Development, Production and Evaluation of Aerosol Climate Data Records from European Satellite Observations (Aerosol_cci)
Abstract
:1. Introduction
2. Iterative Algorithm Development and Evolution Demonstrated with ATSR AOD CDRs
2.1. General Approach
2.2. New ECV CDRs from Two Dual-View ATSR Radiometers
2.3. Extended User Requirements from the Aerosol Climate Modelling Community
2.4. Algorithm Development and Validation—Benefit of Repeated Development Cycles for ATSR Datasets
2.4.1. Overall Improvement of Algorithms
2.4.2. Algorithm Validation with Growing Data Volumes
2.4.3. Convergence between Algorithms for the Same Sensor
2.5. User Evaluation
2.5.1. Common Point Evaluation of Gridded L3 Products
2.5.2. Evaluation of ATSR-2/AATSR Aerosol Optical Depth Temporal Stability
3. Special Aspects of Algorithm Evaluation
3.1. Assessment of Spatial and Temporal Correlations
3.2. Assessment over a Special Region with Sparse Standard Reference Data (AOD over China)
3.3. Validation of Pixel-Level Uncertainties
4. Application of the Cyclic Approach to Other Complementary Aerosol Datasets
4.1. Qualifying a Satellite Dataset as Quasi-Reference (POLDER GRASP AOD and Aerosol Properties)
4.2. Round Robin Exercise for Dust AOD from Thermal Infrared Measurements by IASI
4.3. Evaluating a Time Series of a Qualitative Data Record for Absorption (AAI)
4.4. Iterative Optimization of Product Resolution to Quantify Stratospheric Extinction Profiles (GOMOS)
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
AAOD | Absorbing Aerosol Optical Depth |
AAI | Absorbing Aerosol Index |
AATSR | Advanced Along-Track Scanning Radiometer |
ACPC | Aerosol-Cloud-Precipitation-Chemistry |
ADV/ASV | AATSR Dual/Single View |
AE | Angström exponent |
AERGOM | GOMOS Aerosol Profile Information Retrieval Prototype Processor Development |
AEROCOM | Aerosol Comparisons between Observations and Models |
AERONET | Aerosol Robotic Network |
AOD | Aerosol Optical Depth |
ATSR | Along Track Scanning Radiometer |
AVHRR | Advanced Very High Resolution Radiometer |
CARSNET | China Aerosol Remote Sensing Network |
CCI | Climate Change Initiative |
CCN | cloud condensation nuclei |
CDR | Climate Data Record |
CMIP | Coupled Model Intercomparison Project |
COS | carbonyl sulfide |
ECV | Essential Climate Variable |
EMAC | ECHAM/MESSy Atmospheric Chemistry model |
ENVISAT | ESA’s Environmental Satellite |
ERS-2 | European Remote Sensing Satellite 2 |
ESA | European Space Agency |
GCOS | Global Climate Observing System |
GOME | Global Ozone Monitoring Experiment |
GOMOS | Global Ozone Monitoring by Occultation of Stars |
GRASP | Generalized Retrieval of Aerosol and Surface properties |
IASI | Infrared Atmospheric Sounding Interferometer |
IMARS | Infrared Mineral Aerosol Retrieval Scheme |
IN | ice nuclei |
IPCC | Intergovernmental Panel on Climate Change |
L2 | level 2, satellite sensor projected data |
L3 | level 3, gridded satellite dataset |
LUT | Look Up Table |
MAN | Maritime Aerosol Network |
MAPIR | Mineral Aerosol Profiling from thermal Infrared Radiances |
MIPAS | Michelson Interferometer for Passive Atmospheric Sounding |
MISR | Multi-angle Imaging SpectroRadiometer |
MNMB | modified normalized mean bias |
MODIS | Moderate Resolution Imaging Spectro-Radiometer |
NASA | National Aeronautics and Space Administration |
NIR | near infrared |
NOAA | National Oceanic and Atmospheric Administration |
OMI | Ozone Monitoring Instrument |
ORAC | Oxford RAL Aerosol and Cloud retrieval |
OSIRIS | Optical Spectrograph and InfraRed Imager System |
probability density function | |
POLDER | POLarization and Directionality of the Earth’s Reflectances |
RMSE | Root Mean Square Error |
SAGE II | Stratospheric Aerosol and Gas Experiment |
SCIAMACHY | Scanning Imaging Absorption SpectroMeter for Atmospheric CHartographY |
SDA | spectral deconvolution algorithm |
SeaWIFs | Sea-viewing Wide Field-of-view Sensor |
SLSTR | Sea and Land Surface Temperature Radiometer |
SSA | Single Scattering Albedo |
SU | Swansea University |
TIR | thermal infrared |
TOMS | Total Ozone Mapping Spectrometer |
UV | ultraviolet |
VIIRS | Visible Infrared Imaging Radiometer Suite |
Vis | visible |
WMO | World Meteorological Organisation |
References
- IPCC. Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- GCOS. Systematic Observation Requirements for Satellite-Based Data Products for Climate; 2011 Update, Supplemental Details to the Satellite-Based Component of the “Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC (2010 Update)”, GCOS-154; WMO: Geneva, Switzerland, 2011. [Google Scholar]
- Kokhanovsky, A.A.; de Leeuw, G. Satellite Aerosol Remote Sensing over Land; Springer: Berlin, Germany, 2009; pp. 135–160. [Google Scholar]
- De Leeuw, G.; Kinne, S.; Leon, J.F.; Pelon, J.; Rosenfeld, D.; Schaap, M.; Veefkind, P.J.; Veihelmann, B.; Winker, D.M.; von Hoyningen-Huene, W. Retrieval of aerosol properties. In The Remote Sensing of Tropospheric Composition from Space; Burrows, J.P., Platt, U., Borrell, P., Eds.; Springer-Verlag: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Thomason, L.; Peter, T. Assessment of Stratospheric Aerosol Properties (ASAP). Available online: www.sparc-climate.org/publications/sparc-reports/ (accessed on 1 December 2015).
