An Improved Point Cloud Filtering Algorithm Applies in Complex Urban Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Methodology
2.2.1. Data Extraction and Preprocessing
2.2.2. Obtain Initial Ground Points
2.2.3. Construct the TIN and Perform Threshold Judgement
2.3. Parameter Setting
3. Results
3.1. Comparative Analysis with Other Algorithms Using the ISPRS Dataset
3.2. Accuracy Evaluation of CAP in the NRW Experimental Areas
3.3. Time Cost Evaluation of CAP in NRW Experimental Areas
3.4. Parameter Sensitivity Analysis
4. Discussion
4.1. Algorithmic Synergy and Performance Improvements
4.2. Cause Analysis of Type II Error Anomaly in CAP Algorithm
4.3. Uneven Density in TIN Model Construction Using CAP Algorithm
4.4. Future Research Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Awrangjeb, M.; Lu, G.; Fraser, C. Automatic building extraction from LiDAR data covering complex urban scenes. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2014, 40, 25–32. [Google Scholar] [CrossRef]
- Guo, L.; Deng, X.; Liu, Y.; He, H.; Lin, H.; Qiu, G.; Yang, W. Extraction of Dense Urban Buildings From Photogrammetric and LiDAR Point Clouds. IEEE Access 2021, 9, 111823–111832. [Google Scholar] [CrossRef]
- Sevgen, S.C.; Karsli, F. Automatic ground extraction for urban areas from airborne LiDAR data. Turk. J. Eng. 2020, 4, 113–122. [Google Scholar] [CrossRef]
- Balado Frías, J.; González Rodríguez, M.E.; Verbree, E.; Díaz Vilariño, L.; Lorenzo Cimadevila, H.R. Automatic detection and characterization of ground occlusions in urban point clouds from mobile laser scanning data. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, VI-4/W1-2020, 503–508. [Google Scholar] [CrossRef]
- Dogan, Y.; Ok, A.Ö. A feature-based deep learning approach for the extraction of ground points from 3D point clouds. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci 2023, XLVIII-M-1-2023, 503–508. [Google Scholar] [CrossRef]
- Sun, H.; Liu, J.; Zhang, L.; Sun, H. A Laser Inertial SLAM System with High Robustness and Low Drift in Complex Environments. In Proceedings of the 2024 IEEE International Conference on Mechatronics and Automation (ICMA), Tianjin, China, 4–7 August 2024. [Google Scholar] [CrossRef]
- Dell, F.; Acqua, G.; Gamba, P.; Mainardi, A. Digital Terrain Models in Dense Urban Areas. Int. Arch. Photogram. Remote Sens. 2001, 33, 935–942. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=b2806e72f8c77d140141ecff2537420963de66b1 (accessed on 14 August 2024).
- Ribero, M.; Heath, R.W.; Vikalo, H.; Chizhik, D.; Valenzuela, R.A. Deep Learning Propagation Models over Irregular Terrain. In Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, J.; Li, J. Review of ground filtering algorithms for airborne lidar point cloud data. Beijing Surv. Mapp. 2024, 38, 1513–1520. [Google Scholar] [CrossRef]
- Axelsson, P. DEM generation from laser scanner data using adaptive TIN models. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2000, 33, 110–117. Available online: https://api.semanticscholar.org/CorpusID:59795495 (accessed on 7 February 2025).
- Zhang, J.; Lin, X. Filtering Airborne LiDAR Data by Embedding Smoothness-Constrained Segmentation in Progressive TIN Densification. ISPRS J. Photogram. Remote Sens. 2013, 81, 44–59. [Google Scholar] [CrossRef]
- Cai, S.; Zhang, W.; Liang, X.; Wan, P.; Qi, J.; Yu, S.; Yan, G.; Shao, J. Filtering Airborne LiDAR Data Through Complementary Cloth Simulation and Progressive TIN Densification Filters. Remote Sens. 2019, 11, 1037. [Google Scholar] [CrossRef]
- Kraus, K.; Pfeifer, N. Advanced DTM generation from LiDAR data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2001, 34, 23–30. Available online: https://www.researchgate.net/publication/51997520_Advanced_DTM_generation_from_LIDAR_data (accessed on 7 February 2025).
