ORPSD: Outer Rectangular Projection-Based Representation for Oriented Ship Detection in SAR Images
Abstract
:1. Introduction
- We propose a novel ORPSD model for detecting arbitrarily oriented ships in SAR images. By achieving the best performance on the challenging public RSSDD benchmark, the proposed ORPSD demonstrates its effectiveness and superiority over representative methods;
- We design a new target representation method, ORP, which generates high-quality oriented proposals while maintaining low computational complexity;
- We develop a CQR technique that can correct the proposals with distorted shapes, ensuring correct proposal orientations and removing redundant backgrounds.
2. Related Work
2.1. Ship Detection and Algorithms Based on OBB
2.2. Outer Rectangular Projection
3. Methodology
3.1. Rectification of Oriented Bounding Boxes
3.2. ORPSD’s Region Proposal Network (OrpRPN)
3.2.1. Outer Rectangular Projection (ORP)
Algorithm 1: ORP Encoding |
Input: Ground truth boxes (GTs): ; |
Anchors: |
Output: Actual offsets: |
1 Calculate outer rectangles : |
2 |
3 Calculate projection lengths and : |
4 |
5 Calculate actual offsets via affine transformation: |
6 |
Algorithm 2: ORP Decoding |
Input: Predicted offsets: ; |
Anchors: |
Output: Corner points: |
1 Calculate proposal representation : |
2 Calculate corner coordinates: |
3 |
3.2.2. OrpRPN’s Loss Function
3.3. ORPSD’s Refine Network (OrpRef)
3.3.1. Convex Quadrilateral Rectification (CQR)
Algorithm 3: Convex Quadrilateral Rectification (CQR) |
Input: Corner points: where ; |
Center points: |
Output: Rectified proposal: |
1 Calculate origin-centered vectors: |
2 |
3 Compute edge and diagonal vectors: |
4 |
5 Find normal vectors of edges: |
6 |
7 Calculate width and height: |
8 |
9 Determine orientation angle: |
10 |
11 Return rectified proposal P |
3.3.2. Loss Function
4. Experiments
4.1. Experimental Settings
4.1.1. Dataset
4.1.2. Implementation Details
4.1.3. Evaluation Metrics
4.2. Evaluation of OrpRPN
4.3. Comparison with Representative Methods
4.4. Visualization
4.5. Model Efficiency
4.6. Model Generalizability
4.7. Ablation Study
4.7.1. Impact of Encoding
4.7.2. Impact of Rectification
4.7.3. Impact of KLD
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, M.; He, C.; Zhang, J.; Yang, Y.; Peng, X.; Guo, J. SAR-to-Optical Image Translation via Neural Partial Differential Equations. In Proceedings of the IEEE Conference on International Joint Conference on Artificial Intelligence, Vienna, Austria, 23–29 July 2022; pp. 1–7. [Google Scholar]
- Zhang, C.; Gao, G.; Zhang, L.; Chen, C.; Gao, S.; Yao, L.; Bai, Q.; Gou, S. A novel full-polarization SAR image ship detector based on scattering mechanisms and wave polarization anisotropy. ISPRS J. Photogramm. Remote Sens. 2022, 190, 129–143. [Google Scholar] [CrossRef]
- Lv, J.; Zhu, D.; Geng, Z.; Han, S.; Wang, Y.; Ye, Z.; Zhou, T.; Chen, H.; Huang, J. Recognition for SAR deformation military target from a new MiniSAR dataset using multi-view joint transformer approach. ISPRS J. Photogramm. Remote Sens. 2024, 210, 180–197. [Google Scholar] [CrossRef]
- Wang, C.; Cai, X.; Wu, F.; Cui, P.; Wu, Y.; Zhang, Y. Stepwise Attention-Guided Multiscale Fusion Network for Lightweight and High-Accurate SAR Ship Detection. Remote Sens. 2024, 16, 3137. [Google Scholar] [CrossRef]
