Post-Eruption Deformation Processes Measured Using ALOS-1 and UAVSAR InSAR at Pacaya Volcano, Guatemala
Abstract
:1. Introduction
2. Background
3. Radar Intensity Images
4. InSAR Observations
Acquisition 1 | Acquisition 2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Satellite | Flight Direction | Look direction | Year | Month | Day | Year | Month | Day | Perpendicular Baseline (m) | Incidence Angle (°) | Temporal Baseline (days) | Figure |
UAVSAR | S68°E to N68°W | left | 2010 | 1 | 29 | 2010 | 2 | 11 | -- | 48 | 13 | 3a |
UAVSAR | S68°E to N68°W | left | 2010 | 2 | 11 | 2011 | 4 | 26 | -- | 48 | 439 | 3b |
ALOS-1 | S11°E to N11°W | right | 2010 | 5 | 31 | 2010 | 7 | 16 | 91 | 42 | 46 | 3c, 4a, 5a |
ALOS-1 | S11°E to N11°W | right | 2010 | 6 | 29 | 2010 | 8 | 14 | 294 | 38 | 46 | 3d, 5b |
ALOS-1 | S11°E to N11°W | right | 2010 | 8 | 14 | 2010 | 9 | 29 | -44 | 38 | 46 | 5c |
ALOS-1 | S11°E to N11°W | right | 2010 | 9 | 29 | 2010 | 12 | 30 | 7 | 38 | 92 | 5d |
ALOS-1 | S11°E to N11°W | right | 2010 | 12 | 30 | 2011 | 2 | 14 | 341 | 38 | 46 | 3e, 4b, 5e |
ALOS-1 | S11°E to N11°W | right | 2011 | 2 | 14 | 2011 | 4 | 1 | 18 | 38 | 46 | 4c, 5f |
UAVSAR | S68°E to N68°W | left | 2011 | 4 | 26 | 2013 | 3 | 8 | -- | 48 | 682 | 3f, 4d, 5g |
UAVSAR | S68°E to N68°W | left | 2013 | 4 | 2 | 2014 | 4 | 10 | -- | 48 | 373 | 5h |
i.d. (see Figure 6) | Cumulative Days Post Emplacement *ᵻ | Maximum Deformation (cm/day) |
---|---|---|
a | 49 | N/A |
b | 78 | N/A |
c | 124 | –0.11 |
d | 216 | –0.06 |
e | 262 | –0.02 |
f | 308 | –0.02 |
g | 1015 | –0.02 |
h | 1413 | –0.006 |
5. Discussion
5.1. Post-Sliding Flank Deformation
5.2. Localized Deflation
5.3. Lava Flow Emplacement and Subsidence
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Biggs, J.; Anthony, E.; Ebinger, C. Multiple inflation and deflation events at Kenyan volcanoes, East African Rift. Geology 2009, 37, 979–982. [Google Scholar] [CrossRef]
- Lu, Z.; Wicks, C.; Dzurisin, D.; Power, J.A.; Moran, S.C.; Thatcher, W. Magmatic inflation at a dormant stratovolcano: 1996–1998 activity at Mount Peulik volcano, Alaska, revealed by satellite radar interferometry. J. Geophys. Res. B Solid Earth (1978–2012) 2002, 107. [Google Scholar] [CrossRef]
- Amelung, F.; Jónsson, S.; Zebker, H.; Segall, P. Widespread uplift and “trapdoor”faulting on Galapagos volcanoes observed with radar interferometry. Nature 2000, 407, 993–996. [Google Scholar] [PubMed]
- Wicks, C.W.; Dzurisin, D.; Ingebritsen, S.; Thatcher, W.; Lu, Z.; Iverson, J. Magmatic activity beneath the quiescent Three Sisters volcanic center, central Oregon Cascade Range, USA. Geophys. Res. Lett. 2002, 29. [Google Scholar] [CrossRef]
- Pritchard, M.E.; Simons, M. A satellite geodetic survey of large-scale deformation of volcanic centres in the central Andes. Nature 2002, 418, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Segall, P. Volcano deformation and eruption forecasting. Geol. Soc. Lond. Spec. Publ. 2013, 380, 85–106. [Google Scholar] [CrossRef]
- Massonnet, D.; Briole, P.; Arnaud, A. Deflation of Mount Etna monitored by spaceborne radar interferometry. Nature 1995, 375, 567–570. [Google Scholar] [CrossRef]
- Wicks, C.; Thatcher, W.; Dzurisin, D. Migration of fluids beneath Yellowstone caldera inferred from satellite radar interferometry. Science 1998, 282, 458–462. [Google Scholar] [CrossRef] [PubMed]