- GCOS. Guideline for the Generation of Satellite-Based Datasets and Products Meeting GCOS Requirements; GCOS-128, WMO/TD No. 1488; WMO: Geneva, Switzerland, 2009. [Google Scholar]
- Levy, R.C.; Munchak, L.A.; Mattoo, S.; Patadia, F.; Remer, L.A.; Holz, R.E. Towards a long-term global aerosol optical depth record: Applying a consistent aerosol retrieval algorithm to MODIS and VIIRS-observed reflectance. Atmos. Meas. Tech. 2015, 8, 4083–4110. [Google Scholar] [CrossRef]
- Stowe, L.L.; Jacobowitz, H.; Ohring, G.; Knapp, K.R.; Nalli, N.R. The advanced very high resolution radiometer (AVHRR) Pathfinder Atmosphere (PATMOS) climate dataset: Initial analyses and evaluations. J. Climatol. 2002, 15, 1243–1260. [Google Scholar] [CrossRef]
- Mishchenko, M.I.; Geogdzhayev, I.V.; Rossow, W.B.; Cairns, B.; Carlson, B.E.; Lacis, A.A.; Liu, L.; Travis, L.D. Long-term satellite record reveals likely recent aerosol trend. Science 2007, 315. [Google Scholar] [CrossRef] [PubMed]
- Torres, O.; Bhartia, P.K.; Herman, J.R.; Sinyuk, A.; Ginoux, P.; Holben, B. A long term record of aerosol optical depth from TOMS observations and comparison to AERONET measurements. J. Atmos. Sci. 2002, 59, 398–413. [Google Scholar] [CrossRef]
- Herman, J.R.; Bhartia, P.K.; Torres, O.; Hsu, C.; Seftor, C.; Celarier, E. Global distributions of UV-absorbing aerosols from Nimbus 7/TOMS data. J. Geophys. Res. 1997, 102, 16911–16922. [Google Scholar] [CrossRef]
- Jethva, H.; Torres, O.; Ahn, C. Global assessment of OMI aerosol single-scattering albedo using ground-based AERONET inversion. J. Geophys. Res. Atmos. 2014, 119. [Google Scholar] [CrossRef]
- Hsu, N.-Y.C.; Gautam, R.; Sayer, A.M.; Bettenhausen, C.; Li, C.; Jeong, M.-J.; Tsay, S.-C.; Holben, B. Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010. Atmos. Chem. Phys. 2012, 12, 8037–8053. [Google Scholar] [CrossRef]
- Fromm, M.; Alfred, J. A unified, long-term, high-latitude stratospheric aerosol and cloud database using SAM II, SAGE II, and POAM II/III data: Algorithm description, database definition, and climatology. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Bauman, J.J.; Russel, P.B.; Geller, M.A.; Hamil, P. A stratospheric aerosol climatology from SAGE II and CLAES measurements: 2. Results and comparisons, 1984–1999. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Bingen, C.; Vanhellemont, F.; Fussen, D. A global climatology of stratospheric aerosol size distribution parameters derived from SAGE II data over the period 1984–2000: 2. Reference data. J. Geophys. Res. 2004, 109. [Google Scholar] [CrossRef]
- Wurl, D.; Grainger, R.G.; McDonald, A.J.; Deshler, T. Optimal estimation retrieval of aerosol microphysical properties from SAGE II satellite observations in the lower stratosphere. Atmos. Chem. Phys. 2010, 10, 4295–4317. [Google Scholar] [CrossRef]
- Hollmann, R.; Merchant, C.J.; Saunders, R.; Downy, C.; Buchwitz, M.; Cazenave, A.; Chuvieco, E.; Defourny, P.; de Leeuw, G.; Forsberg, R.; et al. The ESA climate change initiative: Satellite data records for essential climate variables. Bull. Am. Meteorol. Soc. 2013, 11. [Google Scholar] [CrossRef]
- Holzer-Popp, T.; de Leeuw, G.; Griesfeller, J.; Martynenko, D.; Klüser, L.; Bevan, S.; Davies, W.; Ducos, F.; Deuzé, J.L.; Graigner, R.G.; et al. Aerosol retrieval experiments in the ESA Aerosol_cci project. Atmos. Meas. Tech. 2013, 6, 1919–1957. [Google Scholar] [CrossRef]
