Monitoring Irrigation Consumption Using High Resolution NDVI Image Time Series: Calibration and Validation in the Kairouan Plain (Tunisia)
Abstract
:1. Introduction
2. Material and methods
2.1. Study Area
2.2. Experimental Setup and Data Pre-Processing
2.3. Method for Evapotranspiration and Irrigation Estimates
2.3.1. Model Description
2.3.2. Model Calibration and Validation at Plot Scale
2.3.3. Spatialization of ET and Irrigation.
3. Results and Discussion
3.1. Remote Sensing Data Preprocessing
3.2. Plot Scale Calibration of Evapotranspiration Parameters
Definition | Value | Data Sources | |
---|---|---|---|
Vegetation Parameters | |||
afc | NDVI-fc relation’s slope | 1.25 | Satellite imagery |
bfc | NDVI-fc relation’s intercept | −0.13 | Satellite imagery |
aKcb | NDVI-Kcb relation’s slope | 1.35 | Calibrated |
bKcb | NDVI-Kcb relation’s intercept | −0.18 | Calibrated |
Soil Parameters | |||
θfc (m3/m3) | Volumetric water content at field capacity | 0.29 | Ground observation |
θwp (m3/m3) | Volumetric water content at wilting point | 0.15 | Ground observation |
Init_RU (%) | Soil initial water content | 10 | Ground observation |
Ze (mm) | Height of the surface layer | 125 | FAO-56 |
REW (mm) | Readily evaporable water at surface layer | 0 | Calibrated |
m | Coefficient de reduction | 0.264 | Calibrated |
Zrmin (mm) | Minimum root depth | 125 | FAO-56 |
Zrmax (mm) | Maximum root depth | 1650 | Calibrated |
p | Maximum Root Water Depletion Fraction before stress | 0.55 | FAO-56 |
Zsoil (mm) | Total soil thickness | 2000 | Calibrated |
Difer (%) | Diffusion between surface and root layers | 10 | Calibrated |
Difrd (%) | Diffusion between deep and root layers | 20 | Calibrated |
NDVI-fc | NDVI min | NDVI max | fc min | fc max | Relations | Sources |
Cereals | 0.1 | 0.9 | 0 | 1 | Satellite imagery | |
Market gardening | 0.1 | 0.9 | 0 | 1 | ||
Fruit trees | 0.1 | 0.8 | 0 | 0.9 | ||
NDVI-kcb | NDVI min | NDVI max | Kcb min | Kcb max | Relations | Sources |
Cereals | - | - | - | - | Calibration (barley and wheat experiment field). | |
Market gardening | 0.1 | 0.9 | 0 | 0.98 | FAO paper 56 [16] and Satellite imagery. | |
Fruit trees | - | - | - | - | Calibration (olive trees experimental field in Morocco) |
Cereals | Market Gardening | Fruit Trees | ||
---|---|---|---|---|
Soil parameters | ||||
Zrmax (mm) | 1650 | 1000 | 1600 | |
p | 0.55 | 0.55 | 0.65 | |
Initial RU (%) | 2008/2009 | 10 | 10 | 50 |
2011/2012 | 32 | 32 | ||
2012/2013 | 10 | 10 | ||
Irrigation rules | ||||
Fw, fraction wetted (%) | 100 | 25 | 100 | |
MAD, management allowable depletion for irrigation triggering | MAD = RAW | MAD = 0.2 * TAW | MAD = RAW | |
Kcb_stop, Kcb threshold to stop irrigation (% of Kcbmax) | 99 | 75 | 0 | |
Irrigation constraints | ||||
Min_ir, minimum water depth per turn (mm) | 20 | 0 | 20 | |
Min_days, minimum number of days between two water turns | 7 | 7 | 7 |
3.3. Validation of Irrigation Volumes at Perimeter Scale
3.3.1. Model Parameters Setting for Evapotranspiration and Irrigation Spatialization
3.3.2. Comparison between Modeled and Observed Irrigation Volumes
4. Conclusions
Acknowledgments
Authors’ Contributions
Conflicts of Interest
References
- Poussin, J.; Imache, A.; Béji, R.; Le Grusse, P.; Ben Mihoub, A. Exploring regional irrigation water demand using typologies of farms production units: An example from tunisia. Agric. Water Manag. 2008, 95, 973–983. [Google Scholar] [CrossRef] [Green Version]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Calcagno, G.; Mendicino, G.; Monacelli, G.; Senatore, A.; Versace, P. Distributed estimation of actual evapotranspiration through remote sensing techniques. In Methods and Tools for Drought Analysis and Management; Rossi, G., Vega, T., Bonaccorso, B., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2007; Vol. 62, pp. 125–147. [Google Scholar]