- Zebker, H.A.; Amelung, F.; Jonsson, S. Remote sensing of volcano surface and internal processes using radar interferometry. In Remote Sensing of Active Volcanism; American Geophysical Union: Washington, DC, USA, 2013; pp. 179–205. [Google Scholar]
- Lu, Z.; Dzurisin, D. InSAR imaging of Aleutian Volcanoes. In InSAR Imaging of Aleutian Volcanoes; Springer: Berlin, Germany, 2014; pp. 87–345. [Google Scholar]
- Fournier, T.; Pritchard, M.; Riddick, S. Duration, magnitude, and frequency of subaerial volcano deformation events: New results from Latin America using InSAR and a global synthesis. Geochem. Geophys. Geosyst. 2010, 11. [Google Scholar] [CrossRef]
- Pritchard, M.E.; Simons, M. An InSAR-based survey of volcanic deformation in the southern Andes. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Biggs, J.; Ebmeier, S.; Aspinall, W.; Lu, Z.; Pritchard, M.; Sparks, R.; Mather, T. Global link between deformation and volcanic eruption quantified by satellite imagery. Nat. Commun. 2014, 5. [Google Scholar] [CrossRef] [PubMed]
- Ebmeier, S.; Biggs, J.; Mather, T.; Amelung, F. On the lack of InSAR observations of magmatic deformation at Central American volcanoes. J. Geophys. Res. Solid Earth 2013, 118, 2571–2585. [Google Scholar] [CrossRef]
- Hensley, S.; Wheeler, K.; Sadowy, G.; Miller, T.; Shaffer, S.; Muellerschoen, R.; Jones, C.; Zebker, H.; Madsen, S.; Rosen, P. Status of a UAVSAR designed for repeat pass interferometry for deformation measurements. In Proceedings of the 2005 IEEE MTT-S International Conference on Microwave Symposium Digest, Long Beach, CA, USA, 12–17 June 2005.
- Eggers, A.A. The Geology and Petrology of the Amatitlán Quadrangle, Guatemala; Dartmouth College: Hanover, NH, USA, 1971. [Google Scholar]
- Conway, F.M.; Diehl, J.F.; Matías, O. Paleomagnetic constraints on eruption patterns at the Pacaya composite volcano, Guatemala. Bull. Volcanol. 1992, 55, 25–32. [Google Scholar] [CrossRef]
- Kitamura, S.; Matías, O. Tephra stratigraphic approach to the eruptive history of Pacaya volcano, Guatemala. Sci. Rep. Tohoku Univ. Seventh Ser. Geogr. 1995, 45, 1–41. [Google Scholar]
- Vallance, J.W.; Siebert, L.; Rose, W.I.; Girón, J.R.; Banks, N.G. Edifice collapse and related hazards in Guatemala. J. Volcanol. Geotherm. Res. 1995, 66, 337–355. [Google Scholar] [CrossRef]
- Matías Gómez, R.O.; Rose, W.I.; Palma, J.L.; Escobar-Wolf, R. Notes on a Map of the 1961–2010 Eruptions of Volcán de Pacaya, Guatemala. Geol. Soc. Am. Digit. Map Chart Ser. 2012, 10. [Google Scholar] [CrossRef]
- Rose, W.I.; Palma, J.L.; Wolf, R.E.; Gomez, R.O.M. A 50 year eruption of a basaltic composite cone: Pacaya, Guatemala. Geol. Soc. Am. Spec. Pap. 2013, 498, 1–21. [Google Scholar]
- Schaefer, L.; Lu, Z.; Oommen, T. Dramatic volcanic instability revealed by InSAR. Geology 2015, 43, 743–746. [Google Scholar] [CrossRef]
- Schaefer, L.N.; Oommen, T.; Corazzato, C.; Tibaldi, A.; Escobar-Wolf, R.; Rose, W.I. An integrated field-numerical approach to assess slope stability hazards at volcanoes: the example of Pacaya, Guatemala. Bull. Volcanol. 2013, 75, 1–18. [Google Scholar] [CrossRef]
- CONRED. Coordinadora Nacional Para la Reduccion de Desastres. Available online: http://www.conred.gob.gt/ (accessed on 1 October 2015).
- Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef]
- Rosen, P.; Hensley, S.; Joughin, I.R.; Li, F.K.; Madsen, S.N.; Rodriguez, E.; Goldstein, R.M. Synthetic aperture radar interferometry. Proc. IEEE 2000, 88, 333–382. [Google Scholar] [CrossRef]
- Costantini, M. A novel phase unwrapping method based on network programming. IEEE Trans. Geosci. Remote Sens. 1998, 36, 813–821. [Google Scholar] [CrossRef]
- Lu, Z.; Masterlark, T.; Dzurisin, D. Interferometric synthetic aperture radar study of Okmok volcano, Alaska, 1992–2003: Magma supply dynamics and postemplacement lava flow deformation. J. Geophys. Res. Solid Earth (1978–2012) 2005, 110. [Google Scholar] [CrossRef]
- Sigmundsson, F.; Durand, P.; Massonnet, D. Opening of an eruptive fissure and seaward displacement at Piton de la Fournaise volcano measured by RADARSAT satellite radar interferometry. Geophys. Res. Lett. 1999, 26, 533–536. [Google Scholar] [CrossRef]
- Wallace, P.J. Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J. Volcanol. Geotherm. Res. 2005, 140, 217–240. [Google Scholar] [CrossRef]
- Shinohara, H. Excess degassing from volcanoes and its role on eruptive and intrusive activity. Rev. Geophys. 2008, 46. [Google Scholar] [CrossRef]
- Andres, R.; Rose, W.; Stoiber, R.; Williams, S.; Matías, O.; Morales, R. A summary of sulfur dioxide emission rate measuremnts from Guatemalan volcanoes. Bull. Volcanol. 1993, 55, 379–388. [Google Scholar] [CrossRef]
- Rodríguez, L.A.; Watson, I.M.; Rose, W.I.; Branan, Y.K.; Bluth, G.J.; Chigna, G.; Matías, O.; Escobar, D.; Carn, S.A.; Fischer, T.P. SO2 emissions to the atmosphere from active volcanoes in Guatemala and El Salvador, 1999–2002. J. Volcanol. Geotherm. Res. 2004, 138, 325–344. [Google Scholar] [CrossRef]
- Walker, J.A.; Roggensack, K.; Patino, L.C.; Cameron, B.I.; Matías, O. The water and trace element contents of melt inclusions across an active subduction zone. Contrib. Mineral. Petrol 2003, 146, 62–77. [Google Scholar] [CrossRef]
- Eggers, A.A. Temporal gravity and elevation changes at Pacaya volcano, Guatemala. J. Volcanol. Geotherm. Res. 1983, 19, 223–237. [Google Scholar] [CrossRef]
- Masterlark, T.; Lu, Z.; Rykhus, R. Thickness distribution of a cooling pyroclastic flow deposit on Augustine Volcano, Alaska: Optimization using InSAR, FEMs, and an adaptive mesh algorithm. J. Volcanol. Geotherm. Res. 2006, 150, 186–201. [Google Scholar] [CrossRef]
- Ebmeier, S.; Biggs, J.; Mather, T.; Wadge, G.; Amelung, F. Steady downslope movement on the western flank of Arenal volcano, Costa Rica. Geochem. Geophys. Geosyst. 2010, 11. [Google Scholar] [CrossRef]
- Briole, P.; Massonnet, D.; Delacourt, C. Post-eruptive deformation associated with the 1986–87 and 1989 lava flows of Etna detected by radar interferometry. Geophys. Res. Lett. 1997, 24, 37–40. [Google Scholar] [CrossRef]
- Caricchi, L.; Biggs, J.; Annen, C.; Ebmeier, S. The influence of cooling, crystallisation and re-melting on the interpretation of geodetic signals in volcanic systems. Earth Planet. Sci. Lett. 2014, 388, 166–174. [Google Scholar] [CrossRef]