- De Leeuw, G.; Holzer-Popp, T.; Bevan, S.; Davies, W.; Descloitres, J.; Grainger, R.G.; Griesfeller, J.; Heckel, A.; Kinne, S.; Klüser, L.; et al. Evaluation of seven European aerosol optical depth retrieval algorithms for climate analysis. Remote Sens. Environ. 2015, 162, 295–315. [Google Scholar] [CrossRef]
- Povey, A.C.; Grainger, R.G. Known and unknown unknowns: Uncertainty estimation in satellite remote sensing. Atmos. Meas. Tech. 2015, 8, 4699–4718. [Google Scholar] [CrossRef]
- Sogacheva, L.; Kolmonen, P.; Virtanen, T.H.; Rodriguez, E.; Saponaro, G.; de Leeuw, G. Post-processing to remove residual clouds from aerosol optical depth retrieved using the Advanced Along Track Scanning Radiometer. Atmos. Meas. Tech. 2016. submitted. [Google Scholar]
- Veefkind, J.P.; de Leeuw, G.; Durkee, P.A. Retrieval of aerosol optical depth over land using two-angle view satellite radiometry during TARFOX. Geophys. Res. Lett. 1998, 25, 3135–3138. [Google Scholar] [CrossRef]
- Veefkind, J.P.; de Leeuw, G. A new algorithm to determine the spectral aerosol optical depth from satellite radiometer measurements. J. Aerosol Sci. 1998, 29, 1237–1248. [Google Scholar] [CrossRef]
- Robles Gonzalez, C. Retrieval of Aerosol Properties Using ATSR-2 Observations and Their Interpretation. Ph.D. Thesis, University of Utrecht, Utrecht, The Netherlands, 2003. [Google Scholar]
- Kolmonen, P.; Sogacheva, L.; Virtanen, T.H.; de Leeuw, G.; Kulmala, M. The ADV/ASV AATSR aerosol retrieval algorithm: Current status and presentation of a full-mission AOD data set. Int. J. Digit. Earth 2015. [Google Scholar] [CrossRef]
- Poulsen, C.A.; Siddans, R.; Thomas, G.E.; Sayer, A.M.; Grainger, R.G.; Campmany, E.; Dead, S.M.; Arnold, C.; Watts, P.D. Cloud retrievals from satellite data using optimal estimation: Evaluation and application to ATSR. Atmos. Meas. Tech. 2012, 5, 1889–1910. [Google Scholar] [CrossRef]
- North, P.R.J.; Briggs, S.A.; Plummer, S.E.; Settle, J.J. Retrieval of land surface bidirectional reflectance and aerosol opacity from ATSR-2 multiangle imagery. IEEE Trans. Geosci. Remote Sens. 1999, 37, 526–537. [Google Scholar] [CrossRef]
- Sayer, A.M.; Thomas, G.E.; Grainger, R.G. A sea surface reflectance model for (A) ATSR, and application to aerosol retrievals. Atmos. Meas. Tech. 2010, 3, 813–838. [Google Scholar] [CrossRef]
- Bevan, S.L.; North, P.R.J.; Los, S.O.; Grey, W.M.F. A global dataset of atmospheric aerosol optical depth and surface reflectance from AATSR. Remote Sens. Environ. 2012, 116, 119–210. [Google Scholar] [CrossRef]
- North, P.R.J. Estimation of aerosol opacity and land surface bidirectional reflectance from ATSR-2 dual-angle imagery: Operational method and validation. J. Geophys. Res. 2002, 107. [Google Scholar] [CrossRef]
- Ftp archive of Aerosol_cci products. Available online: http://www.icare.univ-lille1.fr/archive/?dir=CCI-Aerosols (accessed on 1 December 2015).
- Aerosol_cci Project. Available online: http://www.esa-aerosol-cci.org/ (accessed on 1 December 2015).
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanr´e, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Smirnov, A.; Holben, B.N.; Slutsker, I.; Giles, D.M.; McClain, C.R.; Eck, T.; Sakerin, S.M.; Macke, A.; Croot, P.; Zibordi, G.; et al. Maritime Aerosol Network as a component of Aerosol Robotic Network. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- AERONET. Available online: http://aeronet.gsfc.nasa.gov/ (accessed on 1 December 2015).
- AEROCOM. Available online: http://aerocom.met.no/cgi-bin/aerocom/surfobs_annualrs.pl?PROJECT=cci-Aerosol (accessed on 1 December 2015).
