Planet4Stereo: A Photogrammetric Open-Source Pipeline for Generating Digital Elevation Models for Glacier Change Monitoring Using Low-Cost PlanetScope Satellite Data
Abstract
:1. Introduction
Stereo Limitation
2. Related Work
3. Methods
3.1. Input Data
3.2. User Settings
3.3. Expert Settings
3.4. Pre-Processing
3.5. Bundle-Block Adjustment
3.6. Stereo Processing
3.7. Point Cloud Alignment
3.8. DEM Generation and Mosaicking
3.9. Accuracy Assessment
4. Practical Experiments
4.1. Shisper Glacier
4.1.1. Processing—Shisper Glacier
4.1.2. Evaluation—Shisper Glacier
4.1.3. Surge Investigation
4.2. Bøverbrean
4.2.1. Processing—Bøverbrean Glacier
4.2.2. Evaluation
4.2.3. Change Detection in South Smørstabb Massif
4.3. Comparison with Agisoft Metashape
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Macelloni, M.M.; Corte, E.; Ajmar, A.; Cina, A.; Giulio Tonolo, F.; Maschio, P.F.; Pisoni, I.N. Multi-platform, Multi-scale and Multi-temporal 4D Glacier Monitoring. The Rutor Glacier Case Study. In Communications in Computer and Information Science; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; pp. 392–404. [Google Scholar] [CrossRef]
- Pieczonka, T.; Bolch, T.; Kröhnert, M.; Peters, J.; Liu, S. Glacier branch lines and glacier ice thickness estimation for debris-covered glaciers in the Central Tien Shan. J. Glaciol. 2018, 64, 835–849. [Google Scholar] [CrossRef]
- Berthier, E.; Cabot, V.; Vincent, C.; Six, D. Decadal Region-Wide and Glacier-Wide Mass Balances Derived from Multi-Temporal ASTER Satellite Digital Elevation Models. Validation over the Mont-Blanc Area. Front. Earth Sci. 2016, 4, 63. [Google Scholar] [CrossRef]
- Nuth, C.; Kääb, A. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere 2011, 5, 271–290. [Google Scholar] [CrossRef]
- NASA. Shuttle Radar Topography Mission (SRTM) Global. Distributed by OpenTopography. 2013. Available online: https://portal.opentopography.org/datasetMetadata?otCollectionID=OT.042013.4326.1 (accessed on 6 September 2024).
- ESA. Copernicus DEM. 2022. Available online: https://dataspace.copernicus.eu/explore-data/data-collections/copernicus-contributing-missions/collections-description/COP-DEM (accessed on 6 September 2024).
- Lastilla, L.; Belloni, V.; Ravanelli, R.; Crespi, M. DSM Generation from Single and Cross-Sensor Multi-View Satellite Images Using the New Agisoft Metashape: The Case Studies of Trento and Matera (Italy). Remote Sens. 2021, 13, 593. [Google Scholar] [CrossRef]
- Han, Y.; Wang, S.; Gong, D.; Wang, Y.; Wang, Y.; Ma, X. State of the Art in Digital Surface Modelling from Multi-View High-Resolution Satellite Images. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, V-2-2020, 351–356. [Google Scholar] [CrossRef]
- Wang, S.; Ren, Z.; Wu, C.; Lei, Q.; Gong, W.; Ou, Q.; Zhang, H.; Ren, G.; Li, C. DEM generation from Worldview-2 stereo imagery and vertical accuracy assessment for its application in active tectonics. Geomorphology 2019, 336, 107–118. [Google Scholar] [CrossRef]
- Hu, F.; Gao, X.M.; Li, G.; Li, M. DEM Extraction from Worldview-3 Stereo-Images and Accuracy Evaluation. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B1, 327–332. [Google Scholar] [CrossRef]
- Rupnik, E.; Pierrot-Deseilligny, M.; Delorme, A. 3D reconstruction from multi-view VHR-satellite images in MicMac. ISPRS J. Photogramm. Remote Sens. 2018, 139, 201–211. [Google Scholar] [CrossRef]
- Mueting, A.; Bookhagen, B. Tracking slow-moving landslides with PlanetScope data: New perspectives on the satellite’s perspective. EGUsphere 2023, 2023, 1–36. [Google Scholar] [CrossRef]
- Boshuizen, C.R.; Mason, J.; Klupar, P.; Spanhake, S. Results from the Planet Labs Flock Constellation. In Proceedings of the 28th Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 4–7 August 2014. [Google Scholar]
- Planet Labs PBC. Planet Imagery Product Specifications. 2023. Available online: https://assets.planet.com/docs/Planet_Combined_Imagery_Product_Specs_letter_screen.pdf (accessed on 6 September 2024).
