|---|---|---|---|---|---|
Corresponding Points | Correct Points | Corresponding Points | Correct Points | ||||
ME (m) | X | 101.426 | −1.624 | 0.642 | 0.424 | 0.369 | 0.427 |
Y | −31.851 | 2.634 | 0.667 | 0.837 | −0.179 | −0.074 | |
Z | 14.372 | −0.250 | 0.018 | −0.044 | 0.175 | 0.145 | |
Overall | 107.277 | 3.105 | 0.926 | 0.939 | 0.446 | 0.457 | |
RMSE (m) | X | 101.879 | 13.155 | 8.727 | 4.068 | 6.712 | 6.024 |
Y | 33.007 | 8.345 | 8.371 | 7.003 | 6.976 | 3.535 | |
Z | 15.522 | 5.608 | 5.599 | 4.934 | 3.640 | 0.457 | |
Overall | 108.211 | 16.557 | 13.326 | 9.484 | 10.485 | 8.360 |
S1 | S2 | ||||||
---|---|---|---|---|---|---|---|
3P | 7P | 9P | 3P | 7P | 9P | ||
ME (m) | X | 0.004 | −1.920 × 10−5 | 8.648 × 10−8 | 2.839 | 0.427 | 0.192 |
Y | −0.035 | 1.802 × 10−7 | 2.878 × 10−6 | 4.367 | −0.074 | 0.227 | |
Z | 0.001 | −2.478 × 10−5 | 1.780 × 10−6 | −0.540 | 0.145 | 0.126 | |
Overall | 0.036 | 3.135 × 10−5 | 6.026 × 10−7 | 5.237 | 0.457 | 0.323 | |
RMSE (m) | X | 0.016 | 0.016 | 0.016 | 7.484 | 4.594 | 4.511 |
Y | 0.127 | 0.109 | 0.084 | 11.881 | 6.024 | 6.115 | |
Z | 0.011 | 0.010 | 0.008 | 4.242 | 3.536 | 3.129 | |
Overall | 0.129 | 0.110 | 0.086 | 14.668 | 8.360 | 8.218 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, C.; Feng, K.; Shang, H.; Li, S. Automatic Registration of Multi-Temporal 3D Models Based on Phase Congruency Method. Remote Sens. 2025, 17, 1328. https://doi.org/10.3390/rs17081328
Ren C, Feng K, Shang H, Li S. Automatic Registration of Multi-Temporal 3D Models Based on Phase Congruency Method. Remote Sensing. 2025; 17(8):1328. https://doi.org/10.3390/rs17081328
Chicago/Turabian StyleRen, Chaofeng, Kenan Feng, Haixing Shang, and Shiyuan Li. 2025. "Automatic Registration of Multi-Temporal 3D Models Based on Phase Congruency Method" Remote Sensing 17, no. 8: 1328. https://doi.org/10.3390/rs17081328
APA StyleRen, C., Feng, K., Shang, H., & Li, S. (2025). Automatic Registration of Multi-Temporal 3D Models Based on Phase Congruency Method. Remote Sensing, 17(8), 1328. https://doi.org/10.3390/rs17081328