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef]
- Martonchik, J.V.; Kahn, R.A.; Diner, D.J. Retrieval of aerosol properties over land using MISR observations. In Satellite Aerosol Remote Sensing over Land; Kokhanovsky, A., de Leeuw, G., Eds.; Springer: Berlin, Germany, 2009; pp. 267–293. [Google Scholar]
- Che, H.; Zhang, X.Y.; Chen, H.B.; Damiri, B.; Goloub, P.; Li, Z.Q.; Zhang, X.C.; Wei, Y.; Zhou, H.G.; Dong, F.; et al. Instrument calibration and aerosol optical depth validation of the China Aerosol Remote Sensing Network. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Dubovik, O.; King, M.D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J. Geophys. Res. 2000, 105, 20673–20696. [Google Scholar] [CrossRef]
- Dubovik, O. Optimization of numerical inversion in photopolarimetric remote sensing. In Photopolarimetry in Remote Sensing; Videen, G., Yatskiv, Y., Mishchenko, M., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; pp. 65–106. [Google Scholar]
- Dubovik, O.; Sinyuk, A.; Lapyonok, T.; Holben, B.N.; Mishchenko, M.; Yang, P.; Eck, T.F.; Volten, H.; Munoz, O.; Veihelmann, B.; et al. Application of light scattering by spheroids for accounting for particle non-sphericity in remote sensing of desert dust. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- Dubovik, O.; Herman, M.; Holdak, A.; Lapyonok, T.; Tanré, D.; Deuzé, J.L.; Ducos, F.; Sinyuk, A.; Lopatin, A. Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations. Atmos. Meas. Tech. 2011, 4, 975–1018. [Google Scholar] [CrossRef] [Green Version]
- Dubovik, O.; Lapyonok, T.; Litvinov, P.; Herman, M.; Fuertes, D.; Ducos, F.; Lopatin, A.; Chaikovsky, A.; Torres, B.; Derimian, Y.; et al. GRASP: A versatile algorithm for characterizing the atmosphere. Proc. SPIE 2014. [Google Scholar] [CrossRef]
- Litvinov, P.; Hasekamp, O.; Cairns, B. Models for surface reflection of radiance and polarized radiance: comparison with airborne multi-angle photo-polarimetric measurements and implications for modeling top-of-atmosphere measurements. Remote Sens. Environ. 2011, 115, 781–792. [Google Scholar] [CrossRef]
- Litvinov, P.; Hasekamp, O.; Dubovik, O.; Cairns, B. Model for land surface reflectance treatment: Physical derivation, application for bare soil and evaluation on airborne and satellite measurements. J. Quant. Spectrosc. Radiat. Transf. 2012, 113, 2023–2039. [Google Scholar] [CrossRef]
- Cox, C.; Munk, W. Measurements of the roughness of the sea surface from photographs of the Sun’s glitter. J. Opt. Soc. Am. 1954, 44, 838–850. [Google Scholar] [CrossRef]
- Bréon, F.M.; Colzy, S. Cloud detection from the spaceborne POLDER instrument and validation against surface synoptic observations. J. Appl. Meteorol. 1999, 38, 777–785. [Google Scholar] [CrossRef]
- Klüser, L.; Martynenko, D.; Holzer-Popp, T. Thermal infrared remote sensing of mineral dust over land and ocean: A spectral SVD based retrieval approach for IASI. Atmos. Meas. Tech. 2011, 4, 757–773. [Google Scholar] [CrossRef]
- Klüser, L.; Banks, J.R.; Martynenko, D.; Bergemann, C.; Brindley, H.E.; Holzer-Popp, T. Information content of space-borne hyperspectral infrared observations with respect to mineral dust properties. Remote Sens. Environ. 2015, 156, 294–309. [Google Scholar] [CrossRef]
- Klüser, L.; di Biagio, C.; Kleiber, P.D.; Formenti, P.; Grassian, V.H. Optical properties of non-spherical desert dust particles in the terrestrial infrared—An asymptotic approximation approach. J. Quant. Spectrosc. Radiat. Transf. 2016, 178, 209–223. [Google Scholar] [CrossRef]
- Capelle, V.; Chédin, A.; Siméon, M.; Tsamalis, C.; Pierangelo, C.; Pondrom, M.; Armante, R.; Crevoisier, C.; Crépeau, L.; Scott, N.A. Evaluation of IASI derived dust aerosols characteristics over the tropical belt. Atmos. Chem. Phys. 2014, 14, 9343–9362. [Google Scholar] [CrossRef]
- Chevallier, F.; Chéruy, F.; Scott, N.A.; Chédin, A. A neural network approach for a fast and accurate computation of longwave radiative budget. J. Appl. Meteorol. 1998, 37, 1385–1397. [Google Scholar] [CrossRef]