- Wu, B.; Wang, H.; Zhang, C.; Chen, J. Optical-to-SAR Translation Based on CDA-GAN for High-Quality Training Sample Generation for Ship Detection in SAR Amplitude Images. Remote Sens. 2024, 16, 3001. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, P.; Li, Y.; Ding, B. A New Deep Neural Network Based on SwinT-FRM-ShipNet for SAR Ship Detection in Complex Near-Shore and Offshore Environments. Remote Sens. 2023, 15, 5780. [Google Scholar] [CrossRef]
- Li, J.; Qu, C.; Shao, J. Ship detection in SAR images based on an improved faster R-CNN. In Proceedings of the 2017 SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA), Beijing, China, 13–14 November 2017; IEEE: New York, NJ, USA, 2017; pp. 1–6. [Google Scholar]
- Gao, F.; He, Y.; Wang, J.; Hussain, A.; Zhou, H. Anchor-free convolutional network with dense attention feature aggregation for ship detection in SAR images. Remote Sens. 2020, 12, 2619. [Google Scholar] [CrossRef]
- Zhu, M.; Hu, G.; Zhou, H.; Wang, S. H2Det: A high-speed and high-accurate ship detector in SAR images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 12455–12466. [Google Scholar] [CrossRef]
- Gao, G.; Zhang, C.; Zhang, L.; Duan, D. Scattering Characteristic-Aware Fully Polarized SAR Ship Detection Network Based on a Four-Component Decomposition Model. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5222722. [Google Scholar] [CrossRef]
- Zhao, S.; Luo, Y.; Zhang, T.; Guo, W.; Zhang, Z. A domain specific knowledge extraction transformer method for multisource satellite-borne SAR images ship detection. ISPRS J. Photogramm. Remote Sens. 2023, 198, 16–29. [Google Scholar] [CrossRef]
- Wang, C.; Bi, F.; Zhang, W.; Chen, L. An intensity-space domain CFAR method for ship detection in HR SAR images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 529–533. [Google Scholar] [CrossRef]
- Gao, G.; Bai, Q.; Zhang, C.; Zhang, L.; Yao, L. Dualistic cascade convolutional neural network dedicated to fully PolSAR image ship detection. ISPRS J. Photogramm. Remote Sens. 2023, 202, 663–681. [Google Scholar] [CrossRef]
- Zhang, C.Q.; Deng, Y.; Chong, M.Z.; Zhang, Z.W.; Tan, Y.H. Entropy-Based re-sampling method on SAR class imbalance target detection. ISPRS J. Photogramm. Remote Sens. 2024, 209, 432–447. [Google Scholar] [CrossRef]
- Zhu, Y.; Du, J.; Wu, X. Adaptive period embedding for representing oriented objects in aerial images. IEEE Trans. Geosci. Remote Sens. 2020, 58, 7247–7257. [Google Scholar] [CrossRef]
- Xu, Y.; Fu, M.; Wang, Q.; Wang, Y.; Chen, K.; Xia, G.S.; Bai, X. Gliding vertex on the horizontal bounding box for multi-oriented object detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 1452–1459. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Wu, P.; Liu, B.; Huang, Q.; Qu, H.; Metaxas, D. Oriented object detection in aerial images with box boundary-aware vectors. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Virtual, 5–9 January 2021; pp. 2150–2159. [Google Scholar]
