Mapping Intra-Field Yield Variation Using High Resolution Satellite Imagery to Integrate Bioenergy and Environmental Stewardship in an Agricultural Watershed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
Type | Spatial Resolution | Spectral Band | Acquisition Date | Radiometric Quantization |
---|---|---|---|---|
National Agriculture Imagery Program (NAIP; aerial) | 1 m | Blue, Green, Red | 26 August 2011 | 8 bit |
RapidEye (satellite) | 5 m | Blue (440–510 nm) Green (520–590 nm) Red (630–685 nm) Red-edge (690–730 nm) NIR (760–850 nm) | 26 August 2011 | 12 bit |
2.3. Image Processing and Model Development
2.4. Forecasting of Bioenergy Crop Impact
3. Results
3.1. Regression Model for Predictive Yield
3.2. Simulated Grain and Switchgrass Yields
3.3. Forecasted Impact on Water Quality and Quantity
4. Discussion
5. Conclusions
- The regression model using the red and near infrared spectral bands and the red-edge normalized difference vegetation index showed the best performance for predicting crop yield (R2 = 0.524; p < 0.001; standard error = 1.61) of all variables tested.
- The predictive yield map showed that under-productivity areas largely coincide with the eroded Symerton silt loam soil series with slope gradient of 5%–10%.
- When testing three scenarios of corn-to-switchgrass conversion for areas with predicted corn yield less than or equal to 3.1, 4.7 and 6.3 Mg·ha−1, total grain yield was projected to decrease from baseline by 6.9%, 9.4% and 16.6%, respectively, and the corresponding switchgrass biomass production was projected to be 10,664, 16,797, and 31,522 metric tons, respectively.
- Between scenarios 1 and 2, the reduction in tile NO3-N transport was not significantly different (15.9% vs. 18.4% reduction, respectively) while the reduction in sediment yield was (25% vs. 35.5%, respectively).
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Baker, J.M.; Fassbinder, J.; Lamb, J.A. The impact of corn stover removal on N2O emission and soil respiration: An investigation with automated chambers. Bioenergy Res. 2014, 7, 503–508. [Google Scholar]
- Campbell, E.E.; Johnson, J.M.F.; Jin, V.L.; Lehman, R.M.; Osborne, S.L.; Varvel, G.E.; Paustian, K. Assessing the soil carbon, biomass production, and nitrous oxide emission impact of corn stover management for bioenergy feedstock production using DAYCENT. Bioenergy Res. 2014, 7, 491–502. [Google Scholar] [CrossRef]
- Cibin, R.; Chaubey, I.; Engel, B. Simulated watershed scale impacts of corn stover removal for biofuel on hydrology and water quality. Hydrol. Process. 2012, 26, 1629–1641. [Google Scholar] [CrossRef]
- Thomas, M.A.; Engel, B.A.; Chaubey, I. Multiple corn stover removal rates for cellulosic biofuels and long-term water quality impacts. J. Soil Water Conserv. 2011, 66, 431–444. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. Corn stover removal for expanded uses reduces soil fertility and structural stability. Soil Sci. Soc. Am. J. 2009, 73, 418–426. [Google Scholar] [CrossRef]
- Thompson, J.L.; Tyner, W.E. Corn stover for bioenergy production: Cost estimates and farmer supply response. Biomass Bioenergy 2014, 62, 166–173. [Google Scholar] [CrossRef]
- Hong, B.G.; Swaney, D.P.; Howarth, R.W. Estimating net anthropogenic nitrogen inputs to us watersheds: Comparison of methodologies. Environ. Sci. Technol. 2013, 47, 5199–5207. [Google Scholar] [CrossRef] [PubMed]
- McIsaac, G.F.; David, M.B.; Gertner, G.Z.; Goolsby, D.A. Relating net nitrogen input in the Mississippi river basin to nitrate flux in the lower Mississippi river: A comparison of approaches. J. Environ. Qual. 2002, 31, 1610–1622. [Google Scholar] [CrossRef] [PubMed]
