Estimation of High-Resolution Surface Shortwave Radiative Fluxes Using SARA AOD over the Southern Great Plains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. MODIS Data and Study Days
2.3. Retrieval of SW Radiative Fluxes
2.3.1. Instantaneous Downward and Net SW Radiative Fluxes
2.3.2. Retrieval of SARA AOD
2.3.3. SW Radiative Fluxes from SARA AOD and MODIS Data
3. Results
3.1. Comparison between SARA and MODIS AOD
3.2. Validation of Downward SW Radiative Fluxes
3.3. Validation of Net Surface SW Radiative Fluxes
3.4. Spatial Representations of Estimated Global Irradiance
3.5. Comparison with Other Studies
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
AERONET | AErosol RObotic NETwork |
AOD | Aerosol Optical Depth |
AP | Asymmetry parameter |
ARM | Atmospheric Radiation Measurement |
DB | Deep Blue |
DEM | Digital elevation model |
DT | Dark Target |
EF | Extended facility |
LST | Land Surface Temperature |
MFRSR | Multi-filter Rotating Shadowband adiometer |
MODIS | MODerate resolution Imaging Spectroradiometer |
NDVI | normalized difference vegetation index |
NIP | Normal Incidence Pyrheliometer |
NSSR | Net Surface Shortwave Radiation |
PSP | Precision Spectral Pyranometers |
SARA | Simplified Aerosol Retrieval Algorithm |
SGP | Southern Great Plains |
SIRS | Solar Infrared Radiation Stations |
SSA | Single scattering albedo |
SW | Shortwave |
TOA | Top of Atmosphere |
References
- Solomon, S.; Qin, D.; Manning, M.; Marquis, M.; Averyt, K.; Tignor, M.; Miller, H.; Chen, Z. Climate Change 2007: The Physical Science Basis; Cambrige University Press: New York, NY, USA, 2007. [Google Scholar]
- Sellers, P.; Dickinson, R.; Randall, D.; Betts, A.; Hall, F.; Berry, J.; Collatz, G.; Denning, A.; Mooney, H.; Nobre, C.; et al. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 1997, 275, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Islam, S.; Guo, W.; Jutla, A.S.; Senarath, S.U.; Ramsay, B.H.; Eltahir, E. A satellite-based daily actual evapotranspiration estimation algorithm over south florida. Glob. Planet. Chang. 2009, 67, 62–77. [Google Scholar] [CrossRef]
- Carrer, D.; Lafont, S.; Roujean, J.-L.; Calvet, J.-C.; Meurey, C.; Le Moigne, P.; Trigo, I. Incoming solar and infrared radiation derived from meteosat: Impact on the modeled land water and energy budget over france. J. Hydrometeorol. 2012, 13, 504–520. [Google Scholar] [CrossRef]
- Jia, L.; Roupioz, L.; Hu, G.; Zhou, J. Anomalies Maps of Net Radiation, LST and FPAR; CEOP-AEGIS Deliverable Report De9. 7; University of Strasbourg: Strasbourg, France, 2011. [Google Scholar]
- Kim, H.-Y.; Liang, S. Development of a hybrid method for estimating land surface shortwave net radiation from MODIS data. Remote Sens. Environ. 2010, 114, 2393–2402. [Google Scholar] [CrossRef]
- Li, Z.; Leighton, H.; Cess, R.D. Surface net solar radiation estimated from satellite measurements: Comparisons with tower observations. J. Clim. 1993, 6, 1764–1772. [Google Scholar] [CrossRef]
- Li, Z.; Leighton, H.; Masuda, K.; Takashima, T. Estimation of sw flux absorbed at the surface from TOA reflected flux. J. Clim. 1993, 6, 317–330. [Google Scholar] [CrossRef]
- Tang, B.; Li, Z.-L.; Zhang, R. A direct method for estimating net surface shortwave radiation from MODIS data. Remote Sens. Environ. 2006, 103, 115–126. [Google Scholar] [CrossRef]