- Ma, J.; Shao, W.; Ye, H.; Wang, L.; Wang, H.; Zheng, Y.; Xue, X. Arbitrary-oriented scene text detection via rotation proposals. IEEE Trans. Multimed. 2018, 20, 3111–3122. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, W.; Zhu, S.; Yu, W. Toward arbitrary-oriented ship detection with rotated region proposal and discrimination networks. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1745–1749. [Google Scholar] [CrossRef]
- Yang, X.; Hou, L.; Zhou, Y.; Wang, W.; Yan, J. Dense label encoding for boundary discontinuity free rotation detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual, 19–25 June 2021; pp. 15819–15829. [Google Scholar]
- Yang, X.; Yang, J.; Yan, J.; Zhang, Y.; Zhang, T.; Guo, Z.; Sun, X.; Fu, K. Scrdet: Towards more robust detection for small, cluttered and rotated objects. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 8232–8241. [Google Scholar]
- Yang, X.; Yan, J. Arbitrary-oriented object detection with circular smooth label. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 677–694. [Google Scholar]
- Yang, X.; Yan, J.; Liao, W.; Yang, X.; Tang, J.; He, T. Scrdet++: Detecting small, cluttered and rotated objects via instance-level feature denoising and rotation loss smoothing. IEEE Trans. Pattern Anal. Mach. Intell. 2022. [Google Scholar] [CrossRef]
- An, Q.; Pan, Z.; Liu, L.; You, H. DRBox-v2: An improved detector with rotatable boxes for target detection in SAR images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8333–8349. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, Q.; Yu, W.; Lv, J. A Single-Stage Arbitrary-Oriented Detector Based on Multiscale Feature Fusion and Calibration for SAR Ship Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 8179–8198. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; Zhao, W.; Wang, X.; Li, G.; He, Y. Frequency-Adaptive Learning for SAR Ship Detection in Clutter Scenes. IEEE Trans. Geosci. Remote Sens. 2023. [Google Scholar] [CrossRef]
- Zhang, C.; Gao, G.; Liu, J.; Duan, D. Oriented Ship Detection Based on Soft Thresholding and Context Information in SAR Images of Complex Scenes. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5200615. [Google Scholar] [CrossRef]
- He, Y.; Gao, F.; Wang, J.; Hussain, A.; Yang, E.; Zhou, H. Learning polar encodings for arbitrary-oriented ship detection in SAR images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3846–3859. [Google Scholar] [CrossRef]
- Zhang, J.; Xing, M.; Sun, G.C.; Li, N. Oriented Gaussian function-based box boundary-aware vectors for oriented ship detection in multiresolution SAR imagery. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5211015. [Google Scholar] [CrossRef]
- Gao, F.; Huo, Y.; Sun, J.; Yu, T.; Hussain, A.; Zhou, H. Ellipse encoding for arbitrary-oriented SAR ship detection based on dynamic key points. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5240528. [Google Scholar] [CrossRef]
- Pan, D.; Gao, X.; Dai, W.; Fu, J.; Wang, Z.; Sun, X.; Wu, Y. SRT-Net: Scattering Region Topology Network for Oriented Ship Detection in Large-Scale SAR Images. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5202318. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, M.H.; Xu, P.; Guo, Z.W. SAR ship detection using sea-land segmentation-based convolutional neural network. In Proceedings of the 2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP), Shanghai, China, 19–21 May 2017; IEEE: New York, NJ, USA, 2017; pp. 1–4. [Google Scholar]