- Courault, D.; Seguin, B.; Olioso, A. Review about estimation of evapotranspiration from remote sensing data: From empirical to numerical modeling approach. Irrig. Drain. syst. 2005, 19, 223–249. [Google Scholar] [CrossRef]
- Gowda, P.; Chavez, J.; Colaizzi, P.; Evett, S.; Howell, T.; Tolk, J. ET mapping for agricultural water management: Present status and challenges. Irrig. Sci. 2008, 26, 223–237. [Google Scholar] [CrossRef]
- Kustas, W.P.; Norman, J.M. Use of remote sensing for evapotranspiration monitoring over land surfaces. Hydrol. Sci. 1996, 41, 495–516. [Google Scholar] [CrossRef]
- Li, Z.L.; Tang, R.L.; Wan, Z.M.; Bi, Y.Y.; Zhou, C.H.; Tang, B.H.; Yan, G.J.; Zhang, X.Y. A review of current methodologies for regional evapotranspiration estimation from remotely sensed data. Sensors 2009, 9, 3801–3853. [Google Scholar] [CrossRef] [PubMed]
- Delogu, E.; Boulet, G.; Olioso, A.; Coudert, B.; Chirouze, J.; Ceschia, E.; Le Dantec, V.; Marloie, O.; Chehbouni, G.; Lagouarde, J.P. Reconstruction of temporal variations of evapotranspiration using instantaneous estimates at the time of satellite overpass. Hydrol. Earth Syst. Sci. 2012, 16, 2995–3010. [Google Scholar] [CrossRef] [Green Version]
- Chirouze, J.; Boulet, G.; Jarlan, L.; Fieuzal, R.; Rodriguez, J.C.; Ezzahar, J.; Er-Raki, S.; Bigeard, G.; Merlin, O.; Garatuza-Payan, J.; et al. Intercomparison of four remote-sensing-based energy balance methods to retrieve surface evapotranspiration and water stress of irrigated fields in semi-arid climate. Hydrol. Earth Syst. Sci. 2014, 18, 1165–1188. [Google Scholar] [CrossRef] [Green Version]
- Allen, T.R. Topographic normalization of landsat thematic mapper data in three mountain environments. Geocarto Int. 2000, 15, 15–22. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Molden, D.J.; Makin, I.W. Remote sensing for irrigated agriculture: Examples from research and possible applications. Agric. Water Manag. 2000, 46, 137–155. [Google Scholar] [CrossRef]
- Hunsaker, D.; Pinter, P., Jr.; Barnes, E.; Kimball, B. Estimating cotton evapotranspiration crop coefficients with a multispectral vegetation index. Irrig. Sci. 2003, 22, 95–104. [Google Scholar] [CrossRef]
- Trout, T.J.; Johnson, L.F.; Gartung, J. Remote sensing of canopy cover in horticultural crops. Hort. Sci. 2008, 43, 333–337. [Google Scholar]
- Pinter, P.J.; Hatfield, J.L.; Schepers, J.S.; Barnes, E.M.; Moran, M.S.; Daughtry, C.S.; Upchurch, D.R. Remote sensing for crop management. Photogramm. Eng. Remote Sens. 2003, 69, 647–664. [Google Scholar] [CrossRef]
- Takeuchi, W.; Tamura, M.; Yasuoka, Y. Estimation of methane emission from West Siberian wetland by scaling technique between NOAA AVHRR and SPOT HRV. Remote Sens. Environ. 2003, 85, 21–29. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; p. 300. [Google Scholar]
- Bausch, W.C.; Neale, C.M.U. Crop coefficients derived from reflected canopy radiation: A concept. Trans. ASAE 1987, 32, 703–709. [Google Scholar] [CrossRef]
- Er-Raki, S.; Chehbouni, A.; Guemouria, N.; Duchemin, B.; Ezzahar, J.; Hadria, R. Combining FAO-56 model and ground-based remote sensing to estimate water consumptions of wheat crops in a semi-arid region. Agric. Water Manag. 2007, 87, 41–54. [Google Scholar] [CrossRef]
- Glenn, E.P.; Neale, C.M.U.; Hunsaker, D.J.; Nagler, P.L. Vegetation index-based crop coefficients to estimate evapotranspiration by remote sensing in agricultural and natural ecosystems. Hydrol. Process. 2011, 25, 4050–4062. [Google Scholar] [CrossRef]
- Neale, C.M.U.; Bausch, W.; Heermann, D. Development of reflectance-based crop coefficients for corn. Trans. ASAE 1989, 32, 1891–1899. [Google Scholar] [CrossRef]