- Niu, X.; Pinker, R.T. An improved methodology for deriving high-resolution surface shortwave radiative fluxes from modis in the arctic region. J. Geophys. Res. Atmos. 2015, 120, 2382–2393. [Google Scholar] [CrossRef]
- Chen, M.; Zhuang, Q.; He, Y. An efficient method of estimating downward solar radiation based on the MODIS observations for the use of land surface modeling. Remote Sens. 2014, 6, 7136–7157. [Google Scholar] [CrossRef]
- Lu, N.; Qin, J.; Yang, K.; Sun, J. A simple and efficient algorithm to estimate daily global solar radiation from geostationary satellite data. Energy 2011, 36, 3179–3188. [Google Scholar] [CrossRef]
- Pinker, R.; Laszlo, I. Modeling surface solar irradiance for satellite applications on a global scale. J. Appl. Meteorol. 1992, 31, 194–211. [Google Scholar] [CrossRef]
- Tang, W.; Qin, J.; Yang, K.; Niu, X.; Min, M.; Liang, S. An efficient algorithm for calculating photosynthetically active radiation with modis products. Remote Sens. Environ. 2017, 194, 146–154. [Google Scholar] [CrossRef]
- Tang, W.; Qin, J.; Yang, K.; Liu, S.; Lu, N.; Niu, X. Retrieving high-resolution surface solar radiation with cloud parameters derived by combining MODIS and MTSAT data. Atmos. Chem. Phys. 2016, 16, 2543–2557. [Google Scholar] [CrossRef]
- Tang, W.; Yang, K.; Sun, Z.; Qin, J.; Niu, X. Global performance of a fast parameterization scheme for estimating surface solar radiation from MODIS data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3558–3571. [Google Scholar] [CrossRef]
- Huang, G.; Ma, M.; Liang, S.; Liu, S.; Li, X. A LUT-based approach to estimate surface solar irradiance by combining MODIS and MTSAT data. J. Geophys. Res. Atmos. 2011, 116, D22201. [Google Scholar] [CrossRef]
- Pinker, R.T.; Tarpley, J.D.; Laszlo, I.; Mitchell, K.E.; Houser, P.R.; Wood, E.F.; Schaake, J.C.; Robock, A.; Lohmann, D.; Cosgrove, B.A.; et al. Surface radiation budgets in support of the GEWEX Continental-Scale International Project (GCIP) and the GEWEX Americas Prediction Project (GAPP), including the north american land data assimilation system (NLDAS) project: GewexCcontinental-Scale International Project, part 3 (GCIP3). J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Suri, M.; Remund, J.; Cebecauer, T.; Hoyer-Click, C.; Dumortier, D.; Huld, T.; Stackhouse, P.; Ineichen, P. Comparison of direct normal irradiation maps for Europe. In Proceedings of the Solar PACES Conference, Berlin, Germany, 15–18 September 2009. [Google Scholar]
- Gueymard, C.A. Temporal variability in direct and global irradiance at various time scales as affected by aerosols. Solar Resour. 2012, 86, 3544–3553. [Google Scholar] [CrossRef]
- Gueymard, C.A. Uncertainties in modeled direct irradiance around the sahara as affected by aerosols: Are current datasets of bankable quality? J. Sol. Energy Eng. 2011, 133, 031024. [Google Scholar] [CrossRef]
- Castelli, M.; Stöckli, R.; Zardi, D.; Tetzlaff, A.; Wagner, J.E.; Belluardo, G.; Zebisch, M.; Petitta, M. The Heliomont method for assessing solar irradiance over complex terrain: Validation and improvements. Remote Sens. Environ. 2014, 152, 603–613. [Google Scholar] [CrossRef]
- Hubanks, P.; King, M.; Platnick, S.; Pincus, R. MODIS Atmosphere L3 Gridded Product Algorithm Theoretical Basis Document; Collection 005 Version 1.1, Technical Report ATBT-MOD-30; NASA: Greenbelt, MD, USA, 2008.