- Pan, Z.; Yang, R.; Zhang, Z. MSR2N: Multi-stage rotational region based network for arbitrary-oriented ship detection in SAR images. Sensors 2020, 20, 2340. [Google Scholar] [CrossRef]
- He, B.; Zhang, Q.; Tong, M.; He, C. Oriented ship detector for remote sensing imagery based on pairwise branch detection head and SAR feature enhancement. Remote Sens. 2022, 14, 2177. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, X.; Li, Y.; Yang, J.; Cheng, M.M.; Li, X. RSAR: Restricted State Angle Resolver and Rotated SAR Benchmark. arXiv 2025, arXiv:2501.04440. [Google Scholar]
- Pappas, O.; Achim, A.; Bull, D. Superpixel-level CFAR detectors for ship detection in SAR imagery. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1397–1401. [Google Scholar] [CrossRef]
- Gao, F.; Ma, F.; Wang, J.; Sun, J.; Yang, E.; Zhou, H. Visual saliency modeling for river detection in high-resolution SAR imagery. IEEE Access 2017, 6, 1000–1014. [Google Scholar] [CrossRef]
- Lin, H.; Song, S.; Yang, J. Ship classification based on MSHOG feature and task-driven dictionary learning with structured incoherent constraints in SAR images. Remote Sens. 2018, 10, 190. [Google Scholar] [CrossRef]
- Gao, G.; Ouyang, K.; Luo, Y.; Liang, S.; Zhou, S. Scheme of Parameter Estimation for Generalized Gamma Distribution and Its Application to Ship Detection in SAR Images. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1812–1832. [Google Scholar] [CrossRef]
- Wei, S.; Zeng, X.; Qu, Q.; Wang, M.; Su, H.; Shi, J. HRSID: A high-resolution SAR images dataset for ship detection and instance segmentation. IEEE Access 2020, 8, 120234–120254. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, X.; Ke, X.; Zhan, X.; Shi, J.; Wei, S.; Pan, D.; Li, J.; Su, H.; Zhou, Y.; et al. LS-SSDD-v1. 0: A deep learning dataset dedicated to small ship detection from large-scale Sentinel-1 SAR images. Remote Sens. 2020, 12, 2997. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, D.; Krähenbühl, P. Objects as points. arXiv 2019, arXiv:1904.07850. [Google Scholar]
- Han, J.; Ding, J.; Xue, N.; Xia, G.S. Redet: A rotation-equivariant detector for aerial object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual, 19–25 June 2021; pp. 2786–2795. [Google Scholar]
- Han, J.; Ding, J.; Li, J.; Xia, G.S. Align deep features for oriented object detection. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5602511. [Google Scholar] [CrossRef]
- Ding, J.; Xue, N.; Long, Y.; Xia, G.S.; Lu, Q. Learning RoI transformer for oriented object detection in aerial images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 2849–2858. [Google Scholar]
- Qian, W.; Yang, X.; Peng, S.; Yan, J.; Guo, Y. Learning modulated loss for rotated object detection. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2–9 February 2021; Volume 35, pp. 2458–2466. [Google Scholar]