- Hu, H.; Ding, Y.; Zhu, Q.; Wu, B.; Lin, H.; Du, Z.; Zhang, Y.; Zhang, Y. An adaptive surface filter for airborne laser scanning point clouds by means of regularization and bending energy. ISPRS J. Photogramm. Remote Sens. 2014, 92, 98–111. [Google Scholar] [CrossRef]
- Chen, Q.; Gong, P.; Baldocchi, D.; Xie, G. Filtering Airborne Laser Scanning Data with Morphological Methods. Photogramm. Eng. Remote Sens. 2007, 73, 175–185. [Google Scholar] [CrossRef]
- Pingel, T.J.; Clarke, K.C.; McBride, W.A. An Improved Simple Morphological Filter for the Terrain Classification of Airborne LiDAR Data. ISPRS J. Photogram. Remote Sens. 2013, 77, 21–30. [Google Scholar] [CrossRef]
- Wu, W. A Connected Sets Detection Morphological Filter for Airborne LiDAR DTM Extraction under Urban Area. In Proceedings of the 2023 8th International Conference on Computer and Communication Systems (ICCCS), Guangzhou, China, 21–24 April 2023. [Google Scholar] [CrossRef]
- Sithole, G.; Vosselman, G. Filtering of airborne laser scanner data based on segmented point clouds. Int. Arch. Photogram. Rem. Sens. Spat. Inform. Sci. 2005, 36 Pt 3, 66–71. Available online: https://api.semanticscholar.org/CorpusID:13413535 (accessed on 15 July 2024).
- Lin, X.; Zhang, J. Segmentation-Based Filtering of Airborne LiDAR Point Clouds by Progressive Densification of Terrain Segments. Remote Sens. 2014, 6, 1294–1326. [Google Scholar] [CrossRef]
- Chen, F.; Xie, F.; Sun, L.; Gu, Y.; Zhang, Z.; Chen, J.; Zhang, J.; Yi, M. Point cloud segmentation algorithm based on improved Euclidean clustering. IEEE Access 2024, 12, 152959–152971. [Google Scholar] [CrossRef]
- Zhao, F.; Huang, H.; Xiao, N.; Yu, J.; Geng, G. A point cloud segmentation algorithm based on multi-feature training and weighted random forest. Meas. Sci. Technol. 2024, 36, 015407. [Google Scholar] [CrossRef]
- Salah, M.; Farhan, M.; Basha, A. Filtering of 3D point clouds using maximum likelihood algorithm. Discov. Appl. Sci. 2024, 6, 419. [Google Scholar] [CrossRef]
- Lian, Z.; Gu, Y.; You, K.; Xie, X.; Qiu, G. An adaptive multi-scale point cloud filtering method for feature information retention. Opt. Lasers Eng. 2024, 177, 108144. [Google Scholar] [CrossRef]
- Qi, C.; Wang, X.; Su, D.; Guo, Y.; Yang, F. Comparison and analysis of ground seed detectors and interpolation methods in airborne LiDAR filtering. Egypt. J. Remote Sens. Space Sci. 2023, 26, 1009–1019. [Google Scholar] [CrossRef]
- Li, H.; Li, D.; Huang, X. An Improved filtering algorithm for LiDAR Point Cloud Based on Progressive Encryption Triangulation. Sci. Surv. Mapp. 2009, 34, 39–40. Available online: https://www.cnki.com.cn/Article/CJFDTotal-CHKD200903012.htm (accessed on 24 August 2024).
- Sui, L.; Zhang, Y.; Zhang, S. Filtering of airborne LiDAR point cloud Data based on Progressive triangulation. J. Wuhan Univ. (Sci. Inf. Ed.) 2011, 36, 1159–1163. Available online: http://ch.whu.edu.cn/article/id/688 (accessed on 11 August 2024).