- Goolsby, D.A.; Battaglin, W.A.; Aulenbach, B.T.; Hooper, R.P. Nitrogen input to the gulf of Mexico. J. Environ. Qual. 2001, 30, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Keeler, B.L.; Krohn, B.J.; Nickerson, T.A.; Hill, J.D. US federal agency models offer different visions for achieving renewable fuel standard (RFS2) biofuel volumes. Environ. Sci. Technol. 2013, 47, 10095–10101. [Google Scholar] [CrossRef] [PubMed]
- Gopalakrishnan, G.; Cristina Negri, M.; Snyder, S.W. A novel framework to classify marginal land for sustainable biomass feedstock production. J. Environ. Qual. 2011, 40, 1593–1600. [Google Scholar] [CrossRef] [PubMed]
- Milbrandt, A.R.; Heimiller, D.M.; Perry, A.D.; Field, C.B. Renewable energy potential on marginal lands in the United States. Renew. Sustain. Energy Rev. 2014, 29, 473–481. [Google Scholar] [CrossRef]
- Varvel, G.E.; Vogel, K.P.; Mitchell, R.B.; Follett, R.; Kimble, J. Comparison of corn and switchgrass on marginal soils for bioenergy. Biomass Bioenergy 2008, 32, 18–21. [Google Scholar] [CrossRef]
- Zhuang, D.; Jiang, D.; Liu, L.; Huang, Y. Assessment of bioenergy potential on marginal land in China. Renew. Sustain. Energy Rev. 2011, 15, 1050–1056. [Google Scholar] [CrossRef]
- Dangerfield, C., Jr.; Harwell, R. An analysis of a silvopastoral system for the marginal land in the southeast United States. Agrofor. Syst. 1990, 10, 187–197. [Google Scholar] [CrossRef]
- Gelfand, I.; Sahajpal, R.; Zhang, X.S.; Izaurralde, R.C.; Gross, K.L.; Robertson, G.P. Sustainable bioenergy production from marginal lands in the US Midwest. Nature 2013, 493, 514–517. [Google Scholar] [CrossRef] [PubMed]
- Harvolk, S.; Kornatz, P.; Otte, A.; Simmering, D. Using existing landscape data to assess the ecological potential of Miscanthus cultivation in a marginal landscape. GCB Bioenergy 2014, 6, 227–241. [Google Scholar] [CrossRef]
- Zumkehr, A.; Campbell, J. Historical US cropland areas and the potential for bioenergy production on abandoned croplands. Environ. Sci. Technol. 2013, 47, 3840–3847. [Google Scholar] [CrossRef] [PubMed]
- Ssegane, H.; Negri, M.C.; Quinn, J.; Urgun-Demirtas, M. Multifunctional landscapes: Site characterization and field-scale design to incorporate biomass production into an agricultural system. Biomass Bioenergy 2015, 80, 179–190. [Google Scholar] [CrossRef]
- Basso, B.; Cammarano, D.; Carfagna, E. Review of Crop Yield Forecasting Methods and Early Warning Systems. 2014, Volume 2014. Available online: http://www.fao.org/fileadmin/templates/ess/documents/meetings_and_workshops/GS_SAC_2013/Improving_methods_for_crops_estimates/Crop_Yield_Forecasting_Methods_and_Early_Warning_Systems_Lit_review.pdf (accessed on 28 July 2015).
- Campbell, J.B. Introduction to Remote Sensing; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Slaton, M.R.; Hunt, E.R.; Smith, W.K. Estimating near-infrared leaf reflectance from leaf structural characteristics. Am. J. Bot. 2001, 88, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Doraiswamy, P.C.; Hatfield, J.L.; Jackson, T.J.; Akhmedov, B.; Prueger, J.; Stern, A. Crop condition and yield simulations using Landsat and MODIS. Remote Sens. Environ. 2004, 92, 548–559. [Google Scholar] [CrossRef]
- Bolton, D.K.; Friedl, M.A. Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agric. For. Meteorol. 2013, 173, 74–84. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, X.; Shen, Y.; Jin, J. Assessment of agricultural drought indicators impact on soybean crop yield: A case study in Iowa, USA. In Proceedings of the Third International Conference on Agro-Geoinformatics (Agro-Geoinformatics 2014), Beijing, China, 11–14 August 2014; pp. 1–6.