- Capelle, V.; Chédin, A.; Péquignot, E.; Schluessel, P.; Newman, S.M.; Scott, N.A. Infrared continental surface emissivity spectra and skin temperature retrieved from IASI observations over the tropics. J. Appl. Meteorol. Climatol. 2012, 51, 1164–1179. [Google Scholar] [CrossRef]
- Balkanski, Y.; Schulz, M.; Claquin, T.; Guibert, S. Reevaluation of mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data. Atmos. Chem. Phys. 2007, 7, 81–95. [Google Scholar] [CrossRef]
- Vandenbussche, S.; Kochenova, S.; Vandaele, A.C.; Kumps, N.; de Mazière, M. Retrieval of desert dust aerosol vertical profiles from IASI measurements in the TIR atmospheric window. Atmos. Meas. Tech. 2013, 6, 2577–2591. [Google Scholar] [CrossRef]
- Zhou, D.; Larar, A.; Liu, X.; Smith, W.; Strow, L.; Yang, P.; Schlüssel, P.; Calbet, X. Global land surface emissivity retrieved from satellite ultraspectral IR measurements. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1277–1290. [Google Scholar] [CrossRef]
- Newman, S.M.; Smith, J.A.; Glew, M.D.; Rogers, S.M.; Taylor, J.P. Temperature and salinity dependence of sea surface emissivity in the thermal infrared. Q. J. R. Meteorol. Soc. 2005, 131, 2539–2557. [Google Scholar] [CrossRef]
- Massie, S.; Goldman, A. The infrared absorption cross-section and refractive-index data in HITRAN. J. Quant. Spectrosc. Radiat. Transf. 2003, 82, 413–428. [Google Scholar] [CrossRef]
- Amiridis, V.; Wandinger, U.; Marinou, E.; Giannakaki, E.; Tsekeri, A.; Basart, S.; Kazadzis, S.; Gkikas, A.; Taylor, M.; Baldasano, J.; et al. Optimizing CALIPSO Saharan dust retrievals. Atmos. Chem. Phys. 2013, 13, 12089–12106. [Google Scholar] [CrossRef] [Green Version]
- Clarisse, L.; Coheur, P.-F.; Prata, F.; Hadji-Lazaro, J.; Hurtmans, D.; Clerbaux, C. A unified approach to infrared aerosol remote sensing and aerosol type specification. Atmos. Chem. Phys. 2013, 13, 2195–2221. [Google Scholar] [CrossRef] [Green Version]
- Nalli, N.; Minnett, P.; van Delst, P. Emissivity and reflection model for calculating unpolarized isotropic water surface-leaving radiance in the infrared. I: Theoretical development and calculations. Appl. Opt. 2008, 47, 3701–3721. [Google Scholar] [CrossRef] [PubMed]
- Volz, F. Infrared optical constants of ammonium sulfate, Sahara dust; volcanic pumice and flyash. Appl. Opt. 1973, 12, 564–568. [Google Scholar] [CrossRef] [PubMed]
- De Graaf, M.; Stammes, P.; Torres, O.; Koelemeijer, R.B.A. Absorbing aerosol index: Sensitivity analysis, application to GOME and comparison with TOMS. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef]
- Tilstra, L.G.; de Graaf, M.; Aben, I.; Stammes, P. In-flight degradation correction of SCIAMACHY UV reflectances and Absorbing Aerosol Index. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Kyrölä, E.; Tamminen, J.; Leppelmeier, G. GOMOS on Envisat: An overview. Adv. Space Res. 2004, 33, 1020–1028. [Google Scholar] [CrossRef]
- Kyrölä, E.; Tamminen, J.; Sofieva, V.; Bertaux, J.L.; Hauchecorne, A.; Dalaudier, F.; Fussen, D.; Vanhellemont, F.; Fanton d’Andon, O.; Barrot, G.; et al. Retrieval of atmospheric parameters from GOMOS data. Atmos. Chem. Phys. 2010, 10, 11881–11903. [Google Scholar] [CrossRef] [Green Version]
- Bertaux, J.-L.; Kyrölä, E.; Fussen, D.; Hauchecorne, A.; Dalaudier, F.; Sofieva, V.; Tamminen, J.; Vanhellemont, F.; Fanton d’Andon, O.; Barrot, G.; et al. Global ozone monitoring by occultation of stars: An overview of GOMOS measurements on ENVISAT. Atmos. Chem. Phys. 2010, 10, 12091–12148. [Google Scholar] [CrossRef] [Green Version]
- Vanhellemont, F.; Mateshvili, N.; Blanot, L.; Robert, C.E.; Bingen, C.; Tétard, C.; Fussen, D.; Dekemper, E.; Sofieva, V.; Kyrölä, E.; et al. AerGom, an improved algorithm for stratospheric aerosol extinction retrieval from GOMOS observations Part 1: Algorithm development. Atmos. Meas. Tech. Disc. 2016. [Google Scholar] [CrossRef]
- Robert, C.E.; Bingen, C.; Vanhellemont, F.; Mateshvili, N.; Dekemper, E.; Tétard, C.; Fussen, D.; Zehner, C.; Thomason, L.W.; McElroy, C.T.; et al. AerGom, an improved algorithm for stratospheric aerosol extinction retrieval from GOMOS observations Part 2: Intercomparisons. Atmos. Meas. Tech. Disc. 2016. [Google Scholar] [CrossRef]