- Huete, A.; Jackson, R.; Post, D. Spectral response of a plant canopy with different soil backgrounds. Remote Sens. Environ. 1985, 17, 37–53. [Google Scholar] [CrossRef]
- Choudhury, B.J.; Ahmed, N.U.; Idso, S.B.; Reginato, R.J.; Daughtry, C.S.T. Relations between evaporation coefficients and vegetation indices studied by model simulations. Remote Sens. Environ 1994, 50, 1–17. [Google Scholar] [CrossRef]
- Gonzalez-Dugo, M.; Mateos, L. Spectral vegetation indices for benchmarking water productivity of irrigated cotton and sugarbeet crops. Agric. Water Manag. 2008, 95, 48–58. [Google Scholar] [CrossRef]
- Er-Raki, S.; Chehbouni, A.; Duchemin, B. Combining satellite remote sensing data with the FAO-56 dual approach for water use mapping in irrigated wheat fields of a semi-arid region. Remote Sens. 2010, 2, 375–387. [Google Scholar] [CrossRef]
- Clarke, D.; Smith, M.; El-Askari, K. Cropwat for Windows: User Guide; Food and Agricultural Organisation of the United Nations: Southampton, UK, 2000; p. 43. [Google Scholar]
- González-Dugo, M.; Escuin, S.; Cano, F.; Cifuentes, V.; Padilla, F.; Tirado, J.; Oyonarte, N.; Fernández, P.; Mateos, L. Monitoring evapotranspiration of irrigated crops using crop coefficients derived from time series of satellite images. II. Application on basin scale. Agric. Water Manag. 2013, 125, 92–104. [Google Scholar] [CrossRef]
- Gonzalez-Dugo, M.; Neale, C.; Mateos, L.; Kustas, W.; Prueger, J.; Anderson, M.; Li, F. A comparison of operational remote sensing-based models for estimating crop evapotranspiration. Agric. Water Manag. 2009, 149, 1843–1853. [Google Scholar] [CrossRef]
- Mateos, L.; González-Dugo, M.P.; Testi, L.; Villalobos, F.J. Monitoring evapotranspiration of irrigated crops using crop coefficients derived from time series of satellite images. I. Method validation. Agric. Water Manag. 2013, 125, 81–91. [Google Scholar] [CrossRef]
- Neale, C.M.U.; Gonzales-Dugo, M.P.; Mateos, L.; Kustas, W.P.; Kaheil, Y. A hybrid approach for estimating spatial evapotranspiration from satellite imagery. Proc. SPIE 2007, 6742. [Google Scholar] [CrossRef]
- Simonneaux, V.; Duchemin, B.; Helson, D.; Er‐Raki, S.; Olioso, A.; Chehbouni, A. The use of high‐resolution image time series for crop classification and evapotranspiration estimate over an irrigated area in Central Morocco. Int. J. Remote Sens. 2008, 29, 95–116. [Google Scholar] [CrossRef] [Green Version]
- Simonneaux, V.; Lepage, M.; Helson, D.; Métral, J.; Thomas, S.; Duchemin, B.; Cherkaoui, M.; Kharrou, H.; Berjami, B.; Chebhouni, A. Estimation spatialisée de l'évapotranspiration des cultures irriguées par télédétection: Application à la gestion de l'irrigation dans la plaine du haouz (Marrakech, Morocco). Sécheresse 2009, 20, 123–130. [Google Scholar]
- Zribi, M.; Chahbi, A.; Shabou, M.; Lili-Chabaane, Z.; Duchemin, B.; Baghdadi, N.; Amri, R.; Chehbouni, A. Soil surface moisture estimation over a semi-arid region using Envisat ASAR radar data for soil evaporation evaluation. Hydrol. Earth Syst. Sci. Discuss. 2011, 15, 345–358. [Google Scholar] [CrossRef] [Green Version]
- Leduc, C.; Calvez, R.; Beji, R.; Nazoumou, Y.; Lacombe, G.; Aouadi, C. Evolution de la ressource en eau dans La Vallée du Merguellil (Tunisie centrale). In Séminaire Euro-Méditerranéen sur la Modernisation de l'Agriculture Irriguée, IAV Hassan II, Rabat, Morocco, 19–23 April 2004; p. 10.
- Masseroni, D.; Corbari, C.; Mancini, M. Limitations and improvements of the energy balance closure with reference to experimental data measured over a maize field. Atmósfera 2014, 27, 335–352. [Google Scholar] [CrossRef]
- Rahman, H.; Dedieu, G. SMAC: A simplified method for the atmospheric correction of satellite measurements in the solar spectrum. Remote Sens. 1994, 15, 123–143. [Google Scholar] [CrossRef]
- Aeronet. Available online: http://aeronet.gsfc.nasa.gov/ (accessed on 10 June 2014).