- Sibley, A.M.; Grassini, P.; Thomas, N.E.; Cassman, K.G.; Lobell, D.B. Testing remote sensing approaches for assessing yield variability among maize fields. Agron. J. 2014, 106, 24–32. [Google Scholar] [CrossRef]
- Li, A.N.; Liang, S.L.; Wang, A.S.; Qin, J. Estimating crop yield from multi-temporal satellite data using multivariate regression and neural network techniques. Photogramm. Eng. Remote Sens. 2007, 73, 1149–1157. [Google Scholar] [CrossRef]
- Topaloglou, C.; Monachou, S.; Strati, S.; Alexandridis, T.; Stavridou, D.; Silleos, N.; Misopolinos, N.; Nunes, A.; Araujo, A. Modeling LAI based on land cover map and NDVI using SPOT and Landsat data in two Mediterranean sites: Preliminary results. Proc. SPIE 2013, 8795. [Google Scholar] [CrossRef]
- Araujo, G.K.D.; Rocha, J.V.; Lamparelli, R.A.C.; Rocha, A.M. Mapping of summer crops in the state of Parana, Brazil, through the 10-day SPOT vegetation NDVI composites. Eng. Agric. 2011, 31, 760–770. [Google Scholar] [CrossRef]
- Enclona, E.; Thenkabail, P.; Celis, D.; Diekmann, J. Within-field wheat yield prediction from IKONOS data: A new matrix approach. Int. J. Remote Sens. 2004, 25, 377–388. [Google Scholar] [CrossRef]
- Alganci, U.; Ozdogan, M.; Sertel, E.; Ormeci, C. Estimating maize and cotton yield in southeastern Turkey with integrated use of satellite images, meteorological data and digital photographs. Field Crops Res. 2014, 157, 8–19. [Google Scholar] [CrossRef]
- Konecny, G. Geoinformation: Remote Sensing, Photogrammetry and Geographic Information Systems; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Shanahan, J.F.; Schepers, J.S.; Francis, D.D.; Varvel, G.E.; Wilhelm, W.W.; Tringe, J.M.; Schlemmer, M.R.; Major, D.J. Use of remote-sensing imagery to estimate corn grain yield. Agron. J. 2001, 93, 583–589. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Baret, F.; Guyot, G.; Major, D. TSAVI: A vegetation index which minimizes soil brightness effects on LAI and APAR estimation. In Proceedings of the 12th Canadian Symposium on Remote Sensing, Geoscience and Remote Sensing Symposium, IGARSS’89, Vancouver, BC, Canada, 10–14 July 1989; pp. 1355–1358.
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Cicek, H.; Sunohara, M.; Wilkes, G.; McNairn, H.; Pick, F.; Topp, E.; Lapen, D. Using vegetation indices from satellite remote sensing to assess corn and soybean response to controlled tile drainage. Agric. Water Manag. 2010, 98, 261–270. [Google Scholar] [CrossRef]
- Maier, M. Protecting water with on-farm conservation: The Indian creek watershed project. In Proceeding of the National Workshop on Large Landscape Conservation, Washington, DC, USA, 23–24 October 2014.