- Ackerman, S.A. Remote sensing aerosols using satellite infrared observations. J. Geophys. Res. 1997, 102, 17069–17079. [Google Scholar] [CrossRef]
- Carboni, E.; Thomas, G.E.; Sayer, A.M.; Siddans, R.; Poulsen, C.A.; Grainger, R.G.; Ahn, C.; Antoine, D.; Bevan, S.; Braak, R.; Brindley, H.; et al. Veihelmann, intercomparison of desert dust optical depth from satellite measurements. Atmos. Meas. Tech. 2012, 5, 1973–2002. [Google Scholar] [CrossRef]
- Torres, O.; Bhartia, P.K.; Herman, J.R.; Ahmad, Z.; Gleason, J. Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: Theoretical basis. J. Geophys. Res. 1998, 103, 17099–17110. [Google Scholar] [CrossRef]
- Chin, M.; Diehl, T.; Tan, Q.; Prospero, J.M.; Kahn, R.A.; Remer, L.A.; Yu, H.; Sayer, A.M.; Bian, H.; Geogdzhayev, I.V.; et al. Multi-decadal aerosol variations from 1980 to 2009: A perspective from observations and a global model. Atmos. Chem. Phys. 2014, 14, 3657–3690. [Google Scholar] [CrossRef]
- Brühl, C.; Lelieveld, J.; Tost, H.; Höpfner, M.; Glatthor, N. Stratospheric sulfur and its implications for radiative forcing simulated by the chemistry climate model EMAC. J. Geophys. Res. Atmos. 2015, 120, 2103–2118. [Google Scholar] [CrossRef] [PubMed]
- Höpfner, M.; Boone, C.D.; Funke, B.; Glatthor, N.; Grabowski, U.; Günther, A.; Kellmann, S.; Kiefer, M.; Linden, A.; Lossow, S.; et al. Sulfur dioxide (SO2) from MIPAS in the upper troposphere and lower stratosphere 2002–2012. Atmos. Chem. Phys. 2015, 15, 7017–7037. [Google Scholar] [CrossRef]
- Solomon, S.; Daniel, J.S.; Neely, R.R., III; Vernier, J.P.; Dutton, E.G.; Thomason, L.W. The persistently variable “background” stratospheric aerosol layer and global climate change. Science 2011, 333, 866–870. [Google Scholar] [CrossRef] [PubMed]
Vertical | Parameter | Sensor(s) | Coverage, Resolution | Algorithm, Version | Characteristics | References |
---|---|---|---|---|---|---|
Total column | AOD 0.55 µm, 0.67 µm, 0.87 µm | ATSR-2 AATSR | 1995–2003 2002–2012 global 10 × 10 km, 6-daily 1° × 1° daily/monthly | Principle: dual view radiometer in the visible and near-infrared; thermal infrared for cloud masking | ||
ADV/ASV V2.30 | LUT approach | [20] | ||||
land surface: spectral constant reflectance ratio | [23] | |||||
ocean surface: modelled reflectance | [24] | |||||
aerosol model: mixing Aerosol_cci common components | [20] | |||||
cloud mask: combined thresholds, | [25] | |||||
post-processing | [26] | |||||
ORAC V3.02 | optimal estimation | [27] | ||||
land surface: bi-directional reflectance model | [28] | |||||
ocean surface: modelled reflectance | [29] | |||||
aerosol model: mixing Aerosol_cci common components | [20] | |||||
cloud mask: combined thresholds | ||||||
SU V4.21 | Iterative model inversion | [30] | ||||
land surface: bi-directional reflectance model | [28] | |||||
ocean surface: modelled reflectance | [31] | |||||
aerosol model: mixing Aerosol_cci common components | [20] | |||||
cloud mask: combined thresholds | [26] |
Total Column Properties | |||||
---|---|---|---|---|---|
Property | Satellite Product | Model Grid | Regional | Inter-Annual | Decadal |
Spatial Resolution | 0.1° × 0.1° | 1° × 1° | 10° × 10° | 10° × 10° | 10° × 10° |
Temporal Resolution | 2 h | daily | monthly | seasonal | annual |
AOD, 550 nm | 0.04 | 0.02 | 0.01 | 0.008 | 0.006 |
Fine mode AOD, 550 nm | 0.03 | 0.015 | 0.008 | 0.006 | 0.005 |
Absorbing AOD, 550 nm | 0.01 | 0.005 | 0.003 | 0.0025 | 0.002 |
Dust AOD, 550 nm | 0.03 | 0.015 | 0.008 | 0.006 | 0.005 |
Metric | Algorithm | |||||
---|---|---|---|---|---|---|
ADV/ASV | ORAC | SU | ||||
V1.0 | V2.3 | V1.0 | V3.02 | V1.0 | V4.21 | |
Over Ocean | ||||||
number of points | 75 | 64 | 65 | 102 | 13 | 52 |
bias | 0.04 | 0.02 | 0.07 | 0.10 | 0.06 | −0.002 |
RMSE | 0.16 | 0.09 | 0.15 | 0.16 | 0.08 | 0.06 |
correlation | 0.58 | 0.89 | 0.81 | 0.93 | 0.89 | 0.86 |
GCOS fraction (%) | 17 | 66 | 46 | 31 | 15 | 58 |
Over Land | ||||||
number of points | 306 | 185 | 262 | 262 | 138 | 343 |
bias | −0.005 | −0.05 | 0.03 | −0.002 | −0.001 | −0.01 |
RMSE | 0.16 | 0.13 | 0.16 | 0.08 | 0.08 | 0.11 |
correlation | 0.59 | 0.66 | 0.59 | 0.86 | 0.72 | 0.82 |