- Li, H.; Ye, C.; Guo, Z.; Wei, R.; Wang, L.; Li, J. A Fast Progressive TIN Densification Filtering Algorithm for Airborne LiDAR Data Using Adjacent Surface Information. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 12492–12503. [Google Scholar] [CrossRef]
- Shi, X.; Ma, H.; Chen, Y.; Zhang, L.; Zhou, W. A parameter-free progressive TIN densification filtering algorithm for LiDAR point clouds. Int. J. Remote Sens. 2018, 39, 6969–6982. [Google Scholar] [CrossRef]
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
- Li, Y.; Li, C.; Wang, S. An Improved Cloth Simulation Filtering Method Considering Terrain Characteristics. Remote Sens. Technol. Appl. 2019, 34, 1261–1268. Available online: http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2019.6.1261 (accessed on 21 September 2024).
- Cai, S.; Yu, S.; Hui, Z.; Tang, Z. ICSF: An Improved Cloth Simulation Filtering Algorithm for Airborne LiDAR Data Based on Morphological Operations. Forests 2023, 14, 1520. [Google Scholar] [CrossRef]
- Yang, A.; Wu, Z.; Yang, F. An Automatic Filtering Algorithm of Multi-beam Bathymetry Based on Bidirectional Cloth Simulation. Geomat. Inf. Sci. Wuhan Univ. 2012, 47, 517–525. [Google Scholar] [CrossRef]
- Xue, D.; Cheng, Y.; Shi, X. Point cloud classification algorithm based on cloth filtering and improved random forest. Laser Optoelectron. Prog. 2020, 57, 192–200. Available online: https://researching.cn/ArticlePdf/m00002/2020/57/22/221017.pdf (accessed on 14 September 2024).
- Zheng, J.; Xiang, M.; Zhang, T.; Zhou, J. An Improved Adaptive Grid-Based Progressive Triangulated Irregular Network Densification Algorithm for Filtering Airborne LiDAR Data. Remote Sens. 2024, 16, 3846. [Google Scholar] [CrossRef]
- Niedzwiedzki, J.; Lipinski, P.; Podsedkowski, L. IDTMM: Incremental Direct Triangle Mesh Mapping. IEEE Robot. Autom. Lett. 2023, 8, 5416–5423. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Q.; Li, C.; Bu, P. Improvement of CSF Based on a Wide Range of Urban Complex Scenes. In Lidar Remote Sensing for Environmental Monitoring XVI.; SPIE: Bellingham, WA, USA, 2018; Volume 10779, p. 1077911. [Google Scholar] [CrossRef]
- District Government of Cologne. Available online: https://www.bezreg-koeln.nrw.de (accessed on 29 March 2025).
- Ren, D.W. UAV Oblique Image Dense Matching and Two Kinds of Point Cloud Fusion Technology Combined with Ground LiDAR Point Cloud. Master’s Thesis, Wuhan University, Wuhan, China, 2022. [Google Scholar]
- Zhi, Z.; Chang, B.; Li, Y. P-CSF: Polar coordinate cloth simulation filtering algorithm for multi-type tunnel point clouds. Tunn. Undergr. Space Technol. 2025, 155, 106144. [Google Scholar] [CrossRef]