- Li, F.; Kustas, W.P.; Anderson, M.C.; Prueger, J.H.; Scott, R.L. Effect of remote sensing spatial resolution on interpreting tower-based flux observations. Remote Sens. Environ. 2008, 112, 337–349. [Google Scholar] [CrossRef]
- Kustas, W.P.; Li, F.; Jackson, T.J.; Prueger, J.H.; MacPherson, J.I.; Wolde, M. Effects of remote sensing pixel resolution on modeled energy flux variability of croplands in iowa. Remote Sens. Environ. 2004, 92, 535–547. [Google Scholar] [CrossRef]
- Bromwich, D.H.; Bai, L.; Bjarnason, G.G. High-resolution regional climate simulations over iceland using polar mm5. Mon. Weather Rev. 2005, 133, 3527–3547. [Google Scholar] [CrossRef]
- Levy, R.; Remer, L.; Kleidman, R.; Mattoo, S.; Ichoku, C.; Kahn, R.; Eck, T. Global evaluation of the collection 5 MODIS dark-target aerosol products over land. Atmos. Chem. Phys. 2010, 10, 10399–10420. [Google Scholar] [CrossRef] [Green Version]
- Levy, R.C.; Remer, L.A.; Mattoo, S.; Vermote, E.F.; Kaufman, Y.J. Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of moderate resolution imaging spectroradiometer spectral reflectance. J. Geophys. Res. Atmos. 2007, 112, D13211. [Google Scholar] [CrossRef]
- Hsu, N.C.; Tsay, S.-C.; King, M.D.; Herman, J.R. Deep blue retrievals of Asian aerosol properties during ACE-Asia. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3180–3195. [Google Scholar] [CrossRef]
- Remer, L.; Mattoo, S.; Levy, R.; Munchak, L. MODIS 3 km aerosol product: Algorithm and global perspective. Atmos. Meas. Tech. 2013, 6, 1829–1844. [Google Scholar] [CrossRef]
- Bilal, M.; Nichol, J.E.; Bleiweiss, M.P.; Dubois, D. A simplified high resolution MODIS Aerosol Retrieval Algorithm (SARA) for use over mixed surfaces. Remote Sens. Environ. 2013, 136, 135–145. [Google Scholar] [CrossRef]
- Yang, K.; Koike, T.; Huang, G.; Tamai, N. Development and validation of an advanced model for estimating solar radiation from surface meteorological data. In Recent Developments in Solar Energy; Hough, T.P., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2007; pp. 1–53. [Google Scholar]
- Stoffel, T. Solar and Infrared Radiation Station (SIRS) Handbook; PNNL: Richland, WA, USA; DOE Office of Science Atmospheric Radiation Measurement (ARM) Program (United States): Richland, WA, USA, 2005.
- Atmospheric Radiation Measurement (ARM) Web Site. Available online: http://www.arm.gov/ (accessed on 25 October 2017).
- IIqbal, M. Total (broadband) radiation under cloudless skies. In An Introduction to Solar Radiation, 1st ed.; Academic Press: New York, NY, USA, 1983; pp. 169–213. [Google Scholar]
- Yang, K.; Huang, G.; Tamai, N. A hybrid model for estimating global solar radiation. Sol. Energy 2001, 70, 13–22. [Google Scholar] [CrossRef]
- Gueymard, C.A. Direct solar transmittance and irradiance predictions with broadband models. Part I: Detailed theoretical performance assessment. Sol. Energy 2003, 74, 355–379. [Google Scholar] [CrossRef]
- Gueymard, C.A. Direct solar transmittance and irradiance predictions with broadband models. Part II: Validation with high-quality measurements. Sol. Energy 2003, 74, 381–395. [Google Scholar] [CrossRef]
- Madkour, M.; El-Metwally, M.; Hamed, A. Comparative study on different models for estimation of Direct Normal Irradiance (DNI) over Egypt atmosphere. Renew. Energy 2006, 31, 361–382. [Google Scholar] [CrossRef]
- Moody, E.G.; King, M.D.; Platnick, S.; Schaaf, C.B.; Gao, F. Spatially complete global spectral surface albedos: Value-added datasets derived from Terra MODIS land products. IEEE Trans. Geosci. Remote Sens. 2005, 43, 144–158. [Google Scholar] [CrossRef]
- Bilal, M.; Nichol, J.E. Evaluation of MODIS aerosol retrieval algorithms over the Beijing-Tianjin-Hebei region during low to very high pollution events. J. Geophys. Res. Atmos. 2015, 120, 7941–7957. [Google Scholar] [CrossRef]
- Bilal, M.; Nichol, J.E.; Chan, P.W. Validation and accuracy assessment of a Simplified Aerosol Retrieval Algorithm (SARA) over Beijing under low and high aerosol loadings and dust storms. Remote Sens. Environ. 2014, 153, 50–60. [Google Scholar] [CrossRef]