- Guo, P.; Celik, T.; Liu, N.; Li, H.C. Break Through the Border Restriction of Horizontal Bounding Box for Arbitrary-Oriented Ship Detection in SAR Images. IEEE Geosci. Remote Sens. Lett. 2023, 20, 4005505. [Google Scholar] [CrossRef]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yang, X.; Yang, J.; Ming, Q.; Wang, W.; Tian, Q.; Yan, J. Learning high-precision bounding box for rotated object detection via kullback-leibler divergence. Adv. Neural Inf. Process. Syst. 2021, 34, 18381–18394. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Virtual, 11–17 October 2021; pp. 10012–10022. [Google Scholar]
- Loshchilov, I.; Hutter, F. Decoupled weight decay regularization. arXiv 2017, arXiv:1711.05101. [Google Scholar]
- Chen, K.; Wang, J.; Pang, J.; Cao, Y.; Xiong, Y.; Li, X.; Sun, S.; Feng, W.; Liu, Z.; Xu, J.; et al. MMDetection: Open mmlab detection toolbox and benchmark. arXiv 2019, arXiv:1906.07155. [Google Scholar]
- Zhao, W.; Huang, L.; Liu, H.; Yan, C. Scattering-Point-Guided Oriented RepPoints for Ship Detection. Remote Sensing 2024, 16, 933. [Google Scholar] [CrossRef]
- Chen, B.; Xue, F.; Song, H. A Lightweight Arbitrarily Oriented Detector Based on Transformers and Deformable Features for Ship Detection in SAR Images. Remote Sens. 2024, 16, 237. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, S.; Zhan, R.; Wang, W.; Zhang, J. LMSD-YOLO: A lightweight YOLO algorithm for multi-scale SAR ship detection. Remote Sens. 2022, 14, 4801. [Google Scholar] [CrossRef]
- Xu, Z.; Zhai, J.; Huang, K.; Liu, K. DSF-Net: A dual feature shuffle guided multi-field fusion network for SAR small ship target detection. Remote Sens. 2023, 15, 4546. [Google Scholar] [CrossRef]
- Wan, H.; Chen, J.; Huang, Z.; Xia, R.; Wu, B.; Sun, L.; Yao, B.; Liu, X.; Xing, M. AFSar: An anchor-free SAR target detection algorithm based on multiscale enhancement representation learning. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5219514. [Google Scholar] [CrossRef]
- Zhou, Z.; Chen, J.; Huang, Z.; Lv, J.; Song, J.; Luo, H.; Wu, B.; Li, Y.; Diniz, P.S. HRLE-SARDet: A lightweight SAR target detection algorithm based on hybrid representation learning enhancement. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5203922. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, W. OII: An Orientation Information Integrating Network for Oriented Object Detection in Remote Sensing Images. Remote Sens. 2024, 16, 731. [Google Scholar] [CrossRef]
- Ming, Q.; Miao, L.; Zhou, Z.; Dong, Y. CFC-Net: A critical feature capturing network for arbitrary-oriented object detection in remote-sensing images. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5605814. [Google Scholar] [CrossRef]
- Xie, X.; Cheng, G.; Wang, J.; Yao, X.; Han, J. Oriented R-CNN for object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Virtual, 11–17 October 2021; pp. 3520–3529. [Google Scholar]
Method | RSSDD Validation | ||
---|---|---|---|
Recall-300 | Recall-1000 | Recall-2000 | |
ORPSD | 81.61 | 89.23 | 90.03 |
Method | Anchor-Free | Stage | Inshore | Offshore | All Scenes | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pr | Re | F1 | mAP | Pr | Re | F1 | mAP | Times (ms) | FPS | |||
BBAVectors [17] | Yes | One | 0.7881 | 0.7931 | 0.7906 | 0.7688 | 0.9401 | 0.9402 | 0.9401 | 0.9001 | 50 | 20 |
S2ANet [44] | No | One | 0.7822 | 0.7716 | 0.7769 | 0.7521 | 0.8412 | 0.7827 | 0.8109 | 0.8002 | 41 | 24.4 |
RoI-Transformer [45] | No | Two | 0.7027 | 0.7939 | 0.7455 | 0.7541 | 0.9542 | 0.9352 | 0.9446 | 0.9026 | 55 | 18.2 |