- Provot, X. Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behaviour. In Graphics Interface; Canadian Information Processing Society: Mississauga, ON, Canada, 1995. [Google Scholar]
- Dong, Y.; Cui, X.; Zhang, L.; Ai, H. An Improved Progressive TIN Densification Filtering Method Considering the Density and Standard Variance of Point Clouds. ISPRS Int. J. Geo-Inf. 2018, 7, 409. [Google Scholar] [CrossRef]
- Zhao, X.; Guo, Q.; Su, Y.; Xue, B. Improved Progressive TIN Densification Filtering Algorithm for Airborne LiDAR Data in Forested Areas. ISPRS J. Photogramm. Remote Sens. 2016, 117, 79–91. [Google Scholar] [CrossRef]
- Hui, Z.; Hu, Y.; Yevenyo, Y.; Yu, X. An Improved Morphological Algorithm for Filtering Airborne LiDAR Point Cloud Based on Multi-Level Kriging Interpolation. Remote Sens. 2016, 8, 35. [Google Scholar] [CrossRef]
- Hui, Z.; Li, D.; Jin, S.; Ziggah, Y.; Wang, L.; Hu, Y. Automatic DTM extraction from airborne LiDAR based on expectation maximization. Opt. Laser Technol. 2018, 112, 43–55. [Google Scholar] [CrossRef]
- Wang, W.; Li, Z.; Fu, Y.; He, H.; Xiong, F. A Multi-scale Adaptive Slope Filtering Algorithm for Point Cloud. Geomat. Inf. Sci. Wuhan Univ. 2022, 47, 438–446. [Google Scholar] [CrossRef]
Filtered | |||
Reference | Ground | Object | |
Ground | |||
Object |
Metrics of Quantitative Evaluations | |
---|---|
Samples | Zhang (2013) | Hu (2014) | Hui (2016) | Shi (2018) | Hui (2018) | Cai (2019) | Wang (2022) | CAP |
---|---|---|---|---|---|---|---|---|
samp11 | 18.49 | 8.31 | 13.34 | 11.12 | 17.1 | 16.24 | 17.74 | 18.04 |
samp12 | 5.92 | 2.58 | 3.5 | 7.17 | 7.14 | 8.85 | 5.34 | 4.43 |
samp21 | 4.95 | 0.95 | 2.21 | 6.58 | 2.55 | 14.18 | 4.90 | 1.87 |
samp22 | 14.18 | 3.23 | 5.41 | 14.02 | 11.47 | 4.25 | 8.17 | 4.47 |
samp23 | 12.06 | 4.42 | 5.11 | 17.43 | 8.86 | 8.52 | 8.50 | 6.63 |
samp24 | 20.26 | 3.8 | 7.47 | 13.06 | 15.96 | 15.59 | 8.75 | 5.05 |
samp31 | 2.32 | 0.9 | 1.33 | 3.13 | 6.82 | 7.28 | 4.93 | 4.17 |
samp41 | 20.44 | 5.91 | 10.6 | 10.06 | 11.45 | 13.04 | 7.91 | 5.93 |
samp42 | 3.94 | 0.73 | 1.92 | 1.91 | 4.13 | 4.75 | 3.48 | 2.50 |
Avg. | 11.40 | 3.43 | 5.65 | 9.39 | 9.50 | 10.30 | 7.75 | 5.90 |
Std. | 7.32 | 2.54 | 4.13 | 5.14 | 4.97 | 4.58 | 4.21 | 4.79 |
Type I Error | Type II Error | Total Error | Kappa | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Site | PTD | CSF | CAP | PTD | CSF | CAP | PTD | CSF | CAP | PTD | CSF | CAP |
1 | 10.13 | 5.86 | 2.89 | 3.95 | 3.46 | 4.20 | 7.66 | 4.89 | 3.42 | 84.32 | 89.94 | 92.89 |
2 | 5.91 | 6.99 | 5.53 | 2.91 | 2.00 | 2.31 | 4.99 | 5.44 | 4.53 | 88.64 | 87.75 | 89.71 |