- Kääb, A.; Altena, B.; Mascaro, J. River-ice and water velocities using the Planet optical cubesat constellation. Hydrol. Earth Syst. Sci. 2019, 23, 4233–4247. [Google Scholar] [CrossRef]
- Aati, S.; Avouac, J.P. Optimization of Optical Image Geometric Modeling, Application to Topography Extraction and Topographic Change Measurements Using PlanetScope and SkySat Imagery. Remote Sens. 2020, 12, 3418. [Google Scholar] [CrossRef]
- Ghuffar, S. DEM Generation from Multi Satellite PlanetScope Imagery. Remote Sens. 2018, 10, 1462. [Google Scholar] [CrossRef]
- Facciolo, G.; De Franchis, C.; Meinhardt-Llopis, E. Automatic 3D Reconstruction from Multi-date Satellite Images. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017; IEEE: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Huang, D.; Tang, Y.; Qin, R. An evaluation of PlanetScope images for 3D reconstruction and change detection – experimental validations with case studies. GIScience Remote Sens. 2022, 59, 744–761. [Google Scholar] [CrossRef]
- d’Angelo, P.; Reinartz, P. Digital Elevation Models from Stereo, Video and Multi-View Imagery Captured by Small Satellites. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, XLIII-B2-2021, 77–82. [Google Scholar] [CrossRef]
- Leprince, S.; Ayoub, F.; Klinger, Y.; Avouac, J.P. Co-Registration of Optically Sensed Images and Correlation (COSI-Corr): An operational methodology for ground deformation measurements. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; IEEE: New York, NY, USA, 2007. [Google Scholar] [CrossRef]
- Aati, S.; Avouac, J.P.; Rupnik, E.; Deseilligny, M.P. Potential and Limitation of PlanetScope Images for 2-D and 3-D Earth Surface Monitoring With Example of Applications to Glaciers and Earthquakes. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4512919. [Google Scholar] [CrossRef]
- Aati, S.; Milliner, C.; Avouac, J.P. A new approach for 2-D and 3-D precise measurements of ground deformation from optimized registration and correlation of optical images and ICA-based filtering of image geometry artifacts. Remote Sens. Environ. 2022, 277, 113038. [Google Scholar] [CrossRef]
- Qin, R. Automated 3D recovery from very high resolution multi-view satellite images. arXiv 2019, arXiv:1905.07475. [Google Scholar] [CrossRef]
- Mukul, M.; Srivastava, V.; Jade, S.; Mukul, M. Uncertainties in the Shuttle Radar Topography Mission (SRTM) Heights: Insights from the Indian Himalaya and Peninsula. Sci. Rep. 2017, 7, 41672. [Google Scholar] [CrossRef]
- Frazier, A.E.; Hemingway, B.L. A Technical Review of Planet Smallsat Data: Practical Considerations for Processing and Using PlanetScope Imagery. Remote Sens. 2021, 13, 3930. [Google Scholar] [CrossRef]
- Beyer, R.A.; Alexandrov, O.; McMichael, S. The Ames Stereo Pipeline: NASA’s Open Source Software for Deriving and Processing Terrain Data. Earth Space Sci. 2018, 5, 537–548. [Google Scholar] [CrossRef]
- Shean, D.E.; Alexandrov, O.; Moratto, Z.M.; Smith, B.E.; Joughin, I.R.; Porter, C.; Morin, P. An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery. ISPRS J. Photogramm. Remote Sens. 2016, 116, 101–117. [Google Scholar] [CrossRef]
- Bhushan, S.; Shean, D.; Alexandrov, O.; Henderson, S. Automated digital elevation model (DEM) generation from very-high-resolution Planet SkySat triplet stereo and video imagery. ISPRS J. Photogramm. Remote Sens. 2021, 173, 151–165. [Google Scholar] [CrossRef]
- RGI 7.0 Consortium. Randolph Glacier Inventory—A Dataset of Global Glacier Outlines, Version 7.0. 2023. Available online: https://nsidc.org/data/nsidc-0770/versions/7 (accessed on 6 September 2024).