GCOS fraction (%) | 37 | 54 | 40 | 51 | 46 | 62 |
Metric | Data Volumes | |||
---|---|---|---|---|
September 2008 | March, June, September, December 2008 | All 2008 | 2002–2012 | |
Over Ocean | ||||
number of points | 52 | 235 | 716 | 5808 |
bias | −0.002 | −0.002 | −0.002 | 0.006 |
RMSE | 0.06 | 0.07 | 0.07 | 0.08 |
correlation | 0.86 | 0.93 | 0.91 | 0.87 |
GCOS fraction | 58 | 64 | 66 | 62 |
Over Land | ||||
number of points | 343 | 993 | 3313 | 28,123 |
bias | −0.01 | 0.007 | 0.007 | 0.003 |
RMSE | 0.11 | 0.12 | 0.14 | 0.15 |
correlation | 0.82 | 0.86 | 0.81 | 0.79 |
GCOS fraction | 62 | 56 | 51 | 52 |
Metric | Algorithm | |||||
---|---|---|---|---|---|---|
ADV/ASV v2.30 | ORAC v3.02 | SU v4.21 | ||||
September 2008 | All 2008 | September 2008 | All 2008 | September 2008 | All 2008 | |
number of points | 586 | 6072 | 586 | 6072 | 586 | 6072 |
bias | −0.048 (−26%) | −0.04 (−25%) | −0.001 (−2%) | −0.007 (−8%) | −0.025 (−9%) | −0.021 (−9%) |
RMSE | 0.12 | 0.11 | 0.11 | 0.11 | 0.11 | 0.10 |
correlation | 0.71 | 0.80 | 0.74 | 0.79 | 0.80 | 0.83 |
GCOS fraction | 53 | 52 | 50 | 49 | 60 | 59 |
Algorithm | Total Score | Sub Scores | ||
---|---|---|---|---|
Bias | Temporal Correlation | Spatial Correlation | ||
Over Coastal/Ocean Regions | ||||
ADV v2.30 | −0.74 | −0.87 | 0.84 | 0.74 |
ORAC v3.02 | +0.73 | 0.88 | 0.83 | 0.77 |
SU v4.21 | +0.75 | 0.89 | 0.84 | 0.77 |
Over Land Regions | ||||
ADV v2.30 | −0.68 | −0.86 | 0.80 | 0.85 |
ORAC v3.02 | +0.70 | 0.86 | 0.82 | 0.86 |
SU v4.21 | +0.73 | 0.86 | 0.85 | 0.87 |
Algorithm | Total Score | Sub Scores | ||
---|---|---|---|---|
Bias | Temporal Correlation | Spatial Correlation | ||
Over Coastal/Ocean Regions | ||||
ADV v2.30 | +0.64 | 0.82 | 0.77 | 0.72 |
ORAC v3.02 | +0.68 | 0.88 | 0.77 | 0.75 |
SU v4.21 | +0.72 | 0.89 | 0.81 | 0.80 |
MISR v22 | +0.71 | 0.82 | 0.86 | 0.81 |
MODIS collection 6 | +0.67 | 0.81 | 0.82 | 0.82 |
SeaWIFS v4 | +0.66 | 0.89 | 0.75 | 0.81 |
Over Land Regions | ||||
ADV v2.30 | −0.68 | −0.85 | 0.80 | 0.82 |
ORAC v3.02 | +0.68 | 0.87 | 0.78 | 0.82 |
SU v4.21 | +0.69 | 0.86 | 0.80 | 0.83 |
MISR v22 | +0.76 | 0.88 | 0.87 | 0.85 |
MODIS collection 6 | +0.73 | 0.88 | 0.83 | 0.78 |
SeaWIFS v4 | +0.70 | 0.87 | 0.80 | 0.78 |
Metric | Algorithm | |||||
---|---|---|---|---|---|---|
ADV/ASV | ORAC | SU | ||||
AERONET | AERONET + CARSNET | AERONET | AERONET + CARSNET | AERONET | AERONET + CARSNET | |
number of points | 50 | 307 | 66 | 612 | 57 | 435 |
bias | −0.08 | −0.15 | 0.03 | −0.06 | −0.03 | −0.12 |
RMSE | 0.09 | 0.12 | 0.19 | 0.21 | 0.09 | 0.14 |
correlation | 0.92 | 0.79 | 0.72 | 0.47 | 0.91 | 0.82 |
Vertical | Parameter | Sensor(s) | Coverage, Resolution | Algorithm, Version | Characteristics | References |
---|---|---|---|---|---|---|
Total column | AOD 0.55 µm + several aerosol/surface properties | POLDER/PARASOL | 2008 selected regions 6 × 6 km, ~weekly 1° × 1° daily/monthly | Principle: polarization, multi-angle, multi-spectral radiometer in the visible | ||
GRASP V0.07 | multi-pixel aerosol/surface retrieval, smoothness constraints | [41,42,43,44,45] | ||||
land surface: bi-directional reflectance/polarization models | [46,47] | |||||
ocean surface: water-leaving radiance model | [48] | |||||
aerosol model: spheroidal kernels | [43] | |||||
cloud mask: POLDER cloud mask | [49] | |||||
Dust AOD 10 µm, 0.55 µm | IASI | 2013 Global dust belt 12 km, twice daily 1° × 1° daily/monthly | Principle: thermal infrared spectrometer | |||
IMARS V4.2 | Spectral pattern recognition | [50] | ||||
land/ocean surface: 24 example emissivity spectra | [51] | |||||
aerosol model: Asymptotic Approximation Approach | [52] | |||||
cloud mask: probability based a posteriori cloud filtering | ||||||
LMD V1.3 | Look-up table | [53] | ||||
surface temperature co-retrieved with AOD and altitude | ||||||
land surface: monthly grid of IASI surface emissivity | [54] | |||||
aerosol model: Mie calculations, fixed size distribution | [55] | |||||
cloud mask: threshold filtering during inversion process | [56] | |||||
MAPIR V3.0 | Optimal Estimation (dust profiles and surface temperature) | [57] | ||||