ReDet [43] | No | Two | 0.7903 | 0.8012 | 0.7957 | 0.7625 | 0.8721 | 0.8345 | 0.8529 | 0.8402 | 50 | 20 |
LMSD-YOLO [31] | Yes | One | 0.7982 | 0.7901 | 0.7941 | 0.7780 | 0.9321 | 0.9502 | 0.9401 | 0.8819 | 28 | 35.2 |
SPG-OSD [55] | No | Two | 0.7990 | 0.8049 | 0.8019 | 0.7908 | 0.9509 | 0.9237 | 0.9371 | 0.9015 | 47 | 21.3 |
LD-Det [56] | No | One | 0.8231 | 0.8039 | 0.8134 | 0.8076 | 0.9501 | 0.9402 | 0.9451 | 0.9021 | 50 | 20 |
ORPSD+SmoothL1Loss (Ours) | No | Two | 0.8771 | 0.8356 | 0.8558 | 0.8491 | 0.9421 | 0.9392 | 0.9406 | 0.9028 | 45 | 22.2 |
ORPSD+KLD [50] (Ours) | No | Two | 0.8832 | 0.8421 | 0.8622 | 0.8621 | 0.9571 | 0.9531 | 0.9551 | 0.9049 | 45 | 22.2 |
ORPSD+SwinT [52]+KLD [50] (Ours) | No | Two | 0.8867 | 0.8431 | 0.8644 | 0.8756 | 0.9582 | 0.9456 | 0.9519 | 0.9051 | 52 | 19.2 |
left | RSAR | |||
---|---|---|---|---|
Pr | Re | F1 | mAP | |
BBAVectors [17] | 0.8901 | 0.8120 | 0.8492 | 0.6127 |
S2ANet [17] | 0.8048 | 0.8756 | 0.8386 | 0.6333 |
RoI-Transformer [45] | 0.8880 | 0.8907 | 0.8894 | 0.6689 |
ReDet [43] | 0.8872 | 0.8744 | 0.8807 | 0.6692 |
LMSD-YOLO [57] | 0.8790 | 0.9024 | 0.8906 | 0.6603 |
SPG-OSD [55] | 0.8212 | 0.8098 | 0.8155 | 0.6442 |
LD-Det [56] | 0.9032 | 0.8917 | 0.8974 | 0.6820 |
Ours | 0.9303 | 0.9268 | 0.9286 | 0.6930 |
Method | RSSDD | |
---|---|---|
F1 | mAP | |
DSF-Net [58] | 0.7823 | 0.7588 |
AFSar [59] | 0.7932 | 0.7948 |
HRLE-SARDet [60] | 0.7940 | 0.7721 |
ORPSD+KLD (Ours) | 0.8644 | 0.8756 |
Method | All Scenes | ||
---|---|---|---|
mAP | Params (M) | FPS | |
BBAVectors [17] | 0.8501 | 42.5 | 20 |
S2ANet [44] | 0.7721 | 35.02 | 24.4 |
RoI-Transformer [45] | 0.8632 | 273 | 18.2 |
ReDet [43] | 0.8045 | 68 | 20 |
LMSD-YOLO [41] | 0.7780 | 7.4 | 35.2 |
ORPSD+KLD (Ours) | 0.8915 | 15.3 | 22.2 |
Method | HRSC201 | |
---|---|---|
F1 | mAP | |
OIINet [61] | 0.8542 | 0.8630 |
ROI-Transformer [45] | 0.8745 | 0.8760 |
CFCNet [62] | 0.9032 | 0.8851 |
LD-Det [56] | 0.8845 | 0.8620 |
ORPSD+KLD (Ours) | 0.8915 | 0.8891 |
Method | OrpRPN | OrpRef | mAP | ||
---|---|---|---|---|---|
Encoding (ORP) | Rectification (CQR) | SmoothL1Loss | KDL | ||
Baseline | √ | 0.8514 | |||
ORPSD | √ | √ | 0.8803 | ||
√ | √ | 0.8721 | |||
√ | √ | √ | 0.8812 | ||
√ | √ | √ | 0.8915 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Ouyang, Y.; Yang, M.; Guo, J.; Li, Y. ORPSD: Outer Rectangular Projection-Based Representation for Oriented Ship Detection in SAR Images. Remote Sens. 2025, 17, 1511. https://doi.org/10.3390/rs17091511
Zhang M, Ouyang Y, Yang M, Guo J, Li Y. ORPSD: Outer Rectangular Projection-Based Representation for Oriented Ship Detection in SAR Images. Remote Sensing. 2025; 17(9):1511. https://doi.org/10.3390/rs17091511
Chicago/Turabian StyleZhang, Mingjin, Yuanjun Ouyang, Minghai Yang, Jie Guo, and Yunsong Li. 2025. "ORPSD: Outer Rectangular Projection-Based Representation for Oriented Ship Detection in SAR Images" Remote Sensing 17, no. 9: 1511. https://doi.org/10.3390/rs17091511
APA StyleZhang, M., Ouyang, Y., Yang, M., Guo, J., & Li, Y. (2025). ORPSD: Outer Rectangular Projection-Based Representation for Oriented Ship Detection in SAR Images. Remote Sensing, 17(9), 1511. https://doi.org/10.3390/rs17091511