- de Franchis, C.; Facciolo, G.; Meinhardt-Llopis, E. RPCM—Rational Polynomial Camera Model. Available online: https://github.com/centreborelli/rpcm (accessed on 6 September 2024).
- Jakkula, V.R. Efficient Feature Detection Using Obalog: Optimized Box Approximation of Laplacian of Gaussian. Master’s Thesis, Kansas State University, Manhattan, KS, USA, 2010. [Google Scholar]
- Facciolo, G.; Franchis, C.D.; Meinhardt, E. MGM: A Significantly More Global Matching for Stereovision. In Proceedings of the British Machine Vision Conference 2015, BMVC 2015, Swansea, UK, 7–10 September 2015; Xie, X., Jones, M.W., Tam, G.K.L., Eds.; BMVA Press: Durham, UK, 2015. Available online: https://dev.ipol.im/~facciolo/mgm/mgm.pdf (accessed on 6 September 2024).
- NVE. Climate Indicator Products—Bøverbrean 2643. 2025. Available online: https://glacier.nve.no/Glacier/viewer/CI/en/nve/ClimateIndicatorInfo/2643?name=B%C3%B8verbrean (accessed on 6 September 2024).
- Andreassen, L.M.; Elvehøy, H.; Kjøllmoen, B.; Belart, J.M.C. Glacier change in Norway since the 1960s—An overview of mass balance, area, length and surface elevation changes. J. Glaciol. 2020, 66, 313–328. [Google Scholar] [CrossRef]
- Singh, H.; Varade, D.; de Vries, M.V.W.; Adhikari, K.; Rawat, M.; Awasthi, S.; Rawat, D. Assessment of potential present and future glacial lake outburst flood hazard in the Hunza valley: A case study of Shisper and Mochowar glacier. Sci. Total Environ. 2023, 868, 161717. [Google Scholar] [CrossRef]
- Beaud, F.; Aati, S.; Delaney, I.; Adhikari, S.; Avouac, J.P. Surge dynamics of Shisper Glacier revealed by time-series correlation of optical satellite images and their utility to substantiate a generalized sliding law. Cryosphere 2022, 16, 3123–3148. [Google Scholar] [CrossRef]
- Rashid, I.; Majeed, U.; Jan, A.; Glasser, N.F. The January 2018 to September 2019 surge of Shisper Glacier, Pakistan, detected from remote sensing observations. Geomorphology 2020, 351, 106957. [Google Scholar] [CrossRef]
- Farinotti, D.; Immerzeel, W.W.; de Kok, R.J.; Quincey, D.J.; Dehecq, A. Manifestations and mechanisms of the Karakoram glacier Anomaly. Nat. Geosci. 2020, 13, 8–16. [Google Scholar] [CrossRef]
- Airbus Defence and Space GmbH. Copernicus Digital Elevation Model Validation Report. 2020. Available online: https://portal.opentopography.org/datasetMetadata?otCollectionID=OT.032021.4326.1 (accessed on 24 March 2025).
- Elias, M.; Isfort, S.; Eltner, A.; Maas, H.G. UAS Photogrammetry for Precise Digital Elevation Models of Complex Topography: A Strategy Guide. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2024, X-2-2024, 57–64. [Google Scholar] [CrossRef]
- Torsnes, A. Laserskanning for Nasjonal Detaljert Høydemodell, NDH Jostedalsbreen 2pkt 2020. 2020. Available online: https://www.kartverket.no/geodataarbeid/nasjonal-detaljert-hoydemodell (accessed on 6 September 2024).
- Rupnik, E.; Daakir, M.; Pierrot Deseilligny, M. MicMac—a free, open-source solution for photogrammetry. Open Geospat. Data, Softw. Stand. 2017, 2, 14. [Google Scholar] [CrossRef]
- Braun, A. Sentinel-1 Toolbox, DEM Generation with Sentinel-1—Workflow and Challenges. 2021. Available online: https://step.esa.int/docs/tutorials/S1TBX%20DEM%20generation%20with%20Sentinel-1%20IW%20Tutorial.pdf (accessed on 18 March 2025).
- Elias, M. Mel-Ias/Planet4Stereo: Initial Release. 2025. Available online: https://zenodo.org/records/14796382 (accessed on 18 February 2025).