- Schott, J.R.; Salvaggio, C.; Volchock, W.J. Radiometric scene normalization using pseudo invariant features. Remote Sens. 1988, 26, 1–16. [Google Scholar] [CrossRef]
- Houlès, V.; El Hajj, M.; Bégué, A. Radiometric normalization of a SPOT-4 and SPOT-5 time series of images (Isle-Reunion) for agriculture applications. Rev. Fr. Photogramm. Teledetec. 2006, 181, 31–37. [Google Scholar]
- SPOT4 (Take5). Available online: http://www.cesbio.ups-tlse.fr/multitemp/?page_id=406 (accessed on 16 February 2015).
- Hagolle, O.; Huc, M.; Villa Pascual, D.; Dedieu, G. A multi-temporal and multi-spectral method to estimate aerosol optical thickness over land, for the atmospheric correction of FormoSAT-2, Landsat, VeNμs and Sentinel-2 images. Remote Sens. 2015, 7, 2668–2691. [Google Scholar] [CrossRef]
- Torres, E.A.; Calera, A. Bare soil evaporation under high evaporation demand: A proposed modification to the fao-56 model. Hydrol. Sci. J. 2010, 55, 303–315. [Google Scholar] [CrossRef]
- Zhang, Y.; Wegehenkel, M. Integration of MODIS data into a simple model for the spatial distributed simulation of soil water content and evapotranspiration. Remote Sens. Environ. 2006, 104, 393–408. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Shabou, M; Lili-Chabaane, Z. Suivi de la Dynamique du Couvert Végétal par Télédetection Spatiale sur le Site Semi-Aride de Merguellil (Tunisie Centrale). Master's Thesis, Institut National Agronomique de Tunisie, Université de Carthage, Tunis, 2010. [Google Scholar]
- Chahbi, A.; Zribi, M.; Lili-Chabaane, Z.; Duchemin, B.; Shabou, M.; Mougenot, B.; Boulet, G. Estimation of the dynamics and yields of cereals in a semi-arid area using remote sensing and the safy growth model. Int. J. Remote Sens. 2014, 35, 1004–1028. [Google Scholar] [CrossRef] [Green Version]
- Chahbi, A. Prévision du Rendement des Céréales à Partir des Mesures de Télédétection, Application sur le Bassin de Merguellil. Ph.D. Thesis, Institut National Agronomique de Tunisie, Université de Carthage, Carthage, Tunis, 2015. [Google Scholar]
- Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the landsat and modis surface reflectance: Predicting daily landsat surface reflectance. IEEE Trans. Geosci. Remote sens. 2006, 44, 2207–2218. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saadi, S.; Simonneaux, V.; Boulet, G.; Raimbault, B.; Mougenot, B.; Fanise, P.; Ayari, H.; Lili-Chabaane, Z. Monitoring Irrigation Consumption Using High Resolution NDVI Image Time Series: Calibration and Validation in the Kairouan Plain (Tunisia). Remote Sens. 2015, 7, 13005-13028. https://doi.org/10.3390/rs71013005
Saadi S, Simonneaux V, Boulet G, Raimbault B, Mougenot B, Fanise P, Ayari H, Lili-Chabaane Z. Monitoring Irrigation Consumption Using High Resolution NDVI Image Time Series: Calibration and Validation in the Kairouan Plain (Tunisia). Remote Sensing. 2015; 7(10):13005-13028. https://doi.org/10.3390/rs71013005
Chicago/Turabian StyleSaadi, Sameh, Vincent Simonneaux, Gilles Boulet, Bruno Raimbault, Bernard Mougenot, Pascal Fanise, Hassan Ayari, and Zohra Lili-Chabaane. 2015. "Monitoring Irrigation Consumption Using High Resolution NDVI Image Time Series: Calibration and Validation in the Kairouan Plain (Tunisia)" Remote Sensing 7, no. 10: 13005-13028. https://doi.org/10.3390/rs71013005
APA StyleSaadi, S., Simonneaux, V., Boulet, G., Raimbault, B., Mougenot, B., Fanise, P., Ayari, H., & Lili-Chabaane, Z. (2015). Monitoring Irrigation Consumption Using High Resolution NDVI Image Time Series: Calibration and Validation in the Kairouan Plain (Tunisia). Remote Sensing, 7(10), 13005-13028. https://doi.org/10.3390/rs71013005