land surface: emissivity from Zhou et al. | [58] | |||||
ocean surface: emissivity from Newman et al. | [59] | |||||
aerosol model: spherical, Reff 2 µm, HITRAN refract. index | [60] | |||||
vertical profile: a priori | [61] | |||||
cloud mask: IASI level2 (max 10%) | ||||||
ULB V5.0 | Neural network | [62] | ||||
Surface emissivity database | [58] | |||||
CALIPSO dust altitude climatology aerosol model: spherical | [63] | |||||
lognormal, preset refractive indices | [64] | |||||
cloud mask: IASI L2 (Eumetsat), 0% threshold | ||||||
Absorbing Aerosol Index AAI | TOMS GOME SCIAMACHY GOME-2 OMI | 1978–1993 1995–2003 2002–2012 2007– 2004– 1° × 1° daily/monthly | Principle: UV spectrometer, ratio of two UV wavelengths | |||
AAI V1.4.7 | index based on 2 UV reflectances | [65] | ||||
compared to simulated Rayleigh reflectances | ||||||
Wavelength pairs: 340/380 nm (GOME(-2), SCIAMACHY), 331/360 nm (TOMS) and 354/388 nm (OMI) | ||||||
Sensitivities: mostly aerosol concentration and height | ||||||
Degradation correction | [66] | |||||
No cloud masking needed | ||||||
sun glint and solar eclipse filtering | ||||||
Vertical profile | Aerosol extinction 0.55 µm | GOMOS | 2002–2012 Global 2.5° × 10° Monthly 5° × 60° 5 daily | Principle: Star occultation spectrometer in the UV, visible, and NIR | ||
AERGOM V2.14 V2.19 | vertical extinction profiles in the stratosphere | [67,68] | ||||
estimate of stratospheric AOD | [69] | |||||
Wavelengths: 300–750 nm; (so far at 550 nm) | [70] | |||||
Polar stratospheric clouds (PSC) and subvisible cirrus clouds | [71] |
Metric | Parameter/Quality Control | |||
---|---|---|---|---|
AOD670/7% Fit Residual | AOD670/3% Fit Residual | SSA670/7% Fit Residual | SSA670/3% Fit Residual | |
L2 Validation (Pixel Window, Time Window, All Points) | ||||
number of points | 455 | 182 | 233 | 100 |
bias | 0.02 | 0.05 | −0.01 | 0 |
RMSE | 0.18 | 0.14 | 0.06 | 0.04 |
correlation | 0.88 | 0.95 | 0.65 | 0.72 |
Metric | Parameter | |||||
---|---|---|---|---|---|---|
AOD440 | AOD670 | AOD865 | AE (670–865) | SSA670 | SS865 | |
Over African Sites | ||||||
number of points | 182 | 182 | 182 | 157 | 100 | 100 |
bias | 0.004 | 0.05 | 0.04 | 0.03 | 0 | 0.01 |
RMSE | 0.14 | 0.14 | 0.14 | 0.18 | 0.04 | 0.04 |
correlation | 0.96 | 0.95 | 0.95 | 0.91 | 0.72 | 0.76 |
Over Beijing and Kanpur | ||||||
number of points | 58 | 58 | 58 | 56 | 21 | 21 |
bias | 0.03 | 0.01 | −0.002 | 0.04 | 0.01 | 0.02 |
RMSE | 0.25 | 0.18 | 0.14 | 0.28 | 0.06 | 0.06 |
correlation | 0.97 | 0.96 | 0.95 | 0.86 | 0.55 | 0.67 |
Metric | Algorithm | |||
---|---|---|---|---|
IMARS v4.2 | LMD v1.3 | MAPIR v3.0 | ULB v5.0 | |
L2 Validation (Pixel Window, Time Window, All Points) | ||||
number of points | 4408 | 4972 | 3141 | 5053 |
bias | −0.08 | −0.01 | +0.28 | +0.02 |
RMSE | 0.14 | 0.12 | 0.40 | 0.12 |
correlation | 0.45 | 0.60 | 0.41 | 0.80 |
L3 Validation (Gridded, Daily; Common Points) | ||||
number of points | 2652 | 2652 | 2637 | 2652 |
bias | −0.08 (−67%) | −0.05 (−38%) | +0.12 (+94%) | +0.01 (+8%) |
RMSE | 0.16 | 0.12 | 0.28 | 0.12 |
correlation | 0.40 | 0.66 | 0.47 | 0.76 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popp, T.; De Leeuw, G.; Bingen, C.; Brühl, C.; Capelle, V.; Chedin, A.; Clarisse, L.; Dubovik, O.; Grainger, R.; Griesfeller, J.; et al. Development, Production and Evaluation of Aerosol Climate Data Records from European Satellite Observations (Aerosol_cci). Remote Sens. 2016, 8, 421. https://doi.org/10.3390/rs8050421
Popp T, De Leeuw G, Bingen C, Brühl C, Capelle V, Chedin A, Clarisse L, Dubovik O, Grainger R, Griesfeller J, et al. Development, Production and Evaluation of Aerosol Climate Data Records from European Satellite Observations (Aerosol_cci). Remote Sensing. 2016; 8(5):421. https://doi.org/10.3390/rs8050421
Chicago/Turabian StylePopp, Thomas, Gerrit De Leeuw, Christine Bingen, Christoph Brühl, Virginie Capelle, Alain Chedin, Lieven Clarisse, Oleg Dubovik, Roy Grainger, Jan Griesfeller, and et al. 2016. "Development, Production and Evaluation of Aerosol Climate Data Records from European Satellite Observations (Aerosol_cci)" Remote Sensing 8, no. 5: 421. https://doi.org/10.3390/rs8050421