- USDA-NASS. Cropscape-Cropland Data Layer. US Department of Agriculture, National Agricultural Statistics Service: Washington, 2012. Available online: http://nassgeodata.gmu.edu/CropScape (accessed on 20 August 2013). [Google Scholar]
- Mutanga, O.; Adam, E.; Cho, M.A. High density biomass estimation for wetland vegetation using worldview-2 imagery and random forest regression algorithm. Int. J. Appl. Earth Obs. 2012, 18, 399–406. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Smith, R.B.; de Pauw, E. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sens. Environ. 2000, 71, 158–182. [Google Scholar] [CrossRef]
- Wall, L.; Larocque, D.; Léger, P.M. The early explanatory power of NDVI in crop yield modelling. Int. J. Remote Sens. 2008, 29, 2211–2225. [Google Scholar] [CrossRef]
- Ssegane, H.; Negri, M.C. Designing a sustainable integrated landscape for commodity and bioenergy crops in a tile-drained agricultural watershed. GCB Bioenergy 2015. under review. [Google Scholar]
- Yue, S.; Wang, C. Power of the mann-whitney test for detecting a shift in median or mean of hydro-meteorological data. Stoch. Environ. Res. Risk Assess. 2002, 16, 307–323. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. Leaves. Spectral features and relation to chlorophyll estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Harmel, R.; Cooper, R.; Slade, R.; Haney, R.; Arnold, J. Cumulative uncertainty in measured streamflow and water quality data for small watersheds. Trans. Am. Soc. Agric. Eng. 2006, 49. [Google Scholar] [CrossRef]
- Delécolle, R.; Maas, S.; Guérif, M.; Baret, F. Remote sensing and crop production models: Present trends. ISPRS J. Photogramm. Remote Sens. 1992, 47, 145–161. [Google Scholar] [CrossRef]
- Rembold, F.; Atzberger, C.; Savin, I.; Rojas, O. Using low resolution satellite imagery for yield prediction and yield anomaly detection. Remote Sens. 2013, 5, 1704–1733. [Google Scholar] [CrossRef] [Green Version]
- Richter, K.; Atzberger, C.; Vuolo, F.; Urso, G.D. Evaluation of sentinel-2 spectral sampling for radiative transfer model based LAI estimation of wheat, sugar beet, and maize. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 458–464. [Google Scholar] [CrossRef]
- Atzberger, C.; Guérif, M.; Baret, F.; Werner, W. Comparative analysis of three chemometric techniques for the spectroradiometric assessment of canopy chlorophyll content in winter wheat. Comput. Electron. Agric. 2010, 73, 165–173. [Google Scholar] [CrossRef]
- Munkholm, L.J.; Heck, R.J.; Deen, B. Long-term rotation and tillage effects on soil structure and crop yield. Soil Tillage Res. 2013, 127, 85–91. [Google Scholar] [CrossRef]
- Reddy, B.; Reddy, P.S.; Bidinger, F.; Blümmel, M. Crop management factors influencing yield and quality of crop residues. Field Crops Res. 2003, 84, 57–77. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, T.; Gitelson, A.A.; Arkebauer, T.J. MODIS-based corn grain yield estimation model incorporating crop phenology information. Remote Sens. Environ. 2013, 131, 215–231. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamada, Y.; Ssegane, H.; Negri, M.C. Mapping Intra-Field Yield Variation Using High Resolution Satellite Imagery to Integrate Bioenergy and Environmental Stewardship in an Agricultural Watershed. Remote Sens. 2015, 7, 9753-9768. https://doi.org/10.3390/rs70809753
Hamada Y, Ssegane H, Negri MC. Mapping Intra-Field Yield Variation Using High Resolution Satellite Imagery to Integrate Bioenergy and Environmental Stewardship in an Agricultural Watershed. Remote Sensing. 2015; 7(8):9753-9768. https://doi.org/10.3390/rs70809753
Chicago/Turabian StyleHamada, Yuki, Herbert Ssegane, and Maria Cristina Negri. 2015. "Mapping Intra-Field Yield Variation Using High Resolution Satellite Imagery to Integrate Bioenergy and Environmental Stewardship in an Agricultural Watershed" Remote Sensing 7, no. 8: 9753-9768. https://doi.org/10.3390/rs70809753
APA StyleHamada, Y., Ssegane, H., & Negri, M. C. (2015). Mapping Intra-Field Yield Variation Using High Resolution Satellite Imagery to Integrate Bioenergy and Environmental Stewardship in an Agricultural Watershed. Remote Sensing, 7(8), 9753-9768. https://doi.org/10.3390/rs70809753