- Bilal, M.; Nazeer, M.; Nichol, J.E. Validation of MODIS and VIIRS derived aerosol optical depth over complex coastal waters. Atmos. Res. 2017, 186, 43–50. [Google Scholar] [CrossRef]
- Ichoku, C.; Levy, R.; Kaufman, Y.J.; Remer, L.A.; Li, R.R.; Martins, V.J.; Holben, B.N.; Abuhassan, N.; Slutsker, I.; Eck, T.F. Analysis of the performance characteristics of the five-channel Microtops II Sun photometer for measuring aerosol optical thickness and precipitable water vapor. J. Geophys. Res. Atmos. 2002, 107, AAC 5-1–AAC 5-17. [Google Scholar] [CrossRef]
- Leckner, B. The spectral distribution of solar radiation at the earth’s surface—Elements of a model. Sol. Energy 1978, 20, 143–150. [Google Scholar] [CrossRef]
- Bisht, G.; Bras, R.L. Estimation of net radiation from the MODIS data under all sky conditions: Southern Great Plains case study. Remote Sens. Environ. 2010, 114, 1522–1534. [Google Scholar] [CrossRef]
- Roupioz, L.; Jia, L.; Nerry, F.; Menenti, M. Estimation of daily solar radiation budget at kilometer resolution over the Tibetan Plateau by integrating MODIS data products and a DEM. Remote Sens. 2016, 8, 504. [Google Scholar] [CrossRef]
- Rutan, D.A.; Charlock, T.; Rose, F.; Manalo-Smith, N. Validation of CERES/SARB Data Product Using ARM Surface Flux Observations. In Proceedings of the 14th ARM Science Team Meeting, Albuquerque, New Mexico, 22–26 March 2004. [Google Scholar]
MODIS Product | Short Name | Resolution | Parameters Used | MODIS-Based Scheme | SARA-Based Scheme |
---|---|---|---|---|---|
Land Surface Temperature | MOD11 | 1-km | Surface temperature | ✓ | ✓ |
Level-1B Radiance | MOD02 | 1-km | Top of Atmosphere radiance band 4 | ✓ | |
Geolocation properties Product | MOD03 | 1-km | Height | ✓ | |
Solar zenith angle | ✓ | ✓ | |||
Sensor zenith angle | ✓ | ||||
Solar azimuth angle | ✓ | ||||
Sensor azimuth angle | ✓ | ||||
Aerosol Product | MOD04-3K | 3-km | Aerosol optical depth | ✓ | |
Perceptible Water Product | MOD05 | 1-km | Water vapor amount | ✓ | ✓ |
Atmospheric Profile | MOD07 | 5-km | Total ozone column | ✓ | ✓ |
Level-2 Land Surface Reflectance | MOD09 | 1-km | Surface reflectance band 4 | ✓ | |
Albedo Product | MCD43B3 | 1-km | Black-sky albedo white-sky albedo | ✓ | ✓ |
Months (Number of Acceptable Cloud-Free Days) | Julian Days |
---|---|
January (3) | 16, 18, 19 |
February (2) | 48, 58 |
March (4) | 71, 78, 79, 90 |
April (4) | 94, 99, 105, 112 |
May (1) | 122 |
July (2) | 192, 201 |
August (2) | 224, 235 |
September (2) | 247, 250 |
October (3) | 280, 303, 304 |
November (3) | 310, 323, 329 |
Scheme | Irradiances | R2 | RMSE (W∙m−2) | Bias (W∙m−2) |
---|---|---|---|---|
SARA-based | Global | 0.99 | 26 (3.4%) | 16 |
Direct | 0.97 | 27 (4%) | 14 | |
Diffuse | 0.73 | 16 (17%) | −8 | |
MODIS-based | Global | 0.98 | 41 (5.4%) | 36 |
Direct | 0.95 | 60 (8.8%) | 52 | |
Diffuse | 0.62 | 32 (34%) | −27 |
Net SW Flux | R2 | RMSE (W∙m−2) | Bias (W∙m−2) |
---|---|---|---|
SARA-based | 0.97 | 36 (5.9%) | 26 (4.2%) |
MODIS-based | 0.97 | 47 (7.5%) | 41 (6.5%) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Javadnia, E.; Abkar, A.A.; Schubert, P. Estimation of High-Resolution Surface Shortwave Radiative Fluxes Using SARA AOD over the Southern Great Plains. Remote Sens. 2017, 9, 1146. https://doi.org/10.3390/rs9111146
Javadnia E, Abkar AA, Schubert P. Estimation of High-Resolution Surface Shortwave Radiative Fluxes Using SARA AOD over the Southern Great Plains. Remote Sensing. 2017; 9(11):1146. https://doi.org/10.3390/rs9111146
Chicago/Turabian StyleJavadnia, Eslam, Ali Akbar Abkar, and Per Schubert. 2017. "Estimation of High-Resolution Surface Shortwave Radiative Fluxes Using SARA AOD over the Southern Great Plains" Remote Sensing 9, no. 11: 1146. https://doi.org/10.3390/rs9111146
APA StyleJavadnia, E., Abkar, A. A., & Schubert, P. (2017). Estimation of High-Resolution Surface Shortwave Radiative Fluxes Using SARA AOD over the Southern Great Plains. Remote Sensing, 9(11), 1146. https://doi.org/10.3390/rs9111146