3 | 5.16 | 1.72 | 0.87 | 2.12 | 2.26 | 2.46 | 3.44 | 2.02 | 1.77 | 92.98 | 95.88 | 96.41 |
4 | 6.28 | 3.75 | 2.05 | 1.77 | 1.82 | 2.18 | 4.55 | 3.00 | 2.10 | 90.55 | 93.74 | 95.58 |
5 | 6.85 | 4.70 | 3.94 | 2.14 | 1.60 | 1.75 | 4.43 | 3.10 | 2.81 | 91.13 | 93.79 | 94.37 |
6 | 5.00 | 1.07 | 0.65 | 1.25 | 1.31 | 1.44 | 2.90 | 1.21 | 1.09 | 94.10 | 97.55 | 97.78 |
7 | 5.47 | 1.80 | 0.66 | 5.87 | 3.87 | 4.69 | 5.62 | 2.61 | 2.23 | 88.21 | 94.50 | 95.28 |
8 | 10.59 | 8.99 | 8.11 | 3.49 | 3.02 | 3.24 | 7.89 | 6.78 | 6.31 | 83.36 | 85.82 | 86.76 |
9 | 5.99 | 3.98 | 2.06 | 2.58 | 2.91 | 3.19 | 4.32 | 3.46 | 2.61 | 91.36 | 93.08 | 94.77 |
10 | 7.01 | 6.25 | 4.76 | 2.74 | 2.23 | 2.75 | 5.16 | 4.58 | 3.89 | 89.58 | 90.74 | 92.12 |
11 | 6.15 | 2.75 | 1.37 | 2.15 | 2.05 | 2.32 | 4.15 | 2.40 | 1.85 | 91.71 | 95.21 | 96.30 |
12 | 5.97 | 2.42 | 1.52 | 1.82 | 1.78 | 1.97 | 3.37 | 2.07 | 1.76 | 92.48 | 95.82 | 96.45 |
Avg. | 6.71 | 4.19 | 2.87 | 2.73 | 2.36 | 2.71 | 4.87 | 3.46 | 2.86 | 89.87 | 92.82 | 94.04 |
Std. | 1.81 | 2.43 | 2.31 | 1.24 | 0.79 | 0.97 | 1.56 | 1.64 | 1.47 | 3.30 | 3.55 | 3.19 |
Time Consuming/s | Num/pts | Density/pts/m2 | |||
---|---|---|---|---|---|
Site | PTD | CSF | CAP | ||
1 | 4.96 | 1.45 | 1.65 | 96,164 | 0.49 |
2 | 5.23 | 1.53 | 1.70 | 97,583 | 0.49 |
3 | 4.16 | 0.66 | 0.81 | 95,606 | 0.49 |
4 | 4.28 | 1.01 | 1.18 | 94,933 | 0.50 |
5 | 4.37 | 1.20 | 1.34 | 95,433 | 0.49 |
6 | 3.89 | 0.86 | 1.01 | 96,206 | 0.48 |
7 | 4.39 | 1.21 | 1.36 | 93,179 | 0.49 |
8 | 4.21 | 1.44 | 1.62 | 93,934 | 0.49 |
9 | 4.89 | 0.94 | 1.11 | 93,348 | 0.49 |
10 | 4.97 | 1.31 | 1.48 | 94,672 | 0.49 |
11 | 3.82 | 0.91 | 1.07 | 94,280 | 0.50 |
12 | 4.22 | 0.83 | 0.99 | 95,438 | 0.50 |
Avg. | 4.45 | 1.11 | 1.28 | 95,065 | 0.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, G.; Cui, X.; Yuan, D.; Zhang, L.; Yang, R. An Improved Point Cloud Filtering Algorithm Applies in Complex Urban Environments. Remote Sens. 2025, 17, 1452. https://doi.org/10.3390/rs17081452
Liang G, Cui X, Yuan D, Zhang L, Yang R. An Improved Point Cloud Filtering Algorithm Applies in Complex Urban Environments. Remote Sensing. 2025; 17(8):1452. https://doi.org/10.3390/rs17081452
Chicago/Turabian StyleLiang, Guangyu, Ximin Cui, Debao Yuan, Liuya Zhang, and Renxu Yang. 2025. "An Improved Point Cloud Filtering Algorithm Applies in Complex Urban Environments" Remote Sensing 17, no. 8: 1452. https://doi.org/10.3390/rs17081452
APA StyleLiang, G., Cui, X., Yuan, D., Zhang, L., & Yang, R. (2025). An Improved Point Cloud Filtering Algorithm Applies in Complex Urban Environments. Remote Sensing, 17(8), 1452. https://doi.org/10.3390/rs17081452