- Elias, M.; Isfort, S.; Maas, H.G. Planet4Stereo: A Photogrammetric Open Source Pipeline for Generating Digital Elevation Models for Glacier Change Detection Using Low-Cost PlanetScope Satellite Data. 2025. Available online: https://zenodo.org/records/14888686 (accessed on 18 February 2025).
Parameter | Type | Description | Default |
---|---|---|---|
pss_band | int | Specifies the band used for stereo reconstruction. The Near-Infrared (NIR, Band 4) is recommended for improved contrast in saturated areas, such as snow. | 4 |
no_ortho | bool | Disable orthorectification before stereo reconstruction (not recommended). | False |
elevation_tolerance | float | Elevation tolerance [m] for filtering out coarse outliers in bundle-block adjustment | 500.0 |
min_convergence_angle | float | Minimum convergence angle [deg] between two PSS images. | 4.0 |
min_overlap_percent | float | Minimum overlap percentage between two PSS images (0.0–1.0 ≡ 0–100%). | 0.1 |
subpx_kernel | int | Subpixel kernel size ([px], use larger values for Bayes EM or low-texture images). | 35 |
corr_kernel | int | Correlation kernel size ([px], use odd value, 3–9 for SGM or MGM methods). | 7 |
PlanetScope DEM 2017 | PlanetScope DEM 2019 | |
---|---|---|
Configuration | ||
Number of images | 16 (NIR) | 14 (NIR) |
Minimum overlap (%) | 10 | |
Minimum convergence angle (°) | 4 | |
Ortho workflow | yes (GLO-30 DEM) | |
Bundle-block adjustment | ||
Number of triangulated points (sparse) | 7762 | 4160 |
Mean residuals of images (px) | 0.3 | 0.3 |
Mean residuals of triangulated points (px) | 0.3 | 0.3 |
Stereo reconstruction | ||
Mean intersection error (m) | 1.4 (max: 11.8) | 1.6 (max: 13.7) |
DEM sampling | ||
DEM coverage (km2) | 600.8 | 444.1 |
PlanetScope DEM 2021 | |
---|---|
Configuration | |
Number of images | 10 (NIR) |
Scene IDs | 20210828_095603_87_2455, 20210828_100017_04_2459, 20210829_102532_1001, |
20210829_102533_1001, 20210913_100744_79_2251, 20210913_105036_37_2413, | |
20210914_102653_1040, 20210914_104522_58_240f, 20210914_104524_89_240f, | |
20210928_100200_0e20 | |
Minimum overlap (%) | 10 |
Minimum convergence angle (°) | 4 |
Ortho workflow | yes (GLO-30 DEM) |
Bundle-block adjustment | |
Number of triangulated points (sparse) | 3386 |
Mean residuals of images (px) | 0.6 |
Mean residuals of triangulated points (px) | 0.6 |
Stereo reconstruction | |
Mean intersection error (m) | 3.1 (max: 27.2) |
DEM sampling | |
DEM coverage (km2) | 752.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elias, M.; Isfort, S.; Maas, H.-G. Planet4Stereo: A Photogrammetric Open-Source Pipeline for Generating Digital Elevation Models for Glacier Change Monitoring Using Low-Cost PlanetScope Satellite Data. Remote Sens. 2025, 17, 1435. https://doi.org/10.3390/rs17081435
Elias M, Isfort S, Maas H-G. Planet4Stereo: A Photogrammetric Open-Source Pipeline for Generating Digital Elevation Models for Glacier Change Monitoring Using Low-Cost PlanetScope Satellite Data. Remote Sensing. 2025; 17(8):1435. https://doi.org/10.3390/rs17081435
Chicago/Turabian StyleElias, Melanie, Steffen Isfort, and Hans-Gerd Maas. 2025. "Planet4Stereo: A Photogrammetric Open-Source Pipeline for Generating Digital Elevation Models for Glacier Change Monitoring Using Low-Cost PlanetScope Satellite Data" Remote Sensing 17, no. 8: 1435. https://doi.org/10.3390/rs17081435
APA StyleElias, M., Isfort, S., & Maas, H.-G. (2025). Planet4Stereo: A Photogrammetric Open-Source Pipeline for Generating Digital Elevation Models for Glacier Change Monitoring Using Low-Cost PlanetScope Satellite Data. Remote Sensing, 17(8), 1435. https://doi.org/10.3390/rs17081435