- Lu, Z.; Fielding, E.; Patrick, M.R.; Trautwein, C.M. Estimating lava volume by precision combination of multiple baseline spaceborne and airborne interferometric synthetic aperture radar: The 1997 eruption of Okmok volcano, Alaska. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1428–1436. [Google Scholar]
- Dietterich, H.R.; Poland, M.P.; Schmidt, D.A.; Cashman, K.V.; Sherrod, D.R.; Espinosa, A.T. Tracking lava flow emplacement on the east rift zone of Kīlauea, Hawai‘i, with synthetic aperture radar coherence. Geochem. Geophys. Geosyst. 2012, 13. [Google Scholar] [CrossRef]
- Lu, Z.; Dzurisin, D.; Biggs, J.; Wicks, C.; McNutt, S. Ground surface deformation patterns, magma supply, and magma storage at Okmok volcano, Alaska, from InSAR analysis: 1. Intereruption deformation, 1997–2008. J. Geophys. Res. Solid Earth (1978–2012) 2010, 115. [Google Scholar] [CrossRef]
- Ebmeier, S.; Biggs, J.; Mather, T.; Elliott, J.; Wadge, G.; Amelung, F. Measuring large topographic change with InSAR: Lava thicknesses, extrusion rate and subsidence rate at Santiaguito volcano, Guatemala. Earth Planet. Sci. Lett. 2012, 335, 216–225. [Google Scholar] [CrossRef]
- Gudmundsson, A. How local stresses control magma-chamber ruptures, dyke injections, and eruptions in composite volcanoes. Earth Sci. Rev. 2006, 79, 1–31. [Google Scholar] [CrossRef]
- Schaefer, L.N.; Kendrick, J.E.; Lavallée, Y.; Oommen, T.; Chigna, G. Geomechanical rock properties of a basaltic volcano. Front. Earth Sci. 2015, 3. [Google Scholar] [CrossRef]
- Salzer, J.T.; Nikkhoo, M.; Walter, T.R.; Sudhaus, H.; Reyes-Dávila, G.; Bretón, M.; Arámbula, R. Satellite radar data reveal short-term pre-explosive displacements and a complex conduit system at Volcán de Colima, Mexico. Front. Earth Sci. 2014, 2. [Google Scholar] [CrossRef]
- Morgan, H.A.; Harris, A.J.; Gurioli, L. Lava discharge rate estimates from thermal infrared satellite data for Pacaya Volcano during 2004–2010. J. Volcanol. Geotherm. Res. 2013, 264, 1–11. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schaefer, L.N.; Lu, Z.; Oommen, T. Post-Eruption Deformation Processes Measured Using ALOS-1 and UAVSAR InSAR at Pacaya Volcano, Guatemala. Remote Sens. 2016, 8, 73. https://doi.org/10.3390/rs8010073
Schaefer LN, Lu Z, Oommen T. Post-Eruption Deformation Processes Measured Using ALOS-1 and UAVSAR InSAR at Pacaya Volcano, Guatemala. Remote Sensing. 2016; 8(1):73. https://doi.org/10.3390/rs8010073
Chicago/Turabian StyleSchaefer, Lauren N., Zhong Lu, and Thomas Oommen. 2016. "Post-Eruption Deformation Processes Measured Using ALOS-1 and UAVSAR InSAR at Pacaya Volcano, Guatemala" Remote Sensing 8, no. 1: 73. https://doi.org/10.3390/rs8010073
APA StyleSchaefer, L. N., Lu, Z., & Oommen, T. (2016). Post-Eruption Deformation Processes Measured Using ALOS-1 and UAVSAR InSAR at Pacaya Volcano, Guatemala. Remote Sensing, 8(1), 73. https://doi.org/10.3390/rs8010073